Weakly Outer Polynomials

R. CHENG & S. SEUBERT

1. Introduction

The notion of a weakly outer function has its origins in the prediction theory
of 2-parameter stationary random fields. Evidently, those stationary fields
with the so-called commutation properties provide a natural medium in which
to seek out multiparameter extensions of many classical 1-parameter results
[5; 8; 11]. In [1; 2] it is proved that such a field possesses the “weak commu-
tation property” if and only if its spectral density is the squared modulus of
a weakly outer function in H?(T?) (a slightly weaker result is obtained in
[8]). The related function theory and further applications to prediction are
treated in [3].

In the present work, another prediction-theoretic result is obtained. It
states that for weakly commutative stationary fields, the past, conditioned
on the future (in some sense), is finite-dimensional if and only if the asso-
ciated weakly outer function is a certain type of rational function. This, in
turn, points to the need to characterize the weakly outer polynomials. A
complete characterization in terms of zero sets is found.

2. Notation and Preliminaries

Let D be the open unit disc, and T the unit circle, in the complex plane C.
Normalized Lebesgue measure on T is written do, and do, is the associated
product measure on the torus T’. By the symbols N,(D”) and H?(D") we
mean the usual Nevanlinna and Hardy classes of analytic functions on the
polydisc D" (see [6; 9]). We shall identify a function on the polydisc with its
radial limit function on the torus, whenever the latter exists; likewise, an
integrable function on the torus will be identified with its harmonic exten-
sion into the polydisc.
The symbol ~ indicates a Fourier coefficient. Thus, if fe LY(T?) then

fm,n — Sf(els’ elt)e—lms—ml do.z(ets, elt).
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For fe LP(T"), we write f €S if the Fourier coefficients of f vanish outside
the subset S of Z'.

The Cauchy kernel in one variable will be denoted by C,. Thus Cz(eis) =
(1—ze )7L, A function fe N.(D") is outer if

10g|f(0)|=glog|f|do,.

In this case,
f(zy5 .0, 2,) = Cr€XP S(ZCZI -+ C;,—1)log| f|do,

with some |¢|=1. A polynomial in one variable is outer precisely when its
zeros lie outside the disc. If a polynomial in r variables is outer then it can-
not vanish in the polydisc D”; by examining the “slice functions” [9, p. 44]
we see that this condition is also sufficient.

A function fe N,(D?2) is weakly outer if f(e”, -) is outer in the disc for
almost every fixed e’ and if f(-, e") is outer in the disc for almost every
fixed e”. An outer function in N,(D?) is weakly outer, but the converse
is false. Some elementary properties of weakly outer functions are explored
in [3]. In particular, the following structural information is obtained [3,
Thm. 2.9].

THEOREM 2.1. Let f€ N*.(Dz). Then f is weakly outer if and only if there
are outer functions g(e®, ") and h(e", e'"), and 1-variable unimodular func-
tions a(e’) and b(e'), such that

fle,e")=g(e”, e") h(e", e ")a(e") M
= g(e”, e h(e®,e ") b(e™™). (2)
We may take h(0,0) to be positive, and

gz, 22) =exp | (2C,,C,,~ D log|f]dor; 3)
in this case, the representation above is unique.

Thus, a weakly outer function f factors into an outer part g and a “purely”
weak outer part 4.

The information provided by Theorem 2.1 is not fully satisfactory, how-
ever. The outer function # must be quite unusual in order to satisfy con-
ditions (1) and (2). For a polynomial f this issue is addressed in the next
section.

3. Principal Results

Let us consider a problem in the prediction theory of stationary random pro-
cesses. Suppose that w(e’®) is the spectral density for a regular stationary
process on Z (regularity in this case is equivalent to the integrability of log w).
We may identify the “past” and “future” of the process with the subspaces
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®=V{e™:n<0} and F=V{e":n=0}

of L2 (wdo). A classical result (see [7, §4.7]) states that the projection of @
onto F is finite-dimensional if and only if w(e'®) is a rational function. Equiv-
alently, w factors into the squared modulus of an outer rational function.

For a 2-parameter version of this problem, we start with a weight func-
tion w(e”, e’) on the torus. We define the “right” and “top” subspaces of
L%*(wda,) by

(R=V{eims+int:m20} and 5=V[eims+int:n20}.

