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0. Introduction

Let D be a simply connected planar domain. Let B, be Brownian motion
in D with lifetime 7. If & is a positive harmonic function in D, then the
Brownian motion conditioned by 4 is determined by the transition functions

1
h(w)

where PP(w, z) are the transition functions for the unconditioned Brownian
motion in D. We let P} be the measure on path space induced by the P/
and write E} for the corresponding expectation. If #=1, the case of killed
Brownian motion in D, we simply write P,, and E,,. The following result is
due to Cranston and McConnell [9].

Pl (w,z)= PP(w,2)h(z),

THEOREM A. Let D be any planar domain and denote by H*(D) the col-
lection of all positive harmonic functions in D. Then

sup EMp)=<Carea(D), 0.1)
weD
he HY(D)

where C is a universal constant.

This result has been extended in several directions. We refer the reader to
Bafiuelos [6], where a survey of the recent literature on this subject is given.
The purpose of this paper is to prove the following theorem.

THEOREM 1. Let D be a simply connected planar domain. If z=x+iyeD
and if T is a geodesic for the hyperbolic metric in D, we let dp(z,T") be the
hyperbolic distance from z to T'. There are universal constants ¢, and c,
such that

cy sup SS e 20@Dgxdy< sup Elrp)=<c,sup SS e~ 2D gy gy,
r Jp weD r Jp
he H*(D)
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where the suprema outside the integrals are taken over all hyperbolic geo-
desics in D.

Theorem 1 provides new insight on the behavior of conditioned Brownian
motion in simply connected planar domains. The theorem is proved in Sec-
tion 1. In Section 2, we give some applications. We give new and shorter
proofs of some recent results and show that conditioned Brownian motion
paths tend to follow hyperbolic geodesics (see Corollaries 1, 2, and 3). We
end the paper with some remarks on some estimates of Ancona [1; 2; 3] and
their potential usefulness in the study of conditioned Brownian motion. This
connection, it seems, has not been noticed before.

We will make frequent use of the conformal invariance of hyperbolic
distance and of hyperbolic geodesics as well as the explicit forms of some of
these quantities for the infinite strip and the unit disc. The reader unfamiliar
with the basics of hyperbolic geometry can find everything that is needed to
read this paper in Hayman [14, Chap. 9].

1. Proof of Theorem 1

Let A=D(0,1) be the unit disc and let ¢ be any conformal mapping of A
onto D. Define the Littlewood-Paley square function g.(¢) by

200y L NIz L
g*(‘p)— T SSAlog(lAZl) Il_z|2 ,90 (Z)I dXdy'

Our Theorem 1 was motivated by the following simple identity, proved in
Baiiuelos [6]:

sup E}(rp)=sup gZ(p), (1.1)
weD 17
he HY(D)

where the supremum on the right is taken over all conformal mappings ¢ of
A onto D. We briefly explain (1.1) for the convenience of the reader. It fol-
lows from the form of the transition functions that, with z =x+iy,

1
h(w)

and since PP(w, z) is the Dirichlet heat kernel for one half the Laplacian in
D we have, after integrating in time, that

1
E! =——SS Gp(w,2) h(z) dxdy,
w(7Dp) mon 3y p(w,z) h(z)dx dy
where Gp(w, z) is the Green function for D. Let ¢ be a conformal map-
ping of A onto D such that ¢(0)=w. Then, by the conformal invariance

of Gp(w, z), we obtain that

PhMrp>t)= SS PP(w, z)h(z) dxdy,
D

h — ____1_ _1__ ’ 2
Elro) = SSA ‘°g<|z|)h“°‘z”"" @) dxdy. 12)
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Since k() is positive and harmonic in A, we have

1-|zf’

M) =| T ap du(®), 1.3)

where T'=3A and p is a positive measure on 7 with u(7) = h(¢(0)) = h(w).
Substituting (1.3) in (1.2) and applying Fubini’s theorem, we find that

1
h
Elro) =0 )S 2(0p) du8), (1.4)

where ¢y(z) = p(e~"z). Since u(T) = h(w), we obtain from (1.4) that
sup Ey(7p) <sup gi(e).

weD "]
he HY(D)

The other direction of (1.1) follows from the identity

g3 (o) =E!l(rp),

where w=¢(0) and h(z) =Kp(¢(1),z), the Martin kernel for D at ¢(1).
Here we have used the conformal invariance of both the Green function
and the Martin kernel. Thus, the classical Littlewood-Paley square function
g2(p) is also, up to a constant, the expected lifetime of Brownian motion
starting at ¢(0) and conditioned to exit D at the Martin boundary point
e(1).

