Plurisubharmonic Extremal Functions and
Complex Foliations for the Complement of
Convex Sets in R”

MIROSLAW BARAN

In this paper we prove some properties of Siciak’s extremal function $ in
the case of compact subsets of R”. In particular, we establish an interesting
inequality for extremal functions of convex sets and present some corol-
laries that follow from this result. Moreover, we obtain effective formulas
for the extremal function in a few interesting cases of convex symmetric sets
and in the case of special nonsymmetric convex polyhedra. Finally, we pre-
sent an effective continuous complex foliation of the domain C"\ E (in the
cases when we have explicit representation of the extremal function) by the
leaves on which the plurisubharmonic extremal function ug is harmonic.

1. Introduction and Statement of the Main Results

Let E be a compact set in C". By ®5(z) (®(z, E)) we denote Siciak’s ex-
tremal function defined as follows:

(1.1) $5(z) = sup{| p(z)|/4eP: pe Cwl, deg p=1, | p|g <1}

for z € C", where | p| g denotes the Cebyshev uniform norm | p||z = sup| p|(E).
For definition and applications of the extremal function we refer to Siciak’s
papers ([12], [13], [14]) and especially to Pawtucki and Plesniak’s papers
([91, [10]). The basic property of the extremal function just defined is con-
tained in the following Zakharyuta-Siciak theorem (see [15] and [13]).

1.2. THEOREM. If E is a compact subset of C" then
b(z)=expug(z) for zeC”,

where ug(z) =supf{u(z):ue L,, ulg <0} and £, is the Lelong class of pluri-
subharmonic functions in C" (briefly, PSH(C")) with logarithmic growth:
u(z) < const +log(1+|z)), ze C".

In this paper we consider the case when £ is a compact set in R”. (Here we
treat R” as the subset of C” such that C” = R” +{R"). Let us denote by g the
Joukowski transformation: g(z) = %(z+ %) for ze C\{0}. Let #: C\[-1,1]>C
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be its inverse; A(z) =z+ (z2—1)/2 with an appropriate branch of the root
function.
The aim of this paper is to prove the following results.

1.3. THEOREM. For a compact set ECR”",

®p(z) =sup{|h(p(2))|/48?: pe R[w], deg p=1, | p|g <1}.
1.4. THEOREM. There exists a sequence of polynomials p; € R[w] such
that deg p, <deg py,, and

®z(2) = sup| A(p(2))|/47 = Tim | A(p(2))[/*eP.
k=1 k-

In the special case of compact, convex subsets of R”, the following inequal-
ity holds.

1.5. THEOREM. If E is a compact, convex subset of R" with 0 eint(E)
and E* is the convex dual set to E, then

(z—=d)-w "
h(l—ld-w+6]>‘ Jor zeC",

®(z)=< inf sup
deint(E) wekK

where

K= 2 extr(E*), a=inf{x-y:xeE,yeE*}, B=

1+ 1+ |ef

Here E*={xeR": x-y<1{for every ye E}.

In addition, we obtain the complex foliation of C”\ E, such that u; is
harmonic for each leaf, in the case of convex, symmetric compact sets in
R” and in some special nonsymmetric convex cases; this generalizes Lundin’s
result [7].

2. The Joukowski Function, Its Inverse, and the
Proof of Results for Siciak’s Extremal Function

In our considerations the crucial role is played by the following holomorphic
function, called the Joukowski function:

g(z)=3(z+1), zeC\(0}.

This function is univalent on [z|>1and on 0 < |z|< 1, g({|z| > 1}) = C\[-1, 1],
and the inverse function #=g~!: C\[—1,1] - C\B (where B denotes the
unit disk in C) has the form k(z) = z+ (22 —1)"/? if we choose an appropri-
ate branch of the square root. Note that g is a solution of the equation

(2.1 lg(z)+1]|+]|g(z)—1]=2g(|z]), z#O0.

On the other hand, equation (2.1) characterizes the Joukowski function in
the following sense (see [2]): If f:C\{0} — C is a holomorphic function sat-
isfying (2.1), then there exist @ >0 and p in N such that
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f(z)=g((az)?) foreach z#0.

Following (2.1), we obtain the following most important formula for the
function A:

(2.2) |h(z)|=h(|z+1+1|z—1]) for zeC,

where on the right side we have A(¢) =¢+ (¢2—1)/2 (¢=1) with the usual
arithmetic root. Other properties of functions g and # are contained in the
following proposition; its straightforward proof will be omitted.

