Two Problems in
Multidimensional Prediction Theory

JEAN-PIERRE GABARDO

Introduction

This paper deals with multidimensional generalizations of the following
famous theorem of Szegd in prediction theory: If u is a positive Borel mea-
sure on the circle T identified with the interval [0, 1) and x has Lebesgue de-
composition p=w+ pu,, where we L'(T) and p, is a singular measure, then

infS |1+ P(6)]* du(6) = exp B log w(0) a’G],
p T T

where we use the convention that the expression on the right-hand side of
the preceding equality is zero if log w is not integrable, and the infimum is
taken over all trigonometric polynomials of the form

m
P(0)= > a,exp(2wibk), a,e€C, m=1.
k=1

This result was first obtained by Szegé (see [2]) in the case where u, =0; the
general case is due to Kolmogorov and Krein (see [1, p. 256]). Helson and
Lowdenslager [3] considered a similar multidimensional prediction theory
problem. Given a positive Borel measure p on 77, they showed that

inf f 1+ P(0)]? du(8) =exp[g log w(())d()],
p T T

with the same convention as before and where P ranges over all trigonomet-
ric polynomials with Fourier coefficients supported in a half-space of lattice
points S* contained in Z”. The definition of a half-space of lattice points is
that of a set S* having the properties that 0 ¢ S*; that, for k%0, ke St is
equivalent to —k ¢ S*; and that k,+k, e St whenever k;,k,€S*. An ex-
ample of such a set can be constructed in the following way. Fix a vector
xo € R”, with x,# 0, such that {k e Z", (k,x,) =0}={0}. Then the set St =
tkeZ", {x,, k) > 0} satisfies all the properties mentioned above. Of course,
not every “usual” half-space of lattice points has those properties, and we
will refer to those which do as half-spaces of lattice points in the sense of
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Helson and Lowdenslager. Let us mention that prediction problems in sev-
eral dimensions corresponding to sets other than half-spaces of lattice points
have been studied (see e.g. [4], where the case of lattice points in the third
quadrant is considered when n=2).

The main objective of this paper is to investigate the following two multi-
dimensional prediction theory problems corresponding to half-spaces of lat-
tice points which do not satisfy the conditions of the Helson-Lowdenslager
theorem. Given a vector xy € R”, x # 0, such that {k e Z”, {xy, k) =0} # {0},
we will be interested in finding an explicit expression in terms of u for

: 2
inf STH|1+P(0)| du(6),

where P ranges over all trigonometric polynomials on 7”7 whose Fourier co-
efficients are supported either in the set {k € Z", {x;,, k) =0, k # 0} or the set
{keZ”, {xy, k) >0}. The main technique used in obtaining the results is an
appropriate change of variable on 7" which allows us to reduce the problem
to a lower-dimensional one where the results of Helson and Lowdenslager,
or simply Szegd’s theorem, can be applied.

In the first section of this paper we establish some general facts about the
mapping $x which sends a positive measure x on 77 to the number ®4 (u)
defined by

& (n)= inf S |1+ P(0)2 du(6).
Pe®k\(0}) *T"

Here K is an arbitrary subset of Z" and ®(K'\ {0}) denotes the set of trigo-
nometric polynomials with Fourier coefficients supported in K\ {0}. In par-
ticular, it is shown that this mapping behaves well with respect to “approxi-
mate identities” (Lemma 1.1). In Section 2, the prediction problem for K =
St ={keZ", {xy, k) =0} is considered and the main result is Theorem 2.5.
It is interesting to notice that, as in the case of half-spaces in the sense of
Helson and Lowdenslager, the answer to the prediction problem for Sj is
independent of the singular part of the measure px considered. This is not the
case, however, for the half-space of lattice points

K=S8St={keZ" (x5, k)y>0}U{0},

as shown by simple examples. We consider the prediction problem for S5 in
Section 3. The answer to this problem in the case of a measure absolutely
continuous with respect to the Lebesgue measure is contained in Corollary
3.5. The general case is dealt with in Theorem 3.6.