Next we show that there are universal constants c; and ¢4 such that

c3 sup g(e) <sup S K(z,1)K(z, =D)|¢'(z)|* dxdy < c, Sup g:(e), (1.5)
¢ ¢ YA

where K(z, ") = (1—|z|*)/|z—e®|?, the Poisson kernel for A. To obtain the
second inequality in (1.5) we suppose that ¢ is a conformal mapping of A
onto D and, for r <1, we let M, be the Mdbius transformation of the disc

Z+r
14+rz°

With ¢, = ¢ M,, we obtain, for each r <1, that

M, (z)=

sup g*(ﬁo) = g*(‘//r
| 2
=%“Al°g(|z|>| |21':2|l!/(z)l2dxdy
=k ), o8 sr | ke i dxa

Since (1/7)log|(1 —rz)/(z—r)| is the Green function for the disc with pole
at r, as r » —1 this quantity divided by K(r,1) goes to 2K(z, —1), and the
right hand side of (1.5) follows with ¢, =1/2.

For the left-hand side we follow the argument in Garnett [12, p. 237].
Since log(1/|z|) = C(1—|z|?) for |z| = 1/4, we obtain that
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1“ (I)I—I'zl2 A2
- log{ — o' (2)|“ dxdy
7 Wioun A\l =1 2 @)

=cl|  K@-0KG e @Pdrdy
|z|>1/4

<Csup SS K(z, ~)K(z, D|¢'(2)]? dx dy.
@ A

Furthermore, |Vo(z)|? is harmonic in |z] < 1/4, which yields, with w = u +iv,
that

Vo (2)2 =< c“ Vo (w)|? du dv
|w—z|<1/4

1—|wl2\/1—|w[?
SCSS Vo (w 2( )( )dudv
i<z NS \waap

< Csup “ K(z, )K(z, —)|¢'(2)|* dx dy.
@ A

Thus,

1“ (1> —z?,
— lo e'(2)|“dxd
T JJ|z|<1/4 1z]/ |z—1]? | | d

< C(sup [ x@nKE - P dxdy)
A

©

1 SS ( 1 ) —|z]?
X — log dxdy.
T JJ|z1<1/4 |z / |z—1J?

The second term on the right-hand side is dominated by
l“ 108( : ) L dy = Ej(15) = Eo(13)=C
w s \lzl/lz—1P oo
and (1.5) follows.
REMARK 1. A sharper result has been independently obtained by P. Grif-

fin, T. McConnell, and G. Verchota (private communication). Namely, they

have proved that
sup El(rp)= Zsup SS K(z,)K(z, —1)|ga’(z)|2dxdy.
weD A

he H*(D)

Theorem 1 will now follow from (1.5) and the following lemma.

LEMMA 1. LetT'=(—1,1) betheh yperbolic geodesic connecting —1 to 1in
. Then forall ze A,

1K(z,1)K(z, —1) <e‘2dA(z < K(z, ) K(z, —1). (1.6)

Proof. We let

f(z) —log(i+z)
-z
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so that f(z) is a conformal mapping of A onto the strip S={w: —n/2<
Im w < w/2}. By the conformal invariance of the hyperbolic metric and the
fact that I' is mapped to the geodesic R = (— oo, ), we see that

da(z,T') = ds(f(z), R) =ds(f(z), Re f(z))
=dg(i Im f(z),0). 1.7)
We compute dg(iy, 0) for —n/2 < y < /2. Since everything is explicit (see

e.g. Hayman [14, Chap. 9]), we have
: 1—e” 1+e” 1—e?
ds(iy,0)=d 0)=1 1 . 1— -
s(iy, 0) A( ) og(( +| )/( ’1+e'y ))

1+ev’ 1+e¥

o (|1+e"y|+|1—e"y|)
~ B\ |1 +er|—|1—e?|
_log(\/l+cosy+~/1—cosy)
=log(

V14+cosy —V1—cosy

1+cosy+1—cosy+2vV1—cosy
14cosy—(1—cosy)

1++v1—cos?y 1+|sin y|
=log =log| ——— .
cosy cosy
From this it follows that

2
—2dg(iy,0) _ __ COS"Y
e “4s = - , 1.8
(1+|sin y|)? (1.8)
which gives
1cos?y<e 24500 < 52y, (1.9)
In our case,
1 14z 1-2
=Im f(z) = — log| ——-—— .
d J(z) 21 g( -2 1+2>

Substituting this for y, we obtain
4cos’y=2+e* e
(1+2)(1-2)  (1-2)(1+2)
=2t i—nare T Urai-2)
_2(1-2)(1-2)+(1+2)*(1-2)’+(1-2)* (1 +2)’
|1—z|?|1+z|?
_201+[z[* =22 = 2%+ [~ |2]) + 2= 21> +[(1 = |z]) - (z—2)]
[1—z[?|1+z?
_ 20 +z[* =2 =22+ (1-[2[)*+(z2~2)°]
[1—2z|?|1+z]?
_ 1tz =2z
|1—z]?|1+z]?