The needed regularity condition here is

A e™®=(0) and () e™3=(0),

m=0 n=0

which occurs exactly when

S logw(e®, e")da(e®) > —oo,

S log w(e®, e') do(e?®) > —oo

for almost every fixed e and e (see [4]). If I is a subspace of L3(wdo,),
we write Py for the projection operator of L2(w do,) onto M. For the “past”
and “future” of L*(wdo,), we take

®=®NJI and F=RNSJY,

where the overline denotes pointwise complex conjugation.

The space L*(w do,) has the weak commutation property if the projection
operators Pg and Py commute; in this case, their product is the projection
onto ¥ as defined above. By [2, Thm. 1.1}, L*(w do,) is weakly commutative
exactly when w=| f|? for some weakly outer function f in H%(T?).

Here, then, is an extension of the classical result to the 2-parameter sce-
nario.

THEOREM 3.1. Suppose that f is weakly outer in H*(T?). Then the sub-
space Pg® of L(|f|* do,) is finite-dimensional if and only if f has the
Structure

p(Z1, ZZ)
41(21) q2(z2)’

where p(zy,2,) is a weakly outer polynomial and q,(z;) and q,(z,) are 1-
variable outer polynomials.

S(z1,22) = 4

This theorem suggests the problem of describing all the weakly outer poly-
nomials. An immediate necessary and sufficient condition for a polynomial
to be weakly outer is that it have no zeros on T XD or D X T. In fact, much
more can be said. Let us write A for the set {zeD:|[z|>1].
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THEOREM 3.2. A polynomial f(z,,z,) is weakly outer if and only if there
are polynomials p(zy, z2,) and q(zy, 2,) such that (i) p has no zeros in D?;
(ii) g has no zeros outside of (D>*UT2UA2); and (iil) f=pq.

Hence the outer and purely weak outer parts of a weakly outer polynomial
are themselves polynomials; this is not at all trivial from (1) and (2). Note
that the zero set of the purely weak factor is quite restricted.

It is straightforward to check that the following polynomials have prop-
erty (ii), and are in fact weakly outer: q(zy, 2,) = z{" + 25, where m and n are
positive integers; q(z;,z,) = £+2,—2,—£2,2,, Where |£|<1.

4. Proofs .
Proof of Theorem 3.1. First, let us recall some concrete representations of
the spaces & and @ and the projection Px. _Take Q to be the projection oper-
ator of L2(T?) onto H*(T?). Again, by f we mean the pointwise_ complex
conjugate of f; for a set of functions 9N, we write M for the set { f: feNM].

LeEMMA 4.1.  If f is weakly outer in H*(T?), and the supspaces ® and F of
L2(| f |2 do) are defined as above, then (i) we can make the identifications

fF=HXT? and f®=H*(T?;
(ii) the projection Pg has the realization

Psh=(1/f) Q(fh).

Part (i) of the Lemma is from [11], while part (ii) comes from [2].

Now suppose that Pg® has finite dimension N. Consider the N+1 func-
tions 1, e, =25, ..., e~ in ®. It may be that Pze~"* =0 for some j. Oth-
erwise, the set {Pge~"*}I_, is linearly dependent, and there are coefficients

{a;}}L ¢, not all zero, such that
N ..
Pg( 2 aje”s)=0.
ji=0

Either way, P5 annihilates a nonzero polynomial g in e ™. By Lemma 4.1,

(1/f(e”,e")O(f(e”, e") g(e ) =0;

Q(f(e",e") g(e ™)) =0.

Thus, (f(e”, e")g(e®) é{(m,n): —N<m <0, n=0}.

Let J be the smallest nonnegative integer for which e”*g(e =) is a poly-
nomimal in e®, and call this polynomial g;(e*). We have shown that

iJs

Jfq€{(m,n):0=m< N, n=0}.

A similar argument in terms of the second variable produces a polynomial
g2(e™) of degree K, 0<K <N, such that

Jfa, E{(m,n):m=0,0=n<N}.
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Now observe that fq,q9,&{(m,n): 0 =m < N, 0<n< N}, and hence is a poly-
nomial p(e”, e). This verifies the necessity of the representation of f.