0. Notation

We will identify the n-dimensional torus 7" with the product of n copies of
the interval [0, 1). Thus, for us, 7" = [0, 1) and the Haar measure on 7" is
identified with the usual n-dimensional Lebesgue measure df on [0, 1), We
will denote by M(T") the space of complex-valued Borel measures on 7"
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which, as is well known, can be identified with the dual space of C(T"), the
space of complex-valued continuous functions on 7" endowed with the sup-
norm topology. Mt (T") is the subset of M(T") consisting of all positive
measures in M(7"). If 1 < p<o and pe M*(T"), we can define the Banach
space L? of all complex-valued, u-measurable functions f, defined g-almost
everywhere such that

171,0= | _J7 @)1 du(®) <o.

If pe M(T") and k € Z", we define the kth Fourier coefficients of u, p(k),
by

pk) = | exp(=2mick, 03) dp(0);

if K C Z", we will denote by ®(K) the set of all trigonometric polynomials P
onT" satisfyigg P(!c) =0 Vk ¢ K. Finally, if f is a function on 7", we define
the function f by f(0) = f(—8) for 6 T".

1. A General Prediction Problem

If K is any subset of Z" with 0e K and pe M*(T"), we can define the ex-
pression
S(w=_inf | [1+POFduo).
Pe®@&\{0) T

In this section we will be interested in establishing some general facts about
the mapping ®x: M (T") - R*. It is easily seen that & (x) > 0is equivalent
to the continuity of the functional that sends a polynomial in ®(K) to its
mean value; that is, equivalent to the existence of a constant C > 0 such that

1/2
VP e ®(K), <C [STHIP(G)P du(a)} .

|, . Po)ds

In that case, C=1/4/®x(n). Simple examples show that the mapping pu—
&, (1) is not continuous in general, for arbitrary X, even in the norm topol-
ogy of M(T"). However, we will see that this mapping behaves well as far
as approximate identities are concerned. Let us recall that an approximate
identity in C(7™") is a family of functions {¢_}.-o in C(T"), indexed by
€ >0, having the property that [ » ¢ (0) dd=1 for every e>0, ¢, =0, and
such that

(L.1) vfeC(T"), lim |  f(0)¢(0)do=7(0).

e—0

We have the following lemma.

LEMMA 1.1. Suppose that K CZ" with 0e€ K, and let {¢.},.( be any ap-
proximate identity. Then, if pe M*(T"), we have that x(p* ¢,) = D (p)
Jor every € >0, and furthermore that $x(u* ¢.) converges to ®x(y) as
e—0F,



176 JEAN-PIERRE GABARDO

Proof. If Pe ®(K\{0}), we compute

[ N

ST"|1+P(0),2d,u(9—T) 0. (1) dr

- .

[ J1+POP@reI@ do=(
T T

=[] PO+ du(®) |, () dr

= L"n P (1) e (1) dr = Pg (),

since, for every fixed 7, P(-+ 7) € ®(K\{0}). We thus obtain the first state-
ment of the lemma by taking the infimum over Pe ®(K\{0}) of the left-
hand side of the previous equality. Let us now prove the second statement.
If »> 0 is fixed, choose Pye ®(K\{0}) such that

[, A1+ Po(O)]? din(6) = By () +1.
Now, since {&.}. ¢ is also an approximate identity, we have

[ 1+ Po@Pux e @) d0={ [[1+Po % 51(6) du(0)

—>STn]1+P0(0)|2du(0), e— 0%,
and thus we can find ¢y > 0 such that, if 0 <e<e¢g,
STn|1+PO(0)|2(,L* 0 )(0) df < STH|1+P0(0)|2d,L(6) +1.

Hence we obtain that ®g(u) < Pr(pu* @) < Px(pn)+29 if 0<e<e¢y, and,
since 7 is arbitrary, the second assertion follows. 1

COROLLARY 1.2. If e M*(T") has Lebesgue decomposition p.=w+ p,
where we LY(T") and p is a singular measure, define ®(p)=0 if logw ¢
LN(T") and ®(n) =exp(flogw(0) db) if logwe LY(T"). Then

lim ®(p*¢)=P(u)

e—07T

Jor every approximate identity {¢.}.¢-

Proof. This follows immediately, from the generalization of Szegsd’s the-
orem due to Helson and Lowdenslager [3, p. 171] and Lemma 1.1, where
K\ {0} is chosen to be a half-space in the sense of Helson and Lowdens-
lager. 0]

The following lemma will be useful in Section 3. We will write u, for u* ¢,.