=4K(z,1)K(z, —1).
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That is, we have shown that
K(z,1)K(z, —1) = cos*(Im f(z)), (1.10)
and this together with (1.7) and (1.9) proves the lemma. ]

We now prove the theorem. By (1.1), (1.5), and Lemma 1,

sup E,(7p) =sup SS e~24& LD o (z)|* dx dy
A

weD 7]
he H*(D)
= sup SS e_ZdD(z: e(—1,1) dx dy
¢ D

= sup SS e 29D gy dy,
r JJp

Here again we have used the conformal invariance of hyperbolic geodesics.
O]
Notice that our proof shows that c¢; =2.

ReEMARK 2. It follows from (1.10) that
sup SS K(z,)K(z, —D)|¢'(2)|* dxdy= supSS cos}(Imp(2)) dxdy, (L.11)
¢ D @

D

where the sup is taken over all conformal mappings ¢ mapping D onto the
strip S. Formula (1.11) was independently obtained by P. Griffin, T. McCon-
nell, and G. Verchota (personal communication). In fact, since they have
equality in (1.5), with ¢;=c4=1/2, this shows that we may take ¢, =8 in
Theorem 1.

2. Some Applications of Theorem 1

We start with the following theorem due to Xu [16], which shows that for
some domains there is a converse to the result of Cranston and McConnell.

THEOREM 2 (Xu). Suppose that 6, and 0, are Lipschitz functions on R with
0(x) =< 0,(x), and that
D={x+iy:0(x) <y<0,(x)}
is a simply connected domain. Then
sup EMNzp)=carea(D),

weD
he H*(D)

where c is constant depending only on the Lipschitz character of 6, and 0,.

Proof. We produce a geodesic I" in D for which
H e 2401 gy dy > ¢ area(D). (2.1)
D
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Theorem 2 will then follow from Theorem 1. Let ¢ be the conformal map-
ping of D onto the strip S= {w: —7/2 <Imw < n/2} which takes the graphs
of ,(x) and 6,(x) onto the lines Im w= —=/2 and Im w= 7/2, respectively.
Let " be the geodesic in D which is mapped by ¢ onto R. Let D;C D be
defined by

Dy = {x+iy: 30,(x) 4+ 102(x) < y < 30:(x) + 30,(x)}.
Let wg(+, A) denote the harmonic measure of a subset A of the boundary of
a domain R with respect to R. Suppose that 2o = x,+ iy, € D; and denote by

E that part of the boundary of D on the graph of 8,(x). Let m be the larger
of the Lipschitz characters of 6; and 6,. Then

wp(Z0, E) = wp(20, E™),
where
Q*={x+iy:0,(x0) +m|x—xo| <y <0y(x0) +m|x—xp]}
and
E*={x+iy: y=0,(x¢)+m|x—xl}.

Furthermore, from the conformal invariance of harmonic measure we ob-
tain, for zg € Dy, that

wp*(z, E™) = wq(it, Ey)

for some ¢ with § <¢<32 where Qp={x+iy: m|x|<y<l+m|x|} and Ey=
{x+iy: y=1+m]|x|}. Consequently, for z,€ D),

wD(Z(), E)= wﬂo(its EO) = wﬂo(%’ EO) = Cps
where ¢y depends only on m. Then, by conformal invariance again,

co=wp(29, E) = ws(¥(2¢), {(Imw=7/2})
=L Imy(zo) + =
T 2

and we have Im y(z¢) = —7/2 + cya. Similarly we obtain

Imy(zg) =nw/2—cynw
for the same constant ¢y, so that

Im y(zp)| = w/2—cym (2.2)
for zoe D,.

By the conformal invariance of the hyperbolic geodesic I' and by (1.9)
and (2.2), we have, for zo € D,, that

e —ZdD(ZOD F) =e _2dS(\b(ZO)’ R)
= § cos*(Im ¥/(2o))
>c, 2.3)

where c is a constant depending only on ¢y. The theorem now follows from
(2.3), since area(D,) = + area(D). O
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REMARK 2.1. It should be mentioned that Xu’s proof, which is more com-
plicated than ours, also contains similar estimates on harmonic measure.

