Duality and Functionals on S
I. M. AL-Grouz & D. R. WILKEN

Let S be the family of normalized univalent functions, a subset of the space
Q@ of functions analytic on the open unit disk A in the complex plane C. That
is, S={fe@: f is univalent in A, f(0)=0, and f’(0) =1}. Then S is a com-
pact subset of @ in the topology of uniform convergence on compact sub-
sets of A.

In successful efforts to construct examples of functions in S which are ex-
treme points of S but not support points of S, Duren and Leung [5] and
Hamilton [6] introduced examples of functionals which were linear on a
subspace of @ containing S and were continuous on S but were not contin-
uous on the linear span of S. The following definition was given by Duren
and Leung {5].

DEeriNITION. Let L be a complex-valued linear functional defined on sp S,
the linear span of S, such that L is continuous on S. L is called a continuous
linear functional on S, and we write L € S*.

Duren and Leung mentioned two ways to exhibit functionals L € S*:

(i) Let {A,} be a sequence of complex numbers such that X7_; n|A,| < o.
For f(z)=Xn-1a,z2"€sp S, define L(f) =X~ 1a,A,. Then L e S*,

(ii) Lei u be a finite complex regular Borel measure on A (not necessarily
with compact support) such that

1
| e <

For fesp S, define L(f)={ fdu. Then L e S*.

A functional L € S* as defined in (ii) is said to be of integral type. In this
case let A, = { z"dpu. It is easy to see that 37_n|A,| <o and L(f) =X a,A,.
Consequently, functionals of integral type also have the form described in
(i). Thus far these are the only known examples of continuous linear func-
tionals on S. Duren and Leung raised the question of whether there exist
L € S* that are not of integral type.

In this paper we construct a new class of continuous linear functionals on
S. Moreover, we show that there exist sequences {A,} with X7_;n|A,|=w
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and such that if f(z) =X7-1a,2"€sp S then L(f)=>,-,a,A, is defined
and continuous on S. In particular, not every functional in S* is of integral
type. We also give a description of all functionals in S*. Toward this end we
consider the recently much-studied integral families &,. Let 9T denote the set
of finite complex regular Borel measures on the unit circle I = {x: |x| =1}.

DerINITION. Let @ > 0. Then &, is the family of functions

Sf(z)= SI‘ m dp(x), ped.

It can be shown that J, is a Banach space under the norm | f||s_=inf||u|,
where the infimum is taken over all measures x € I that represent f as above.

MacGregor [9] showed that SC &, hence spSC T, for o >2. Our ap-
proach is to show that, surprisingly, the Banach space norm that S inherits
as a subset of &, gives the same topology on S as the topology of uniform
convergence on compact subsets of A. It follows that for o > 2 each contin-
uous linear functional on &, defines an element of S* when restricted to
sp S. By this means one makes available a large pool of functionals in $*
from which we are able to construct our examples. L

Our first step is to identify the predual of F, with an appropriate Banach
space of analytic functions on A. When « is a positive integer, the identi-
fication is well-known although not readily accessible in the literature. To
simplify matters we utilize the following observation, essentially due to Hib-
schweiler and MacGregor [7].

Let o be a real number. Let G,(z) =25 o(n+1)*" 12" and let G, denote
the family of functions

g(z)= SP G, (xz)du(x), pedl.

With the norm defined exactly as for &, above, it can be shown that G, is

also a Banach space. Then §,= G, for a >0 and the norms are equivalent.
Let A° denote the well-known disk algebra of functions in @ which extend

continuously to I'. Let A% have the sup-norm || f||. = sup{| f(2)|: z€ A}.

DEFINITION. Let 3 be a real number. Then Af is the Banach space of func-
tions

oo

a,
8(2) _,Eo (n+1)5~ o

where f(z) =250 a,z2"€ A° and || g]l 4t = f | -

REMARK. When @ is a positive integer, say 8 =k, then A* is the family of
functions in @ whose kth derivatives extend continuously to I". The given
norm is equivalent to the usual norm on Ak,

The following proposition is proven in detail in [3]. We only sketch the
ideas.
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PRrOPOSITION A. For each real number o, (A*~1)*=Q,,. More explicitly, if
8(z) =27 obyz"€ A* and f(2) =T~ €az2" € G, then

Li(g)=lim »; b,c,r"
r—-1"n=0
defines a continuous linear functional on A*~. Conversely, given any L e
(A*~YY*, there exists fe G, such that L= L. Moreover, the norm of Ly in
(A*~Yy* agrees with the norm of f in G,.

Sketch of Proof. By definition, the map T,,: G, — G, given by

Ta( E anzn)= E (n+1)a—1anzn
n=0 n=0

is an isometric isomorphism of G, onto G,. Similarly, the map Sg: A% - A4°
given by
S ( § a z")= § S —
\iZo ™ ) iZo (n+ 1)
is an isometric isomorphism of A° onto A4°.