LEMMA 1.3. Let KCZ" with0e K and let pe M*(T") with ®(pn)>0. If
(o> is any approximate identity, let us denote by M (resp. M,) the clos-
ure of ®(K) in L (resp. L} ), and by u (resp. u,) the unique element of M
(resp. M,) satisfying
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vPe®K), | P@do=| u@P@ du6)=] u@P@)p0)de.
Then u,p, converges to up, in the weak* topology of M(T"), as e —» 07,

Proof. We first remark that if v eLﬁe, we can define v * @, as an element of
Lﬁ. Indeed, if Pe ®(T"), using Cauchy-Schwarz inequality we have that
2

du(0)

ST"'P* &[*(8) du(0) = S ST" P(1)e (r—0)dr

Tﬂ
(1.2) = ST,, BT,,IP(T)I%E(T—@) dr] dp(0)

=S JP(T)Pr(7) dr.
T

Hence, using the density of ®(7") in Lﬁe, the mapping P — P * ¢, can be ex-
tended by continuity as a mapping from L,?;E to L;’;. It is also clear that if
ve M, then v* @, e M, since P* ¢, e @(K) whenever P e ®(K). The existence
and uniqueness of # and u,, for ¢> 0, follow immediately from the Riesz
representation theorem. We will first show that u, * &, converges to u in L2
as e —» 0%. Indeed, we have the inequalities

(1-3) ”ue*(be"fl,,us"ue".?,pesuulb,p’

the first one coming from (1.2) and the second one from Lemma 1.1. Let {#;}
be a sequence in @(K) converging to u, in Lflf. We compute

[, 4O W*E)(0) du(0) = lim | u(0)(P;*&)(6) du(6)

j—»oo
(1.4) = lim g P *3)(0) b= lim § P:(6) df
j—oo T J"’°° T”
= lim |, u OB @nc0) do=Ju
and thus it follows from Lemma 1.1 that
1.5) lim | u(0)(u*E)O) du(0) = |ul3,,.
e—07 T"

On the other hand, applying Cauchy-Schwarz inequality to (1.4) and using
(1.3), we obtain [u; , = u * &5 , = ul3,, /lul,, ., which yields, by Lem-
ma 1.1 again, that

(1.6) Hm u * @5, =uls, ,
e-0t

It is now clear from (1.5) and (1.6) that ju—u, * @], , goes to zero as e — 0%,
which implies in particular that (u,* ¢, )u converges to up in the weak* top-
ology of M(T") as e— 0%. Hence, we only need to show that u, (u* ¢, )—
(u,* @.)p converges to zero in the weak* topology of M(T") as e —» 07. Now,
using (1.3), it is easy to see that the family {u (u* ¢.) — (4. * )50 1S
bounded in M(T"). It is therefore sufficient to show that, for every k € Z7,
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lim | u(0)e? % (0) a0~ (u*@)(0)e* 5P du(0) =0.

e—0

If {P;};- Is a sequence in @(K) converging to u, in Lﬁe we have

HT,, u ()% (0) db— | (% 5(0)e? % du(9) ‘

Jj—o oo

[ 1/2 1/2 _ 1/2
= lim Lnlmf’)lzﬂe(")d(’] [Srndﬂ(f)] [Lnll—ez”""’”l%oe(r)dr}
J—ooL

172

<"u”2 [S du(T):ll/Z[S Il_eZ'rri(k,T)'2¢ (T)dT:,
It Y T" ¢ ’

and this last expression converges to zero, by (1.1), as e —» 0%, which proves
the lemma. ]

2. The Prediction Problem for Si

Let x, € R” with x5 0, and define Sit ={ve Z", {xy,v) =0} and S={v e 2",
(Xy, ) =0}. In this section we will be interested in finding an explicit expres-
sion in terms of pe M(T") for

2.1) (W =8sp(w)=_inf [ J1+P(O)Pdu(o).

Pe(si\(o) T
If S= {0}, this problem falls into the theory of half-spaces of lattice points
considered by Helson and Lowdenslager, and so we will assume that S {0].