Theorem 2 shows that for such strip domains the lifetime estimate holds if
and only if the domain has finite area. However, Xu [16] also gave the first
example of a domain of infinite area which has finite lifetime. In [11] Davis
gave a similar example of a domain of infinite area which is intrinsic ultra-
contractive, a property which implies the lifetime estimate. In Bafiuelos [5],
a class of domains which is called “uniformly Hoélder” was introduced and
intrinsic ultracontractivity was proved for these domains. Bass and Burdzy
[7] observed that some of these domains also have infinite volume (we refer
the reader to Bariuelos [6] for a more careful account of the literature on
this subject). Theorem 1 can be used to show relatively easily that uniformly
Holder domains have finite lifetime. We shall not give the details here, how-
ever, in order to keep this note short and elementary. Instead we present a
further, elementary example of a domain of infinite area with finite lifetime.
More precisely, we have this next theorem.

THEOREM 3. Let D be the simply connected domain given by
D= 01 U 02 Uo 3

where
O1=z=x+i -x>1 O<y<—1-}-
1 Y. 2’ x2 ’
0, = U{z=x+iy:|x—n|<—1—2,0<ysz};
n=2 h
O3 = U{z=x+iy:|x—n|<%,2<y<3}.
n=2
Then
sup EM1p) <oo.
weD
he H*(D)

Before we prove the theorem we introduce the quasi-hyperbolic distance
and make some observations. Let W(D) = {Q;} be a Whitney decomposition
of a domain D. This is a decomposition of D into cubes with the following
properties:
(i) the cubes have disjoint interiors;
(ii) if two cubes are not disjoint (i.e., if they have touching edges) then
they have comparable length with constants independent of the cubes
(4 and 4 will do); and
(iii) the length of each cube is proportional to its distance from the bound-
ary of D.

Let Qg and Q, be two Whitney cubes. We say that Qy — Q(1) » --- > Q(m) =
Q, is a Whitney chain connecting Qg to Q; of length m if Q(i) e W(D) and if
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Q(i) and Q(i +1) have touching edges for each i. We define the Whitney dis-
tance dy (Qy, O;) to be the length of the shortest Whitney chain connect-
ing Qg to Q,. If z,, 2, € D, we define the quasi-hyperbolic distance between
these points to be pp(z;, 22) = dw (0, Q,), where z; € Q; and z, € Q,. It fol-
lows easily from the Koebe distortion theorem and the Schwarz lemma (see
Vuorinen {15, Chap. 3]) that pp(z;, 22) = dp(21, 25).-

The domain D of Theorem 3 consists of an infinitely long corridor O,
from which infinitely many narrow corridors lead to identical rooms. The
total area of all the corridors is finite. We shall say that a point z=x+iyeD
is inside the nth room if |x—n|< 3 and y > 3. We claim that there is an in-
teger K such that any geodesic I' can contain points inside at most X rooms.
This follows from the equivalence of hyperbolic distance and quasi-hyper-
bolic distance. In fact, suppose that I' is a geodesic containing a point in the
nth room and in two other rooms. Then there are points z;=x;+iy; on T’
with |x;—n|<1/n?fori=1,2, 3,4 and with y; =y, =1and y, = y; = 2. Since
I' is a geodesic,

dp(z1, 24) = dp(2y, 22) +dp(22, 23) +dp(23, 24)
= dp(z1, 22) +dp(z3, 24)- (2.4)

Now dp(zy,24) < Cy0p(21,24) <k, where k is the length of the Whitney
chain joining z; to z4 along the straight line segment [z, z4]. Furthermore,

dp(z1,22) +dp(z3,24) = C20p(21, 22) +C2pp(Z3, 24)
> c,(k+c3n?).

This contradicts (2.4) if # is sufficiently large. Thus there is an integer X
such that any geodesic can enter at most X rooms.

Next suppose that z, =x;+iy, is such that |x;—n|<1/2 and 2< y;<3
for some n=2. If z, is not inside the nth room, then it follows once more
from the equivalence of the hyperbolic and quasi-hyperbolic metrics (by
counting Whitney cubes inside the rectangle) that dp(z;,z,) =cn? Alter-
natively, we can argue as follows. If v is a curve in D of shortest hyper-
bolic length joining z; to z,, then vy contains a subarc v, which joins the line
segment [n—1/n%+2i,n+1/n*+2i] to the line segment [n—1/n%+3/2i,
n-+1/n%+3/2i]. Since v is part of a geodesic,

dp(z1,22) = L(y) = L(y)) = (z/2)(n?-1),

where L denotes the hyperbolic length of a curve and the final inequality fol-
lows from Lemma 6 in Hayman [13]. Thus, in fact, dp(z;, z,) = wn?/4.