2.3. PROPOSITION.
(1) zg(z)—zg(z) = i(|z|>—|z|~2) for z#0;
() |h(z)|=r, r>1, ifand only if |rz—r~'z|<i(r?*—r2%);
(3) |h(z)|=r=1if and only if |z+1|+|z—1|=2g(r).

Note also the interesting connection between the Joukowski function g, its
inverse A, and the Cebyshev polynomials 7, (x) = cos(narccos x), xe [—1,1]:

2.4) T,(z) =g(h"(2)).

Observe that Theorem 1.3 is a generalization of (2.4).

2.5. PROOF OF THEOREM 1.3. Denote the right side in Theorem 1.3 by
¢(z). The inequality = is a simple consequence of Theorem 1.2. The oppo-
site inequality holds true by the following facts:

(2.6) |h(z)|=P;_1,1)(z) = ®5(z) =max(l, |z]), z€C, and

(2.7) if pe C[w], |p|g =<1, then there exist p,, p, € R[w] with

|P1les | P2l <1and p=p,+ip,.

By (2.7) we get |p(z)|/9e? < (V2)/4ePy(z). Using this inequality for the
polynomial p* completes the proof of theorem. O

2.8. COROLLARY. IfE is a compact subset of R”, then
b (2)=Pg(Z) for zeC"

2.9. PROOF OF THEOREM 1.4. By Proposition 4.11 from [13], we have
P (2) =limy_, (P4 (2))/*, where ®,(z) = max1<j<mk|LU)(z ¢(m0)|. Here
¢ ={zq,..., {m,} is the kth system of extremal points of the rank my =
(¥t7) and LY(z, ;‘mﬂ) is the system of Lagrange interpolation polynomials
w1th nodes {;. Every such polynomial has degree <k and Cebyshev norm
on E not greater than 1. Hence

(q;k(z))l/ks max ]Lm(z, ;-(mk))|1/deg

I=sj=my

LY _ ,.(2).

Let /, be the smallest common multiple of the numbers 1,..., &, and let
qr, j(z) =LYz, ¢ (mid)lk/deg L Note that deg gy, j=I; and

$.(z)= lim max ]qk,j(z)|1/’k.
k- l=sj<smy
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If we order these polynomials with respect to degree we obtain the sequence
required in Theorem 1.4. O

2.10. COROLLARY. Let (o) be a sequence of real numbers such that (0 <
op <1 and lim,_, o oy =1. Then

¢ (z)= iup sup{| p(z)|/4e?: pe R[w], deg p=k, | p|p < ot}
>1

=sup sup{|A(p(z))|/4eP: pe R[w],deg p=k, | plg < o).
>1

2.11. COROLLARY. Ifxy€FE then
@5 (z) =sup{|h(p(2))|/4e?: pe Rlw], deg p=1, | plg =1, p(x) =0}.

Proof. Observe that if p is a real polynomial with |p|z <1 and q(z)=

P(z)—p(xo), then
|h(p(2))| = k(3] p(2)+1]+ 5| p(z)—1))
< h(3(3(2q(2) +1]+]2q(z) - 1)) +1))
< h(3(129(z) +1]+|2¢(z) = 1)) = |h(2q(z))|,
which completes the proof. O

2.12. COROLLARY. IfE=—E then

®x(z) =sup{|h(p(z))|/*EP: pe R[w],deg p=1, | ple <1,
p(2) = p(—2z) foreach z or p(—z) = —p(z) forevery z}.

Proof. Let peR[w], |p|g=<5. We have
P(2)=3(p(2)+p(=2)+ 3(p(2) — P(—2)) = q(2) +7(2),
q(z)=q(=z), r(=z)=-r(2).
The next steps are similar to those in the earlier corollary. ]

2.13. PROOF OF THEOREM 1.5. In the proof, the crucial role is played by
the following.

2.14. LEMMA [1]. Let E be a compact subset of C" and let f: D — C" be a
continuous mapping, holomorphic in the domain D C C. Let a continuous
Sfunction ¢: f(D)— [1, +o) satisfy the following conditions:
() elpapy=1
(i1) log(ee°f) is harmonic in D;
(iii) |z|=Me(z) for z € f(D) with some constant M.

Then ®5(z) < ¢(z) for z€ f(D).