DEFINITION 2.1. M, denotes the closure of ®(Sj") in L2,

In order to solve this prediction problem, we will need to introduce a change
of variables on 7" depending upon the set S introduced at the beginning of
this section. We need the following algebraic fact, not too difficult to verify:
It is always possible to find vectors vy, ..., v, € Z" and a unique integer k with
0<k<n such that S={X%_,m;v;, mje Z} and Z"={3"_, m;v;, m; € Z}.
Consider now the mapping B: [0, 1) - [0,1)": § ~ B(8), where the jth
component of B(0) is defined to be {v;, ) (mod 1) for j=1,..., n. To sim-
plify the notation we will write B(0) = (B,(0), B,(8)), where the mappings
B;:T">T* and B,: T"— T"~* are defined in the obvious way. We note
that, since B is by construction the dual automorphism of an automorphism
of Z", it preserves the Haar measure on 7”. We will also denote by A the
inverse mapping of B and consider A as a mapping from 7% x T"~%, again
defined in the obvious way.

LEMMA 2.2. Let pe M+ (T") and consider the measure puge M*(T") de-
Jfined by the identity
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22) véeC(T™), | #(0)dus(6)= _ SLA(B(0), n)) dn | du(6).
T T

Tll
Then (ug) (s)=ji(s) if s€ S, and (us) (s)=01ifs¢S.

Proof. If seZ", we can write s =X"_, m;v;, where m=(my,...,m,) € Z".
Now, if (7, 7) € T*xX T"~*, we have (s, A(7, 7)) = X"_; mi{v;, A(7, 9)) =
{m, (7,7)). Hence, writing m = (m’, m”), with m’e Z* and m” e Z"~*, it fol-
lows that

151 (5) = [, I ex0(= 2riCs, ALY, 1 | o)

Tn

A
= XT" XTn_kexp(—Zvri(m, (B1(8), 7)) dﬂ] dp(0)

= |, exp(=2mi<m’, B,(0)) BTH exp(—2mi{m", 7)) dn} dp(8).

Therefore, if s ¢ S, we have m”# 0 and (ug)"(s)=0. On the other hand, if
s € S then we have m” =0 and thus

k
(ks) ()= |, exp(2mi<m’, By(0))) du(0) = | nexp(—Zm‘ > mv;, 9>) du(6)
T T j=1

= exp(=2mics, 03) du(0) = i(s),
which proves the lemma. ]

The following lemma shows that the answer of our prediction problem (2.1)
for Si depends only on the absolutely continuous part of the measure p
considered.

LEMMA 2.3. Let pe M*(T") have the Lebesgue decomposition p=w+ p,
where pe LN(T™) and p is singular. Then ®,(p) = ®,(w).

Proof. Thisis clear if ®;(u) =0. If ®;(x) > 0 we obtain, using the Riesz rep-
resentation theorem, the existence of a unique element u € M, satisfying

(2.3) vPe®(S), | PO)do=| u@P@)duo).

To prove the lemma, it is sufficient to show that u =0 a.e. (du). In order to
do so, let us consider a sequence {P;};., in ®(S;) converging to u in Lﬁ.
It follows from (2.3) that (uP; )" (s) = 0if s € S{\ S, and thus, letting j - oo,
we obtain that (Ju|?x)*(s) =0 whenever s e S;\S. Since |u|?u is a positive
measure, this implies that (ju|?#)"(s) =0 whenever s ¢ S. On the other hand,
if s € S then (uf’;p)‘(s) = 0 except for, possibly, finitely many s € S. Indeed,
if P;(0) =3, F a; exp(2wi{l, 0)), where FC S{ is a finite set, we have, using

(2.3), that
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| u@P@e P au0)= 3 @ |  u(@)e>"**"du(9)
" leF r"

— E EI-STne—Z‘;ri(l-i-s,B)dg:O

whenever —s ¢ F. It thus follows from Lemma 2.2 that (Ju|*s)s=|u[*s and
that (uP;p)s € ®(T"). Furthermore, if we denote by <, -) the duality between
measures in M(7T") and functions in C(7T"), from (2.2) we easily obtain the
inequality

KlluPu—uP;pls, $) < |blelttls, ultt—Pyl2, 1o

valid for all ¢ € C(T"), which shows that (uFJ- 1) converges to lkulz,u in the
norm topology of M(T"). Hence, we conclude that |u|*u € L'(T") and thus
that u =0 a.e. (du,). O

In the following proposition, an explicit form is given for the expression
|u|?n (= |u|*w) appearing in the proof of the previous lemma.