For sufficiency, suppose that f has the form (4). We assume that all of
the nontrivial common factors have been canceled. Since f is weakly outer
in H?(T?), the polynomials ¢; and g, must have no zeros in the closed unit
disc. It further follows that p is weakly outer. Let M be the smallest positive
integer for which e=™5g,(e”), e M!g,(e"), and e "M~ Mip(e’s, %) all lie
in A*(T?). Then, as subspaces of L%(do,),

JPs®=Q(f®) (5)
f(ets elt) _2)
-o(£ 5 ©
is it

(e’s ")qa(e’s)qZ(e”) _
V{ (p ijs— lkt) i>0. k> }
e ple”, e ")ql(e’s)Qz(e")

(els’elt) 3
QV{ ( _ P : : ijs— ”“) i>0, k> }
© ﬁ(e‘s,e")ql(e's)qz(e")

This last line follows because Q is linear, and for each m =0 and n=0 the
function

—ims—int

- a19,e
pPa19>2 142
belongs to the linear span of {( p/pg,q,)e 7 **!: j =0, k = 0}. The chain of

inclusions continues with ,

p(e”,e™) —ijs—ikt) . }
c —— - - 0<j<M,0<k=<M
CV{Q(me”,e")ql(e”)qz(e“) ¢ 0=7=M0=
pe®,e") —ijs—-ikt) - } .
— - : M k=
+V{Q<ﬁ(e”, e’ g,(e") ¢ J> M, k=0
is it
e, q\¢e

To see this, first observe that for each j = M, the function e~"* is linearly

dependent on g,(e")e "5, e~ U157 1. Thus

H*=V{e /s~ k:0<j<M,0<k<M)
+Vie Us—ikt: j> M, k=0)
+Vi{e S j=0, k> M)

=V(e k. 0<j<M,0<k<M)

+Vi{gi(e®)e P~ j> M, k=0)

+Vie . 0<j< M, k=0}+
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+VigyeM)e FH: j=>0, k> M)
+Vie T j>0,0<k<M).
But VV{e s~*:0< j<M, k= 0} is already a subspace of (V{e_"js"’k‘: 0<
J<M,0<k=M}+Vig,(e")e U5~ j>0, k> M}. Thus
H?=\{e /s . 0<j<M,0<k<M)
+Vigy(e®)e =ik j> M, k= 0}
FV{gy(eye =k j =0, k> M),

The chain of inclusions continues from (7) with

p(els, ett) B kt)
P-®) = : : ijs—ikt ). 0 <
/Ps )CV{Q(ﬁ(e’S e”)ql(e's)qz(e”)e =J

I

<

o

A

=

IA
S

( —iMs (ezs ezt)

P
eh e ¢ >" =0

&
1%
=

+ViQ

iM.
_e — (ezs e”) e—:te—-us ikt 120
p(e’, e)g(e™)

P\‘

v
=

=

p(eis,eif) e\ |
c { (—(eis eit)ql(eis)qz(eit)e 1js—1 OS]SM,OSksM

—iMs is it
V{ ( o ple’,e’) e’ise_ijs"ik'):jzo,keZ}

els elt)q (ell)

+

e—tMt t) ) o
vV (ﬁ e‘”e"’”"’“):jez,kz 0} )

e!S ett)q (elS)

c;vQ< _pleten) .e—"fs—fk‘>:05jsM05ksM}
p(e’s,e') g (e™)g,(e™) ’

—iMs is it
+V{Q(e q;u((eeit),e )e_ise-ijs—ikt);jzo,kez}

e Mip(e®, e™) —it -—ijs—ikt). . - }
+V{Q( 71(e™) e e JeZ,k=0¢. (10)
In this last step, the weak outer property of p provides that \/{e”S**: j =0,
keZ)=V{p(e’, e"yes*t: j >0, ke Z} (see [3, Thm. 3.6]). The last two
spaces in (10) are trivial, since Q is operating there on functions with zero
Fourier coefficients throughout the first quadrant; the first space is of dimen-
sion at most (M +1)2 This establishes sufficiency. O

Proof of Theorem 3.2. Let f(z;, 2,) be a weakly outer polynomial. Let g, #,
a, and b be the functions provided by Theorem 2.1, with g given by (3).
Consider the auxiliary function
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F(z1,22) = 8(21,22)*-€xp S(—ZCz, +1) log| f|do
-exp S(—ZCZ2+ 1) log| f|do,-exp S log| f|da,

— exp S(ZCZI-—I)(ZCZZ—-I) log| f|do,.

Fix V4 and 2. ) )
Since f is weakly outer, f(z, e'’) is outer in z for e’ fixed. Hence

S(zcz,—nloglf(efs,e"’)lda(e"‘)=Log F(z, ) +ivle™),

where Log is a branch of the logarithm, and v is chosen so that e/¥€") f (0,e™)
is positive. We now need to interpret the logarithm as a function of e. To
do this, note that for z, fixed, f(z;, e'’) is a polynomial in e". Thus we may
write

f(z, ey =b(z)(e" —ay)- - (e —ay)-(e"—By)- -+ -(e"—Bk), (11)

where each o; and 8 are dependent on z;, and |«;|<1 and |8;|>1. (There
are no unimodular roots, as the weak outer property of f essentially pre-
cludes zeroson DX T or T X D.)