Now, let £ be a compact, convex subset of R” with 0 € int(E). Define K,
a, and B as before. Then we can write E={ze C":z-w+8e[—1,1] for
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each we K}. Fix ze C"\E, deint(E), and ce C"\{0}. Define f({)=
I(tc+¢71e)+d for { € D, where D= C\B. Observe that the condition

(*) |c-w|+|d-w+B|<1 forevery wekK
implies that f(dD) C E. Indeed, f(e’?) € E if and only if
|IRe(e®®(c-w))+d-w+B|<1 forevery wek,

which is equivalent to (). It is easy to verify that we can apply Lemma 2.14
to the function ¢(z) =|¢| if z=/(§) (¢ € D), and we obtain the inequality
&L (f($)) <|¢]| for £ € D. Choose r > 1and c € C"\{0} such that z = f(r) and
f(oD) C E. The first assumption implies that

c=2(r*=r2)" Y r(z—d)—-r~(z-a)).

Hence, due to the second condition and (*), we have

h(l iﬁ;,ﬁ;wm )

<r forevery wek.

Set
_ (z—d)-w \|

r—max{ h(l—ld-w+BI)I'WEK}

We have
(z—d)-w
i < :

£(z) max{ h(l—ld-w+6|)' weK},

and—because d e int(E) was arbitrary—Theorem 1.5 is proved. (]

3. Some Applications of Theorem 1.5

If E is a compact, convex and symmetric subset of R” with nonempty inte-
rior, then, due to Theorem 1.5, we easily obtain

(3.1 ®(z) =supf|h(z-w)|: we extr(E*)}

for z € C" (see [1]; see also [7] and [4], where the result is less precise).

3.2. REMARK. A stronger theorem was proved in [1] under the following
assumption: If ®5(zg) =|h(zq- Wo)| with some w, € extr(£*), then ®x(f($)) =
|¢] for || =1, where f(¢) = 3(¢c+ ¢ ~1€) and the vector ¢ is given by the con-

ditions z¢ = f($o), $o= h(zy*wp). We will apply this result in the last section
of this paper.

3.3. PROPOSITION. If E,,...,ExN are compact, convex and symmetric
subsets of R" with nonempty interior, and if E=N{_, E;, then

¢r= max Pp,.
l<k=sN

The proof easily follows from (3.1).
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The next proposition is also simple, but less trivial.

3.4. PROPOSITION. If a set E satisfies the hypotheses of Theorem 1.5,
then there exists a constant M > 0 such that $5(z) < h(1+ M dist(z, E)) for
each z € C". In every case we can take M = l/dist(%E, oFE), and if a set E is
symmetric then we may take M =2 /6(E), where 6(E) denotes the diameter
of the set E.

Proof. First, observe that there exists a compact set EyC int(E) such that
the following condition is fulfilled:

(*) for every a € E there exists d € E such that for each w € K the follow-
ing inequality holds:

[(a—d)-w|+|d-w+B|<1.

Indeed, fix b € int(E) and define Eq = { E+1b. It is obvious that Ey Cint(E)
and the set Ey is compact. For ¢ e E put d = 3(a+b) € Ey and let o, =
aw+pB, v,=b-w+p for we K. Then

[(a—d)-w|+|d-w+B|= 3oy, — vy |+ 3|ty + v, | = max(e,, |, | yu]) < 1.

The set E; may be also defined in the following manner. For ae E let
6(a)=sup{dist(%(a+b),3E):beE]. There exists be E such that 6(a) =
dist(1(a+b), dE). Put d(a) = i(a+b), Fy={d(a): ae E}, and E,= F,. The
set E, then has the property required in (*). Moreover, if E is symmetric
then we obtain E,={0}. Now observe that, if S,, denotes the strip S, =
{xeR":x-w+Be[—1,1]}, then 1—|d-w+B|=|w|dist(d, 3S,). Fix zeC".
For a € E choose d € E, such that condition (*) holds. Then

1 (z—d)-w (z—d)-w
_2—< 1—]a’-w+;6]+1 + 1—[d-w+6|—1|)

(a—d)-w ’

+ (a—d)-w 1
1—|d-w+8| 1—|d-w+3| ’)

< __.'_E___‘il__ 1
~ dist(d, dS,,) 2
__lz—al
" dist(d, 3S,,)
where M =max{1/dist(d, dE): d € E,}. By Theorem 1.5 we obtain

+1=<1+M|z—a|,

1 (z—d)-w (z—d)-w
P < = 1 —1
s =n(maes (|75 a | awes 1))
=h(1+M|z—a|).
Hence ®z(z) < h(1+ M dist(z, E')), which completes the proof. O

3.5. REMARK. From the above Proposition 3.4 it immediately follows
that there exists a constant M, such that

®p(z)<1+M,;8"% for dist(z,E)<é=<]1.
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This implies the well-known fact that E satisfies the HCP condition (see
[9]) with a constant p=1.

