Commuting Toeplitz Operators
on the Bergman Space of an Annulus

ZELIKO CuUCKOVIE

Introduction

Let Q be a domain in the complex plane C, and let L2(Q) be the Bergman
space consisting of those analytic functions on 2 that are square integrable
on  with respect to area measure dA. Of particular interest are the cases
Q=D={zeC:|z|<1l}and Q=@ ={zeC: R<|z| <1} for 0< R < 1. The
Bergman space is a closed subspace of the Hilbert space L*(Q) of all square
integrable complex-valued functions on 2, so there is an orthogonal projec-
tion P from L?(Q) onto L3(Q). If ¢ belongs to L*(Q), the Toeplitz opera-
tor with symbol ¢, denoted T, is a linear operator from L2%(Q) to L2(Q) de-
fined by T, f = P(¢f). In [6] Axler and the author characterized commuting
Toeplitz operators on L2(D) whose symbols are harmonic. A complex-valued
function is harmonic on  if its Laplacian vanishes identically on Q. We
proved that two Toeplitz operators with symbols harmonic on D commute
only in the obvious cases. In this paper we want to prove the analogous theo-
rem for Toeplitz operators acting on L2(®), provided their symbols are in
a certain subclass of functions harmonic in Q. It is well known that every
function harmonic on D is of the form f+ g, where f and g are analytic on
D. On the other hand, the logarithmic conjugation theorem {5, p. 179] im-
plies that every # harmonic on @ is of the form u(z) = f(z)+ g(z) + c log|z|,
where f and g are analytic on @, c € C. Our commutativity theorem applies
to harmonic symbols without the logarithmic terms. Namely, we have the
following.

THEOREM 1. Suppose that ¢ = fi+f, and = g+, are bounded har-
monic functions on Q. Then T, T, = T, T, if and only if:

(i) ¢ and ¢ are both analytic on Q; or
(ii) @ and ¥ are both analytic on Q; or
(iii) there exist constants a, b € C, not both 0, such that ap + by is con-
stant on Q.

The main tool in the proof of the disk theorem was the automorphisms of
the disk. However, the automorphisms of the annulus are very sparse and
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we must make use of the reproducing kernels of Lf,((i) instead. The commu-
tativity problem leads to a certain annulus mean value property of functions
integrable on @. That property is the annulus analog of the well-known in-
variant mean value property. The problem of finding the connection between
harmonicity and the invariant mean value property of functions has a long
history. The study of the problem started with Furstenberg [10], in the con-
text of a noncompact Riemann space and certain probability measure, and
continued in the case of the unit disk and the unit ball of C" with Lebesgue
measure by Nagel and Rudin [12], Arazy, Fisher, and Peetre [2], Axler and
the author [6], Englis [9], and Ahern, Flores, and Rudin [1]. Recently, Arazy
and Zhang [3] have extended the results of [1] to Cartan domains of rank r
in C". Also, Furstenberg’s result has been generalized in a recent paper by
Ben Natan et al. [7].

Characterizing functions that have the annulus mean value property is
still an open problem, but we are able to prove certain results in a special
case, which is discussed in Section 1. These results suffice to prove Theorem
1, which we do in Section 2. The open problems seem to be difficult, because
we are able to use the reproducing kernels for the annulus in their power
series form only. The reproducing kernels could also be written in the closed
form using the Weierstrassian P-function (see {8, p. 10]). For more infor-
mation about the reproducing kernels of L2(Q) see [11], [15], and [16]). The
invariant mean value property is closely connected to the Berezin transform.
The Bergman space of the annulus and the corresponding Berezin transform
have also been studied in the papers by Peetre [13; 14].

~ 1. Mean Value Property

We will start with a lemma that will be used throughout the paper.

LEMMA 2. Suppose that u(z) = f(z)+g&(z)+clog|z| is a harmonic func-
tion in L*(R), with f and g analytic on Q. Then f and g belong to Lf,((i).