Let us examine the behavior of the factors arising in (11). If |3|>1, then

Log(e’ —B) =log|e —B|+i arg(e” —B).
The right side is a well-defined function of e". If |a| <1, then
Log(e” —a)=Log[e'(1—ae™")]
=log|l —ae™¥|+iarg(l—ae™")+iarg(e”)
=log|l —&e"|—i arg(1—&e™)+i arg(e™).

Again, the last expression is a well-defined function of e” modulo 2i.

We will need to integrate such expressions against the kernel (2C,,—1).
For this step recall that (2C,—1) = P,+iQ,, where P, is the Poisson kernel
and Q, is the conjugate kernel. Thus, if # and v are real integrable functions
on the circle then

S(Pz+ i0,)(u+iv) do = u(z) +ifi(z) + iv(z) — 5(2),

where ~ represents Fourier conjugation. Applying this to the two types of
factors in (11) yields

|@c.,~1Log(e"~p) do=log|z, —p|+i are(z, — B) +i arg(z,—6)
+log|z,— B —n1(z1)
=Log(z2—B)*—m(zy) (12)



242 R. CHENG & S. SEUBERT

and

S(ZCZ2 —1)Log(e” —a)do =log|l —az,|+i arg(1—az,) —i arg(l — @z,)
—log|1—az;|—n2(z;) — 6(z2). (13)

Each 7; term arises from the e"-constant difference between —v and (&),
and & takes the contribution from i arg(e").

Let us grant for the moment that J and K are independent of z;. Then
there are exactly J terms of the type i arg(e”) when (13) is applied to the
appropriate factors of (11). Thus, from (12) and (13) we have

Flzi,z) = exp |2C,, =D Log f(ay, e™) +iv(e™)) do(e™

= ®(22) ¥(2)) (22— B1) %+ (22— Bk)%,

where ¢ and ¥ are genuinely functions of one variable.
Repeat this argument with the do(e”) integral taken first, to get

F(zy1,22) = ®'(21) ¥'(22) (21— B{)? -+ (21— Bk~

It follows that
Q(z1,22) = ¥(2) ®(2)) Nz2—B1)? -+ (22— Bk)?
=V'(22) ®(22) (2, —B{)? -+ (21— Bk)*

is the square of an outer polynomial in each separate variable z, and z,. Now
8(21,22)*= 021, 22) B'(21) 8(22)-exp | (2C,, D 10g| | dor

-exp ﬂ(ZCZZ—l) log| f|do,-exp S(—loglfl) do,.

Fix z,, and isolate ®’(z;) to see that it is outer. Likewise, ®(z,) is outer. It
follows that Q(zy, z,)!/? is an outer polynomial on the bidisc D2 We have
proved the following fact about the outer part g.

LEMMA 4.2. The outer part g(z,, 2,) of a weakly outer polynomial f(zy, z5)
is an outer polynomial, multiplied by 1-variable outer functions.

In establishing this, we needed J and K to be constants independent of z;.
Let us now verify that this is indeed true. First, we write

S(z1, 22) = folz1) + fi(z)z2+ - + [(21) 23,

where f, is not identically zero. For all but finitely many z; (namely, the
zeros of the polynomial f,), f(z;, -) has exactly n roots. Suppose, for now,
that f is irreducible.

Apply the inverse function theorem [10, Thm. 9.28] to f, viewed as a func-
tion from R* into R2. The hypothesis “A, is invertible at the zero (a, b) of
S here takes the form
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[ ORS  ORS |
det| & O (a,b)#0
axf 0TS ’ ’
B ox 1 ayl |
By the Cauchy-Riemann equations, this is equivalent to
—‘?L(a, b) #0. (14)
az1

By Bezout’s theorem [12, p. 29], f and df/3z; can have only finitely many
common zeros (since f was presumed to be irreducible); that is, (14) holds
for all but finitely many points (a, b). Away from these exceptional points,
(10, Thm. 9.28] provides open sets US C X C (= E in the notation of [10])
and W< C, with e e W and (a, b) € U, such that for every z; € W there exists
Z, € Cwith (z;,2,) e U and f(z;, 2,) = 0. If the given root (a, b) liesin D X T,
then the conclusion is that for all e” in some unit arc, f(z, e’*) =0 for some
z € D—this contradicts f being weakly outer. Thus f can only have a root
in D x T if (14) fails there.