Proof of Theorem 3. Let I" be any hyperbolic geodesic in D. From the triv-
ial estimate e ~29r(%T) < 1 we have that

SS e 2D gy dy < area(DN{Imz <2}) = A < oo.
DNf{Imz <2}



330 RopriGo BANUELOS & ToM CARROLL

Suppose that I" does not enter the nth room. If z; is in this room and Im z; > 2
then for any z, on v we have dp(z;,z,) = wn%/4 as we have shown. There-
fore d(zy, ') = wn?/4 in this case, and the contribution from this room to
the expected lifetime does not exceed e =™ 72 since the area of the room is 1.
This estimate holds for all but possibly K rooms of total area K. In sum-
mary, then,
“ e 2D gy dy < A+ K+ S e ™2 =C< o,
D

n=2

and Theorem 3 is proved. O

Next we make the connection of Theorem 1 to Whitney cubes and the quasi-
hyperbolic distance for D. The first use of these quantities in the study of the
lifetime of conditioned Brownian motion seems to have been in Baiuelos
[4]. They have subsequently been used very effectively by several people,
and we again refer to Bafiuelos [6] for an account on the literature. Note
that if I' is any hyperbolic geodesic and if Q is any Whitney cube with center
Zg then

dp(z,T') = dp(Q,T') = dp(zg, I') (2.5)
for all z € Q. This follows, for instance, from the equivalence of the hyper-

bolic and quasi-hyperbolic distances. From (2.5) and Lemma 1 we imme-
diately obtain the following.

CoroLLARY 1. Let T' be a hyperbolic geodesic in D joining the two points
&1 and &, on the Martin boundary of D. Let Ty be the total time that Brown-
ian motion, starting at £, and conditioned to go to &,, spends in Q. There
are constants c;, C,, independent of Q and T" such that

Lemadoze. 0| 0| < EfX(Ty) < de =% D)|Q), (2.6)
where |Q| denotes the area of Q.

Our proof can be easily modified to give the following.

COROLLARY 2. Let z, and 2, be two points in D with dp(z,,2;)=1. Let y=
v(z1, 22) be the curve of smallest hyperbolic length joining z, to z,, and let
Q be any Whitney cube. Let Ty be the total time that Brownian motion,
starting at z, and conditioned t0 go 10 2,, spends in Q. There are constants
1, C2, C3, Cy, independent of Q and v, such that

cle—cde(zQ,7)|Q| <E¥(Ty) < cse—C:th(zQ"Y)lQl. 2.7)

From Corollary 2 and from Theorem 1.1 in Davis [10] we deduce the next
corollary.

CoroLLARY 3. Let 2y, 22, 7y, and Q be as in Corollary 2. Let Pg be the prob-
ability that the conditioned Brownian motion from z, to z, ever hits Q. Then

cle_CZdD(zQ"Y)SPQS cse_c4dD(zQ, 'Y)‘ (2‘8)
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These corollaries clarify our statement in the introduction that conditioned
Brownian motion paths “follow” hyperbolic geodesics. For if the hyperbolic
geodesic y(z;, z,) enters the Whitney cube Q then the conditioned Brownian
motion will hit the cube with at least probability c¢;, and the expected time
that it will spend in Q is proportional to the area of the cube.

In [1] and [3], Ancona presents several estimates for Green functions on
manifolds of negative curvature in terms of the intrinsic metric. Many of
these estimates, when interpreted in terms of the quasi-hyperbolic metric,
continue to hold for domains in R” which satisfy the Hardy inequality. This
latter inequality itself follows from a uniform boundary capacity condition
[1]. It seems not to have been noticed before that some of these estimates
can be very useful in the study of the lifetime of conditioned Brownian mo-
tion. For example, the argument used to derive the inequality after Remark
2.1 1n [2], together with a version of Proposition 2.5 in [3], can be adapted
to prove our Corollary 2. Also, it follows from the proof of Proposition 4.1
in [3] (or Lemma 8 in [2]) that if D is a domain in R? satisfying the Hardy
inequality then, for any Q e W(D) and any x € dQ*, where Q*=3

G(x,y)=C 2.9

for all y e Q. Here Q™ is the cube concentric with Q and /(Q*) =2/(Q). The
inequality (2.9) can be used to prove that if D e UH(«) for some 0 < <2
(see Bafiuelos [5] for a definition); then the Cranston-McConnell estimate
holds for D. The inequality (2.9) is also the key estimate for the conditional
gauge theorem proved by Cranston [8] for planar domains. In R?, it is proved
in Ancona [1] that the uniform capacity condition is equivalent to the Hardy
inequality, which in turn is equivalent to (2.9).
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