Proof. Without loss of generality, we can assume that u is a real-valued har-
monic function. Hence # = Re F+clog|z| for some analytic function F. If

o0

we express F as a Laurent series F(z) = Xh- _« 2a,2", then u has the form

o 2]
u(re®y= S (a,r*+a_,r e +clogr.

n=-—o
Since
2
T ; do
ify|2 ¥Y
fo |u(re®)| >
= (|c|log r+2 Re ay)?
2T . do
D> (apr™+a_,r "W @pr™+a_,r-"™e"""mo —
(n|=1 [m[=1Y0 2w

it follows that
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oo>f |u(z)|? dA(z)
Q

1
= k+21rf [ S (|a,,|2r2"+|a_,,|2r‘2"+a,,a_,,+c?,,ﬁ_,,)]rdr,
R L|n|=1

where k is a positive constant. For an arbitrary R<r <1,

27
E (ana—n)=J;) ( E anrneino)( 2 a_mr—me—imt?)ﬁ

=1 [n|=1 |m[=1 27
_ 1o i 2 db
= fo (Flre®)—F(o)? <2,

so that 3, - (a,a_,) converges, since F is analytic on @. Thus

1
S |anPr*™tdr < o,
R |n|=1

which means that Fe L3(Q). O

REMARK. The proof of Lemma 2 shows that if # bounded, then f and g
are actually in the Hardy space H?(Q®), that is, the space of analytic func-
tions 2 on @, with

2T .
supf |A(re™®)|? M <,
0 27

where the supremum is taken over R< r<|1.

For w € @, the reproducing kernel K, is the unique function in L3(@®) such
that (£, K,,) = f(w) for all fe L2(®). The inner product {f, g) is defined in
the usual way as

fa F(2)2(z) dA(2).
It is known that
_1 3 n+1 _oan_ 1 o1

Let k,, = K,,/| K, denote the normalized reproducing kernel. Suppose ¢ =
Ji+/> and ¥y = g,+ 2, are bounded harmonic functions, with fs and gs ana-
lytic on @. Then T,, Ty, = T, T,, implies that

(Tykyys Tpky =T, Ky, Tk 1)

for all w. A simple calculation shows that T, k,,(z) = g/(2) k() + 82(W)k,,(2)
and T3k, = f,(2)k,(2) + f1(w)k,.(z), so that the left side of (1) becomes

fagl(z)fz(Z)lkw(Z)lzdA(Z)+f1(W)gl(W)+f1(W)§2(W)+f2(W)§2(W)-

By interchanging ¢ and ¢, a similar formula can be obtained for the right
side of (1). Thus (1) becomes
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fa(flg'z—glfz)(z)|kw(z)|2 dA(Z) = (f12:—&1./>) (W) @)

for all w e Q. For an integrable function # we can introduce its Berezin trans-
form Bu as

(Bu)(w) = fa u(2)| ky(2)2 dA).

By (2), our function u = f,&,—g,f> must be a fixed point of the Berezin
transform. We will state this as the following proposition.

PROPOSITION 3. Assume that ¢ = f,+f, and ¥ = g, + &, are bounded har-
monic functions on Q, and that T,T, =T, T,. Then the function u = f,8,—
g1/f> must satisfy Bu =u in Q.

We say that # in the proposition has the annulus mean value property. A
special case of the main theorem of [1] is that Bu = u in D implies that u is
harmonic on D for all functions integrable on D. One may naturally wonder
if the same is true for functions integrable on @. Before we offer partial an-
swers, we would like to know which harmonic functions do have the annulus
mean value property.

ProPOSITION 4. Suppose that u is a harmonic function in L*(®). Then
Bu=uin Q@ if and only if u = f+g, with f and g analytic on Q.

Proof. If u(z) =f(z)+&(z) € L*(®), then by Lemma 2 we can conclude that
Bf = f and Bg = g, so the sufficiency follows. Patrick Ahern pointed out to
us that log|z| does not have the annulus mean value property. If it did, then

1 27 .
log|w| = B(log|z|)(w) = f rlogrf |K,, (re’)? d(;’dr]
0

R

oFl
1K.wll?

and therefore log|w/| is equal to the quotient of two Laurent series in ¢ = |w|?.
This would mean that log ¢ has a meromorphic extension to all of @, which
is impossible. The necessity of Proposition 4 follows from this observation
and Lemma 2. .

We would now like to study the fixed points of the Berezin transform on &.
We will assume that those fixed points are continuous functions on Q.

PROPOSITION 5. Suppose that ue C(®). Then Bu = u in @ and
2r . 27 .
f u(Re“’)ii.Q =f u(e’a)—d—a-
0 27 0 27!'
if and only if u = f+ g, where f and g are analytic on Q.