PROPOSITION 2.4. Let pe M (T") with ®;(pn) >0, and let u be the unique
element in M, satisfying (2.3). Then |u|*w= G<B, a.e. on T", where w is the
absolutely continuous part of p. and G € L\(T*) is defined for a.e. r€ T* by

G(r)= exp[— STn_klog w(A(r, £)) dr].

Proof. If P,e ®(T*) and P,e ®(T" "), we can define Pe ®(T") by P=
(PyoB;)(Py°B,). Let yoe R"~¥ have its jth component equal to (X, ¥;,x)
for j=1,...,n—k. Consider the sets ;" ={he Z" %, {y,, h) =0} and T=
{heZ" % {3y, h) =0}. Our construction of the v;’s shows that 7= {0} and
that 777\ {0} is a half-space of lattice points in the sense of Helson and Low-
denslager in Z"~*. Furthermore, P € ®(S;) is equivalent to P, € ®(7;"). For
every P, e ®(T*) and every P, e ®(T;"), using the invariance of the Haar
measure on 7" under B we compute .

[ P@do={ BB PB0) do
2.4)
= B@ar| P&

On the other hand, using (2.3), we have also

ST” P(6)db = STH u(0)P(0) du(0) = Ln u(0)P(0)w(0) dé (by Lemma 2.3)
2.5) = 4 a WA VPP (EYW(A(r, §)) dE dr

- Lk “T"-ku(A(T’ ONP2(SIWA(T, ) dr]ﬁl‘(r‘) dr.
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Since we have an equality between (2.5) and (2.6) for every P, e ®@(T%*), it
follows that, except for a set of zero measure depending on P, e ®(77"),
every 7 € T* satisfies

@o [, A oPEOwAm =] P

We can remove the dependence on P, of this set of zero measure by notic-
ing the existence of a countable dense set in ®(7;") for the topology of uni-
form convergence on 7”7 *. For example, one can take the set of trigono-
metric polynomials in ®(7;") of which the real and imaginary parts of the
Fourier coefficients are rational numbers. Thus, for a.e. 7€ T*, (2.6) holds
for every P, e ®(T;"). If e T*, we define the weight w, on 7" % by w, ({) =
w(A(r, £)), and u, by u,($) = u(A(r, £)), for £ € T" . It is easy to see, using
Fubini’s theorem, that for a.e. 7€ T¥,

w, e L(T""¥) and STn_klu,(g')Fw,(;‘) df < oo.
Furthermore, if {P;};- ¢ is a sequence in ®(S;") converging to u in Lﬁ, we have

0= lim STnlu(G)—Pj(O)lzdu(())

j—roo
= lim | k[S _Ju(AGr, )= P(A(r, O)Pw(Ar, §) ds“] dr.
jooo 9T T

After extraction of a subsequence converging pointwise a.e. to 0 on 7% and
taking into account the fact that, for a fixed 7, the function { — P;(A(7, {))
belongs to ®(T;"), it follows that, for a.e. 7€ T*, u_ belongs to the closure
of ®(T7") in L3, . Since, by (2.6), it satisfies

vPe®(Ti), | u(OPEw ) di=| Pd,

we conclude from the result of Helson and Lowdenslager [3, p. 171] that,
for a.e. Te Tk,

@.7) | e (P (D) d§=exp[—§r,,_klog w,(5) dr].

On the other hand, it follows from the proof of Lemma 2.3 that |u|*w = G- B,
a.e. on T", where Ge L}(T*). This implies that, for a.e. 7e T*, |u,|*w, =
G(7) a.e. on T"*, and thus we deduce from (2.7) that, for a.e. 7e T¥,

G(7) =exp [— [, o, (©) dr] = exp [— [, oilogw(A(r, ©) ds“],
which proves our assertion. (]

We can now state our extension of the Helson-Lowdenslager theorem in the
case of the half-space of lattice points Sji.
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THEOREM 2.5. Let pe M*(T") have Lebesgue decomposition p=w+ g,
where we LN(T") and p, is singular. Then

-1
(2.8) Py (p)= [STkexp [— ST,,_klog w(A(7, £)) ds“] dr] ;

where we use the convention that the right-hand side of (2.8) is zero if

G:rm exp[—g _klog w(A(7, {)) ds“]
Tn
does not belong to L'(T*).