3.6. REMARK. If E is a compact, convex subset of R” with nonempty
interior, then for every beint(E), 0 eint(E—b). It is easily seen that M =
inf{dist(3(E +b), 0E): b e int(E)).

At the end of this section we will give some effective formulas for Siciak’s
extremal function. For details the reader is referred to [1].

3.7. EXAMPLE. Let E be a convex symmetric polyhedron that has the
following representation:

m
E= N{xeR": —o=x, 8"+ +x,8 = o},
k=1

where o >0 and lin(8Y, ..., 3Y) = R". We have extr(E*) C AU(—A),
where A= {(1/a;)B8Y, ..., (1/e,,)B™}. By 3.1 we get

. k) . RKk)
<I>E(z)=h( max —1—< 2P Z-p —1')) for ze C".

+1
lsk5m2 18772 O

+

3.8. EXAMPLE (Lundin [8]; short proof, due to 3.2, is contained in [1]).
Let B, be the unit Euclidian ball in R”. Then

®p () = (h(|z|*+|z>—1])/>.

3.9. EXAMPLE. Let N=n+1, y,...,ynv€R", lin{y,,...,yy)=R" and
Yie=2f=1 0 Y1, Where ap ;=06 for 1<k,I<nand o4 ;>0 for1</=<n,
n+1=<k=<N. For real numbers b, such that by=—1forl<k<n and b, €
[—1,1] for n+1=<k=<N, define: Bkz%(l—bk). Consider the subset £ of
R” which has the representation

E={zeC"2z-y,+b,e[-1,1]for I=k<N}.
Then we have

‘I’E(Z)=h< max ”1‘(12 ak,!lz'y1|+|z'yk_6kl))

1=k=nN Br \uSi
for z € C". The proof of the above formula is an immediate consequence of
Proposition 3.3, Example 3.8, and Klimek’s beautiful theorem [6], which we
apply to the mapping f(z) = (z2, ..., z2). (For details we refer to [1], where the
above formula is presented in an implicit form.) Note that in the case of the
standard simplex S, in R”, where S, ={xeR": x;,...,x, =0, x;+ - +x, <1},
we get

b5, (2) = h(|zg|+ -+ +|z, |+ ]|z + - + 2, — 1.
4. Complex Foliation of the Complement of a

Compact Subset of R”

In this section we will give two examples of the complex foliation of the
open set C"\ E by leaves such that on each leaf the extremal function uy is
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harmonic. These examples are strictly connected with Remark 3.2 and Ex-
ample 3.9. We start with the definition of a continuous complex foliation

(see [3], [5D).

4.1. Let M be a complex manifold of the complex dimension n. A family
& of disjoint submanifolds L of constant degree p is said to be a continuous
JSoliation of M if the following two conditions are satisfied:
(1) ULefF L= M;
(ii) for every point z € M there exists a neighborhood U and a continu-
ous map ¢ = (¢, ¢,): U~ C? x C""P such that if L € F then each con-
nected component of the set LN U is given by the equation ¢, = const.

Any element of the family & is called a leaf of the foliation.

Let E be a compact, convex and symmetric subset of R” with nonempty in-
terior. As before, let K = extr(E*). Define S(E') = {z € C": max,, . x|z-w|=1].
Then S(E) is the unit sphere in C” for the norm max,, . g|z-w|. Let J,=
U#_ Fy, where F, = B¥~1x {1} x B"~*, Next, let  denote the homeomor-
phism from S(7,,) to S(E) given by w(z)=z/|z| for ze S(I,), where I, =
[—1,1]" and |z| = max,,.x|z-w|. Let “=” be the equivalence relation in
C"\ {0} which defines projective space P,; that is, z = w if and only if there
exists 7€ C with |7|=1 such that z=7w. Then the compact and connected
set J, is a selector of the family x(Z,) of abstract classes of the quotient
space P,, where w: C"\{0} —» P, is the canonical surjectionand 7 |; : J, > P,
is a homeomorphism. Since the homeomorphism w is compatible with the
relation =, the set w(J,) is a selector for n(S(E)). Moreover, w(J,) is a con-
tinuum, and 7 [, )* w(J,) — P, is also a homeomorphism.