Proof. Suppose that the averages of # on both circles are the same. Then
the Poisson extension of u#|,, is a harmonic function » on @ without the
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logarithmic term (see e.g. [4, p. 254]). Let v denote again its continuous
extension to the boundary. Proposition 4 guarantees that Bv =v in @, and
so B(u—v) = (u—v). Since u—v =0 on 9@, a standard argument shows
that ¥ = v on @, that is, ¥ = f+ g for some functions f and g analytic on &.
Conversely, if # = f+ 2 € C(®), then f and g belong to H?*(®) by the remark
following Lemma 2. Cauchy’s theorem guarantees that the averages of ¥ on
both boundaries are the same. (]

Suppose now that u € C(®), but the averages are not equal. Let L, (z) = 2"

for ne Z. Define
2

(u*Ln)(z)=f u(ze“"‘f’)Ln(e"‘t’)g—i

0

for ze @. An application of Fubini’s theorem gives, for n # 0,
Avgp,(u*L,) = Avap(u*L,) =0,

where Dg = [z€ C:|z| < R} and Av stands for Average. Since u e C(®), so

isu*L,.

LEMMA 6. If ue C(®R) and Bu=u in @, then B(uxL,)=u*L, in Q@ for
allnel.

Proof. A simple calculation shows that

BuxL,)()= |

0

27
[ f u(we“"’)lkz(W)IzdA(W)]Ln(e‘¢)d—¢-
Q 27

From the Laurent series expansion of K,(w), one sees that K,,-is(we ~'®) =
K (w) and ||K,|? = || K;e—i+||*. Hence

f u(we ™) ko (w)|> dA(W) = u(ze ™)
@
and Lemma 6 follows. 0

ReEMARK. We have actually proved a stronger assertion that for u € C(®),

B(uxL,)= (Bu)*L,.

Lemma 6 implies that u * L, satisfies the hypotheses of Proposition 5 for all
n # 0 and consequently « * L, is harmonic on @. Hence, for all n # 0,

27 . . 27 . .

0=Aw*L)(2)= |  Alu(ze=#)lein® 2% = f (Au)(ze~#)ein® 92
0 27!' 0 27I'

We write z = re’®, and a change of variable for § —¢ shows that

21r . .
(Au)(re'®)e'™® d¢ _ 0
0 27f

for all n # 0. In other words, Au is a radial function on Q&.
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Our goal is to show that « is of the form (radial + harmonic). The proof,
in fact, shows that this is the case in a more general situation—namely, for
R" (n =1). The proof of the following lemma was communicated to the
author by Sheldon Axler.

Let S be the unit sphere in R” and let ¢ denote normalized surface area
measure on S. For u a function defined on @, the radialization of u, denoted
®R (u), is the function on @ defined by

R(u)(x) = fs u(x¢) do($). 3)

LEMMA 7. Ifue C*Q), then A(R(u)) = R(Au).

Proof. Let O denote the orthogonal group of all orthogonal linear maps on
R"”; in other words, O is the set of all linear isometries on R”. Then O is a
compact group. Let 7 be the Haar measure (the rotation-invariant probabil-
ity measure) on this group. Then, as is well known,

®R(u)(x) = fo u(Tx)dr(T)

for all xe@®@ and T €0. Taking the Laplacian (with respect to x) of both
sides of the equation above, we obtain

AR (1)) (x) = fe A(u(Tx)) dr(T)

= f (Au)(Tx) dr(T)
(V]

=R (Au)(x),

where the second line comes from {5, p. 3] and the third line comes from
(3) with u replaced by Au. O

CoROLLARY 8. If ue C*(Q) and Au is a radial function, then u equals a
radial function plus a harmonic function.

Proof. Lemma 7 gives
A(R(u)) =R(Au) = Au,
so A(u— ®(u)) = 0. In other words, ¥ — ®(u) is harmonic. Now,
u=RxRWwu)+(u—~xwu)),

which writes u as a radial function plus a harmonic function. ]

Applying Corollary 8 to our case n =2 and since R(u)(z) = (u *L)(z) (Which
guarantees that B(®R(u)) = ®(u)), we arrive at the following theorem.

THEOREM 9. Ifu e C(R) satisfies Bu = u in @, then u = R(u)+ f+ &, where
fand g are analytic on Q.
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2. Proof of Theorem 1

We need only prove the necessity. Proposition 3 yields that = f,8,— g,/
must satisfy Bu = u in @. We would like to apply the results from the pre-
vious section. However, our u ¢ C(Q), but we will show that u*L, e C((i)
We denote