Repeat the above argument, taking the set £ to be first D XD and then
D x A in [10, Thm. 9.28]. The conclusion is that the functions

N(z1) = #{z2€D: f(21,22) =0},
Ny(z1) =#{z2€ At f(21,2,) =0}

are continuous in the disc, minus the finite collection of exceptional z;. But
these functions are integer-valued and hence are constant. In fact, this shows
that 9'61(2,'1) =J and STQ(ZI) =K.

If f is not irreducible then the previous observation can be applied to
each of the irreducible factors of f, each of which is easily seen to be weakly
outer. This verifies that J and K are constants independent of z;.

From Lemma 4.2 we have that g(z;, 2,) = g6(21, 22) ¢(21) ¥(z,), where gq
is an outer polynomial and ¢ and ¢ are 1-variable outer. We can “absorb”
the factors ¢ and ¥ by redefining g, #, a, and b as follows:

g(eis, eit) (_gO(eis, eit);

h(eis, eit) (_h(eis, eit)/¢(ei3) ‘lj(e—it);
a(e™) «a(e”)(e")/p(e”);
b(e™) —be™)yY(e ") P(e™™).

These exchanges preserve the structural assertion of Theorem 2.1, but g is
now a polynomial.
From (1) and (2) we get

f(e*, e g(e”, e')

— " " —qg(e®)b(e™ "),
Sle®, e gle”, e') alen)ble™)
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which implies that @ and b are rational functions. Another look at (1) reveals
that 2 must then be a rational function as well.
From (1) and (2) again, we have

h(e™, eya(e™) = h(e', ey b(e™).
Without loss of generality, we can assume that 4(e’, 1) and k(1, e’) are outer
functions, and that
a(e®™) = h(e™,1)/h(e", 1) b(1);
b(e")=h(1,e")/h(1,e")a(l).
This can be rearranged to show that the outer function

is it 172 1/2
R(eb, eity e €a ) 2b()
h(e®, 1) h(1, e")

is real-valued on the torus. Apply the reflection principle to the 1-variable
outer rational functions R(e”, -) and R(-, e) to deduce that R has no zeros
orpoleson TXA, TXD, AXT, or DXT.

Now h(z;,1) is an outer rational function in z,. By the previous observa-
tions about R, we see that any factors of 4(zy, 1) of the form (z,—§), |£|>1,
are necessarily also factors of 4(zy, z,). Let us group such factors of 4(z;,1)
into the rational function j;(z;). Thus, A(z;, 1) =j;(21) k1(z1), where k;(z;)
has zeros and poles only on T. Similarly decompose /(1, 25) = j»(2,) k2(22).
We once again redefine g, 4, a, and b while preserving their structural roles:

g(e®, ey —g(e®, e") ji(e”) j(e™™)
h(eis’ eit) <—R(€is, eit)kl(eiS)kz(eit)a(l)l/Zb(l)I/Z
a(e”)—a(e”) ji(e®)/ji(e")
b(e™) —b(e")ka(e™)/ky(e™).
Thus redefined, a(e’)=a(1)e™*, where M is the number of roots of k;
minus the number of poles; similarly, b(e’) = b(1)e’™.

With that we examine the rational function A(z;, z,). By extending mero-
morphically off T2, we have

h(zy, z2) = a(l) b(1) h(1/2,, 1/2,)z{" Y (15)
h(zy,1/22)28 = a(1) b(1) A(1/Z}, Z2) 21", (16)

Since £ is outer, it cannot vanish in D?2. By (15), it cannot vanish in A2, either.
Zerosin TXA, TxD, AXT, or DXT were ruled out before. Only D XA,
T2, and A XD remain.

The denominator of 4 cannot vanish in D? or A% Furthermore, the func-
tion in (16) is weakly outer, so the denominator of 4 also cannot vanish in
D X A or AXD. Zeros of the denominator of #in TXA, TXD, AXT, or
D X T were ruled out before. This says that such zeros could only arise in
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T2, which in turn cannot happen at all. Thus the polynomial in the denomi-
nator must be constant.

We conclude that 4 is a polynomial with no zeros outside of (DX A)U
(T XT)U(A xD). Furthermore, with g redefined as in (15), g is also a poly-
nomial. Thus, with p(z;,z,) =g(z;,2,) and q(z;, 2,) = h(1/7;, Z,) a(1)z},
the conditions (i), (ii), and (iii) hold in Theorem 2.1.

The converse is immediate. L]
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