Thus, if one can establish the proposition for the case « =1 then the gen-
eral case is an easy consequence. The identification Ay = G, comes about as
follows. Let fe G, be represented by the measure u, and associate with f the
linear functional L defined for 4(z) =X - a,z" in A° by

n

Ly(h)= SF h(x) du(x) = lim SF h(rx) di(x)

r—1-

= lim S S a,r"x" du(x)
r—>1"YT" n=0

= lim )] a,,gx"dp(x)r”: lim ] a,b,r".

r-1"n=0 r-1"n=0
Note that f as an element of G, has the form

5@ =\ 3 xrdun = 3 | xrdu@rz’= 3 bz
n=0 n=0 n=0
All measures representing f yield the same functional, so L is well-defined.
Conversely, given L € A}, extend L by the Hahn-Banach theorem to the
space of all continuous functions on I', represent the extension by a measure
u, and thereby produce a function f in G; with the property that L= L, as
defined above. Two measures representing extensions of L yield the same f
in G; and hence L is identified with a unique element of G,. Standard Banach-
space arguments together with the definition of the norm in G; yield the
norm isometry.
Our next step is to show that the topology S inherits from G, when o > 2
coincides with the usual topology on S. Once this is done we have 4%~ !C
(A°~1)**=Q* C 8* the last containment arising by restriction. Since it is an
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elementary fact that convergence in G, implies uniform convergence on
compact subsets of A, it suffices to establish the following theorem.

THEOREM 1. Let f, be a sequence of functions in S such that f,— f uni-
Jormly on compact subsets of A. Then f,— fin G, for every a>2.

For the proof we recall the following facts (see [9] and [1]).

PROPOSITION B.  Let f be a function in the Hardy class H'. Then fe F, and
I/ N5, <[l S | -

ProrositioN C. For a function f in Q, let

1
T, f(z) = (@—1) So(l—t)"“zf(tz) dat.

(i) Let a>1. Then fe T, if and only if T,, f € F,. Moreover,

[ lls, =1 T S s,
(ii) Leta>2.If feSthen T, fe H'.

COROLLARY. Ifa>2then SCS,.

Proof of Theorem 1. For a>2 let

&(2)=T,/,(z) and g(z)=T,f(2).

Then g,,geH' and |\g,—g||m =g, —&ll5, =] /n—fls, by Propositions B
and C. We will show that || g, — g|| ;1 — 0 which, since &, and G, are the same
set with equivalent norms, yields the conclusion of the theorem. Now

1 (27 . .
lgn—gllgr= sup {EFS Ign(re“’)—g(re'a)ldel
0=<r<l 0

2 1
< sup {—I—S (a—l)S (1——t)“—2|f,,(tre“’)-—f(tre"")|dtd0}.
Lot 0=<r<1l27 Jo 0

€

27 ol . ,
I(r)=-1 S S (1 —1)*~2| f,(tre'®) — f(tre®)| dt do.
27 0 0

Note that [})(1 —1)*3dt <o since a > 2. Hence, given e > 0, there exists &
with 0<d<1and j}_5(1 —1)*73dt < e/4. Also, if fe S, it follows from Pra-
witz’s inequality [4, p. 61] and the growth theorem [4, p. 33] that

27
1 S | f(re’®)|dé <

r
27 0 l—r'

Hence

27 i0 0 de .
[, ltere—pure) - a—oe2ar
27

0

I
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1
SS 20—y gy
1_,51——tr

1
sg 2l—1)*dr< £
1-8 2
for all n=1,2,3,... and all r with 0=<r <1. Also, since f, — f uniformly
on compact subsets of A, we can choose a positive integer N such that, for
n=N,
1 27 p1—6 . . €
L S S (A= 1)* 2| f(tre®) — f(tre®)|dt do < <.
27[' 0 0 2
Thus, given e > 0, there exists a positive integer N such that 1,,(r) < e for all
n=N and each r in [0, 1); that is, ||g,—g||z — 0, completing the proof of
the theorem. O

COROLLARY. If a>2, then A ' C (A% )y*=G*C §*

It is now immediate from the definition of 4*~! and Proposition A that, if
a>2, f(2)=37-0c,z"€e A% and g(z) =32_,a,2"€ S, then

n

> a,c
Jr(g)=lim 3 __nn
S a2 (D!
is a continuous linear functional on S. We thus have a large pool of such
functionals from which we will now construct an example that is not of
integral type. The essential idea is to exhibit a function in the disk algebra

whose coefficients grow sufficiently slowly. We require a useful fact from
(10, p. 197].

PROPOSITION D. Let 0< 8 < 1. Then the power series 3,%_, (e 198/ 1/2+8) g int

converges uniformly to a function ¢s(t) belonging to the Lipschitz class of
order 6 on [0, 2x].