H@D= 2 &z, gaa)= X buz™ 4

k=—c0 m=—oo

Because f; and g; belong to H*(®) for i =1, 2, it follows that

> lal* < oo > |ax|*R* < o,
k=-o k=—o
" w 5
E Ibm|2<°°’ 2 Ibm|2R2m<00.
m=-—o0 m=—o0
Now,
o - h 2 ksm_ iim+n—k)¢ d¢
(fi8)*L, ()= X akbmf z*z™e
k,m=—oc 271’
E Q4 b 2* 75
k———co

The inequalities in (5) imply that Ek__co|ak+,,bk| and Ek.__w|ak+,,ka2"+”|
both converge, so that ( f18,) * L ,(z) € C(®). Similarly, (g, )% L, (z) e C(R),
and therefore u* L, belongs to C(®). The averages of u*L, are equal to 0
on both boundary circles if n # 0, and also B(u*L,)=u *L,, in @, so it fol-
lows again that Au is a radial function on @. Because

d 0
A=422
0z 9z’
it follows that
fi85—gi f5 is aradial function on Q. (6)

We represent

fi)= X a,z", f1(z) = 2 dmzm,

n=—oo m=-—o0

o0 (o]
gix)= X cz", 8= X buz™
n=—co m=—o0
(Of course, the coefficients a, and b, are not the same as a, and b,, in (4),
but we use the same letters for convenience.) Statement (6) now means that

0

S (apb,,—c,d,)z"z™ is radial on Q.
n,m=—co
Therefore

a,b,—c,d, =0 (7N

if n # m. The analysis of (7) requires a discussion of several cases. At first,
we introduce the vectors u,, v,, € C* by
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u, = (a,, —cp), U = (b, dyy).

Then (7) says that u, is orthogonal to v, if n # m.
Case I: u, =0 for all n. This immediately implies (ii) in Theorem 1.

Case 2: uy,,# 0 for some ng, and all u, are multiples of u, : u, =1l,u, for
all n. By (7), v, = k;y(Cpy» @n,) for all m # ng and for some numbers k,,,.

Subcase A: 1f also v, =k, (Cyy, 4,,) for some number %, , it then fol-
lows that

Cag( S +13) = Ay, (i +85),
which implies (iii).
Subcase B: v, is not orthogonal to u, . Then u, = 0 for all n # n,. Thus
we have

fll(z) = anoznoy
gi(z) = ¢y 2",
cnole_anogé = (cnodno_anobno)zno =az", o#0.
Notice that ny = —1 would imply that f; and g, are not single-valued analytic
functions on Q. If [T, T;] denotes the commutator 7,,7,—7,T,, then a
short computation gives
0=I[T7,, Ty1=IT,, Tzn] = [T, T3~],
where N = ng+1 # 0. In other words, T~ is a normal operator. But
17~ 1) =12V = [27] > 1PN = | Tzv1)),

a contradiction.

Case 3. By symmetry, we can proceed in the same way as before if all
v, =0, or if v,, are not all zero but are all multiples of one another. This
leads (respectively) to (i) and (iii) of Theorem 1.

Case 4. The only remaining case is when each of the families {u,}, {v,,} con-
tains two linearly independent vectors. Let u, and u, be linearly indepen-
dent. Then, by (7), v,, =0 for all m # ngy, n; and so the two linearly inde-
pendent v,,s must be v, and v, . This in turn implies that u, =0 for all n
ng, n;. Thus we have

I,(Z) = anoz"0+ anlznl: fz'(Z) = dnoz"°+dmz"';
gl'(z) = Cnozno+cnlznl’ gé(Z) = bnozn0+ bnlznl'

Integrate and compute the commutator 0 =[7,,, Ty] = [T},, 75,1+ [T, Tg 1.
Using the equations

1
n Hg ny“ng No™~n RN, ?

we cancel out the terms containing [T;~, T3m] and [T~ Tzn], with N;=
n;+1, j=0,1. This results in
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0 = N (ap, by — Cny Gn ) Tyto, Tyvol + NG (@y By — n ) Tym, Tymi 1.

Since the pairs u, , u, and v, , v, are linearly independent, a, b, ,— ¢, dy,

and a, b, —c, d, are nonzero numbers and we have
[Tyvo, TzMo} = o[ Tym,, Ty

for some constant a # 0 with Ny # N;. Our goal is to show that this cannot
happen.

LEMMA 10. If [T,n, T;n] = a| T,n, T3] for some constant a # 0 and inte-
gers ng and n,, then ny = n,.