Denote o(E) = w(J,). For ce o(E) define f.: D — C” (here D= C\B) by
the formula: f.(¢) =3(fc+¢7'¢) and put L, = f.(D), F={Lc}ccom)- It is
easily seen that for each ce o(E), L, is an analytic curve (complex manifold
of dimension 1). Now we can formulate the main result.

4.2. THEOREM. The family § is a continuous complex foliation of the do-
main Q = C"\ E such that on every leaf the extremal function ug is harmonic.

Proof. By (3.1) and Remark 3.2 it follows that family F is a cover of Q and
on each curve L, the function uz harmonic (since ug(f.($))=1log|¢|). Now
we will prove that leaves L, are disjoint. Assume that z € L.NL_.. Then there
exist ¢, { € D such that z = $(§1c+§718) = L({¢'+ £,€”). Let w be a vector
from K such that |c-w|=1. Set {=¢c-w/|c-w|, $'=5c-w/|e-w|. Ac-
cording to (2.1) we obtain the equality

2g(lED =|lc"w|g(E)+1]+]|c"w|g()+1].

Since |¢’-w|=<1, the right side in the above expression is not greater than
lg(s)+1]+]|g(t)—1|=2g(|¢’]). Hence |§|=<|¢’|- By the same reasoning
we obtain the opposite inequality. Thus [¢|=|{’|. Without loss of generality
we can assume that {={;, {,=7¢, |7j=1. Then we obtain {2(c—7c¢’) =
—(¢—17c’) and thus ¢ = 7¢’. This means that ¢ = ¢’, which implies ¢ = ¢’ and
L.=L,.
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Now we will verify condition (ii). First, observe that the mapping x:
Dxo(E)—>Q, x(5,¢)=2(fc+¢7!T) is a homeomorphism. Indeed, x is a
continuous bijection and its inverse is given by the formula

x " 1z) = (®p(2)c1(2)-c(z)/|c(2)]% c(z)),
where

c1(z) =2(2p(2)*— P£(2) " 2)(PE(2)2— P£(2)'7)

and ¢(z) = (7 |4z)) "N (7(c(2)). It is easily seen that x~! is continuous.

Let a mapping ¥:J, - C"~! be given as follows: If z € F} then let ¥(z) =
ef”k/”(zl—l, versZp—1— 1,2 1—1,...,2,—1). It is easy to check that y is a
homeomorphism onto its image. Now define a map ¢: 2 — Cx C"~! by the
formula ¢ = (id¢, Yew™1)ox L. It is clear that the map ¢ is a homeomor-
phism onto its image, and it is easily seen that for every z € {2 the condition
(ii) is satisfied with U = Q. This completes the proof. O

4.3. REMARK. Lundin’s paper [7] contains a remark concerning the pos-
sibility of a similar foliation in the case of a compact, convex and symmetric
subset of R" with smooth boundary. Our theorem gives the explicit formula
of such a foliation without any assumption on the boundary of the set E.

4.4. REMARK. For every ce C”, the following equality holds,
max{|c-w|: we S" 1} = (L(|c|>+]|c?|)V2.
Hence
S(B,)={ceC": (A(c]?+]|c?)/?*=1}.

At the end we will present a similar construction of the foliation for the case
of polyhedra whose extremal functions are given in Example 3.9. Let E be a
fixed convex polyhedron from Example 3.9. As before, denote by S(E) the
unit sphere in C” with an appropriate norm S(E)={z e C": |z] =1}, where
1z] = max; <, <N (1/B) (ZF=1 1|12+ 7=1 a,12/]). Denote by w the ho-
meomorphism from S(Z,) to S(E) given (as before) by the formula w(z) =
z/|z|, and let o(E) = w(l,). Next, for a vector ce o(E) let f. denote the
following mapping from D (D as before) to C”:

L) =eGEe+71E)+(ers o [€a)s

where ¢ is the linear automorphism of C” defined by ¢(2) =z, + -+ 2,4,
(the vectors a, are given by the condition y;-a;= 6 ;). Let L. = f.(D), F=
{Lc}ceory- Now we can formulate the second theorem.

4.5. THEOREM. Let E be a convex polyhedron from Example 3.9. Then
the family § is a continuous complex foliation of the domain C"\ E on
analytic curves and on each of these curves the extremal function ug is har-
monic. Precisely, ugp(f.($)) =log|¢| for ¢ € D.

Proof. It is possible to prove this theorem in a way that is analogous to the
proof of Theorem 4.2, by applying the identity
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3§+ ETIT) F o] = (2l T2,

Therefore we omit the details.
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