ReMmArk. The conclusion of Proposition D also holds for the power series
E;?: l(ein log n/(n + 1)1/2+6)eim‘.

CoROLLARY. Given vy with 0 <y < 3, there exists a function f(z) =X C, 2"
in A° such that $7-1(|c,|/n") = +oo.

Proof. Letd=4—v.Letc,=e™" 8"/ (n+1)">*%forn=1,2,3,.... By Prop-
osition D, f(z) =37_,c,z" € A°. Also,

§ Icn|__ i |einlogn| nl/2+5
ZonY T 2 n1 24 gy (n41)1/2+8
- 1
=C

e nl=-vnv’
where C=2"12-% Thus
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oolc

n=1 N

1_
 h

We state one final proposition [10, p. 87].

ProrosiTioN E (Littlewood’s Tauberian Theorem). Suppose

lim >, b,r"

r—-1"n=0
exists and equals I. Suppose also that b,= O(1/n). Then X7 _, b, converges
and Xy_ob,=1.

THEOREM 2. There exists a functional L € S* and a sequence A, of complex
numbers such that

L(f) = gl an/\n

Jor f(R)=27_1a,2" in S, but X7_n|A,|= +oo. In particular, L is not of
integral type.

Proof. Fix v, 0<y<Zi. Let c,=e™'°®"/(n+1)!~7 as in the proof of the
corollary to Proposition D. Then

f(z) = gocnzn

is in the disk algebra.

Let A,=c,/(n+1)!*", and let «=2++. Note that |A,|=1/(n+1)%, n=
1,2,3,.... By the corollary to Theorem 1 we have Jre S*, where J; is de-
fined by
@ ayc,r”

J, =li —
r(8) rl_>m— ngl (n+1)>-1

if g(z)=>7-,a,2"€ S. Hence
21Crn * g A (n+1)Y

J, = lim ————r"=lim
f(g) r—1- nzl( +1)l+7 r—»l‘n§=:l (n+1)1+7

= lim Y a,A,r"

r—-1"n=1

Now X;_a,z" in S provides |a,| = O(n), so that |a,A,|= O(1/n). By Prop-
osition E, the functional J; has the form Jy(g) = ;- a,A, for g(z) =
>r_1a,z2"espS. Finally,

n

E nll\ |—n-— ( +1)2
as required. O

In conclusion, we wish to give a description of S* which “approximates”
the duality between A!, the set of analytic functions whose derivatives have
continuous boundary values, and the integral family F,.
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THEOREM 3. Let L be an element of S*. Then there exists g(z) = X2np=1A,2"
in A' such that
L(f) =Lg(f) = lim E Ananrn

r-1"n=1

Soreach f(z)=27-1a,z2" in S.

Proof. Let A,,=L(z"), which is defined since z"esp S forn=1,2,3,....If
f(R)=27_1a,z"€ S, then (1/r)f(rz)=f,(z) €S for 0<r<1. Also, f,—f
uniformly on compact subsets of A as » T1. Hence

lim L(f;)=L(f). (D

r-1-

Since f, is analytic and univalent in a neighborhood of A, the partial sums
of f, are eventually univalent on A. That is, for large m,

m m
S a,r" z"eS and lim 3 a,r""z"=£.(2)
n=1

m—on=1
uniformly on A. It follows that

(>

m m
L(f;)= lim L( >, a,,r""z”)= lim X aA,r" 1= aA,r" (2)
n=1 =1

m-— o m-ooon=1 n=

Combine (1) and (2) and multiply by r to obtain

L(f)=Lm > A,a,r"
r-»1"n=1
We claim g(z) =371 A,z2" is in A! or, equivalently, >2_, n),z" is in the disk
algebra A4°.
To see this, consider k;(z)=2z/(1 —¢z)2e S for I¢l=1 If ¢ > x, |¢|<],
and |x| =1, then k; — k, uniformly on compact subsets of A. Therefore,
L(k;) — L(k,); that is,

lim lim ) nA,(r¢)”
t—2xr—-1"n=1

[¢1<1
exists for every xeT'. Thus g(z) e AL. O

COROLLARY. For each element L in S* there is a function g in A! such that
L =L,. Through this correspondence we then have

S*c A'cAHYy*=F3.

Moreover, the action is essentially coefficient multiplication as in the duality
(A*7)*=5,.

MacGregor [9] showed that S is not contained in &, even though every sup-
port point of S is, in fact, an element of &,. This latter observation follows
from the obvious fact that the functions k. (z) =z/(1— ¢z)? with |¢|<1 are
elements of &,; from the fact (see [2]) that every support point of S, say
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h(z), can be expressed in the form A(z) = q(z)k;(z) for some {eT’, where
q(z) is analytic in a neighborhood of A; and from the fact (see [7]) that each
such g(z) is a multiplier of &,. Thus Theorem 3 provides additional informa-
tion on the intimate, complex relationship between S and &,.
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