Proof. Recall that @ ={ze C: R <|z|<1}. If the standard orthonormal
basis for L2(®) is denoted by {e,(z)}, then for m, ne Z we have

n—m+1 1—-R*#+*D
n+l  1-R2n-m+D*

P(z"z") = D AP(Z"2"), exYex =
k

if n# —1 and n—m = —1. Suppose on the contrary that ny # n,. Without
loss of generality, we can assume that ny < n;. We want to apply the com-
mutators to a function z/, yielding

(Tymo Tymo — Tymo Tymo) (27)
j—no+1 1-R*U*D j41  1-RAUHMHD 0
| j+1 1—-R2U-no*D)  jiypy+1 1-R2UFD
'(j+I)Z[R(j+n0+])___R(j—no+l)]2_n62(l _R2(j+l))2 )
= . . J 8
| GHDG+ne+ D(I—RAFD)(1— R0+ ]z ®
for j # —1 and j+ ny # —1. For any positive integer k, we choose j = —1+k
and j =—1-—k. If j = —1+4k, using (8) we can write the equality [T, T;7] =
O[[Tzﬂ,, 7-'2”|] as
kZ[Rk+n0_Rk-—n0]2_ng(1 _RZk)Z o kZ[Rk+n1_Rk—n|]2_n12(1 __RZk)Z .
k(k+ ng)(1—R2k)(1— R2(k—no)) k(k+ny)(1—R2k)(1—R2k—m)) ~’
after a simplification, this becomes
(’71 +k)(1 _RZ(k—-nl)) B kZ[Rk+n1 _Rk—n;]?._an(l _RZk)Z
(n0+k)(1 _RZ(k—no)) -« kz[Rk+"0—-Rk‘"0]2——ng(l _Rzk)z ‘
For j = —1—k, we obtain a similar equation with £ being replaced by —k.
Notice that the right-hand side of the new equation is the same as the right-
hand side of (9). Hence,
(m+k)(A =R ") (ny—k)(1—R72K+m))
(no+k)(1—R2Kk=n0)) — (no—k)(1— R~2k+m0))

®)

or
(no—k)(1—R72*mdy — (p —k)(1— R™2K+m))

(ng+k)(1—R2k=no)y — (n,+k)(1—R2k=n)
for ke N\{ngy, n,}. Let
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(x—k)(l _R—Z(k+x))

(x+k)(1—-R2k—x)) ~

Then fi(ng) = fi(n;) for ke N\{ng, n;}. Our goal is to show that there is a
k such that f;(x) is one-to-one on an interval containing (n,, ;). For that
purpose it is enough to show that the numerator of f/ is positive on an in-

terval containing (ng, n;). A calculation and simplification gives that the
numerator is equal to

Zk(l _R—Z(k+x))(1 _RZ(k—x))+2 lnR(xZ_kZ)(R—Z(k+x)__RZ(k—x)),

Je(x) =

which we can rewrite as
2In R(x%—k?)(R™2k+x) — R2(k=x))

k(1 — R2k+x)y(] - R2k—x)y

[ln R(x2 _kz)(R—Z(k+x)_R2(k—x)) + l]'
For € > 0 small, let x e (ng—e¢, n,+¢). For k large enough,

k(1 — R~2k+2 (] — R2(k=x)y
In R(xz __kz)(R-—Z(k+x) _RZ(k—x))
k[R—Zk__RZ(n|+e)][RZ(no—e)__RZk]
= TN Rk (m;+ €) 2] REm+a(R—2F — R2K)

which approaches 0 as kK — . Thus we can find k£ large enough such that,
for all xe (ng—e, n;+¢€), the bracketed expression in (10) stays positive. In
other words, there exists ko such that f; (x) > 0 for xe (ny—e, n;+¢); that

is, fx(x) is one-to-one on (ny—e, ny+¢€). Therefore f;(ny) = fi(n;) implies
ng = ny, a contradiction. Thus Lemma 10 is proved. O

(10)

Lemma 10, moreover, guarantees that Case 4 cannot occur. Thus all pos-
sible cases and their subcases lead to one of the statements (i), (ii), or (iii),
and Theorem 1 is proved. ]

A few questions remain open. What are the necessary and sufficient condi-
tions that two Toeplitz operators commute if their symbols are harmonic
functions with logarithmic terms? Theorem 9 suggests the following ques-
tion: What radial functions, continuous on &, satisfy Bu = » in @? Is there
an analog of Lemma 2 (and consequently of Proposition 4) for harmonic
functions in L!(®)? And probably the most difficult problem is a characteri-
zation of functions integrable on @ that satisfy Bu = u in @. We could also
consider all these problems for regions other than an annulus. We hope this
paper will stimulate further research in that direction.
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