Proof. If ®,(n) >0 then, using Lemma 2.3, we have ®,(x) =|u|32, where
u € M, satisfies (2.3). Proposition 2.4 yields

uBn=|_Ju@Pwo)do=| GBy@)as={ Grdr

- Lkexp[— ST,,_klog w(A(7, 1)) dr} dr,

where G € L(T*), and our assertion is thus proved in that case. If the in-
fimum is zero then G & LI(7%). This can be seen by considering the weights
e+w, where € >0, and using the first part of the proof. The details are left
to the reader. U

EXAMPLES 2.6. If n=2 and x,=(1,0), then we have S{ = {(m, n) € Z?,
m=0}, S={(0,n),neZ}, and k =1. We can choose v; =(0,1) and v, =
(1,0). Then A: (7, {) - ({, 7), and Theorem 2.5 reads

&, (1) = [ST exp [— ST log w(¢, 7) d;] d'r]

If n=2 and x,=(1, 1), then we have that S} ={(m, n) e Z>, m+n=0}, S=
{(—n,n),neZ}, and k=1. We can choose v; =(—1,1) and v, = (1, 0). Thus
A: (1, ¢)— (&, 7+ ¢) and, in that case, we have

~1
b, (p) = [ST exp[—ngog w(, 7+ ) dj‘} d’r] .

-1

3. The Prediction Problem for S5

In this section, we will consider the prediction problem for the half-space of
lattice points S§ = {v e Z”, {xy, v) >0}U{0}, where x,€ R” and x,# 0. We
assume again that S={ve Z", {xy, v) =0} {0}; our goal is to find an ex-
plicit expression for
() =@sp(w)=__inf | |1+P©O)]du(®)
pPe®@ST\0) T

in terms of pe MT(T"). We will use the same change of variable as defined
at the beginning of Section 2 as well as the same notations.
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DEFINITION 3.1. M, will denote the closure of ®(S5) in L2. If » e M(T*),
we will denote by v B, the element of M(T") defined by the identity

veeC(T™), | ,6(0)d(-B)O) = [ST,,_kqb(A(r,r))dr]dv(r).

Tk
We have the following lemma.

LEMMA 3.2. If ®,(n)>0 then there exists a measure ve M+ (T*) such
that |u|*u=veB, where u is the unique element in M, satisfying

(3.1) vPe®(S}), | PO)do={ u0)P@) duo).

Proof. The proof is similar to the first part of the proof of Lemma 2.3, and
is left to the reader. ]

REMARK 3.3. Let us notice that, in contrast to the situation in Lemma 2.3,
we can no longer state that the measure » appearing in Lemma 3.2 is actu-
ally in L'(T*), except of course when p is itself in L!(7¥) (see Example 3.7).

We will first consider the prediction problem for S5 in the case of a weight.

LEMMA 3.4. Let we LNT*) withw =0, and suppose that ®,(w) > 0. Then
the set {reT¥, frn-klog w(A(r, §)) d¢ > —oo} has nonzero Lebesgue mea-
sure on T* and

B0 = exp BTn_klog W(A(r, ) d;] dr.

Proof. Let ue M, satisfy (3.1) with p =w. By Lemma 3.2, there exists H e
LY(T*) with H=0 such that |u|*w= H-B,. Consider a sequence {P;};- in
®(SF) converging to u in L%,. We can write P; = P;(0) + Q,, where Q; €
®(S3\{0}). Using (3.1), it follows that (uw)"(s)=0 whenever s e S5 \[0}
and therefore that (u—Q_j—w)‘(s) =0 whenever s € Si". Hence, if Pe ®(Sj") we
have

|, Jul*©)P@)w) o

=lim | u(6)F;(@)P©@)w(6) do

j—oo©

= lim “Ttlpj(e) do STnu(o)ﬁTfﬁw(e) do+ STnu(a)Qj(e)Ww(a) dO}

Jj— oo

=iim (| B®) de) [, .u@OP@w ) do=lul3, | u@P@w) d.

Jo o

Therefore, for every P e ®(Si"), we obtain the identity

(3.2) |, 4OP@OWO) do=|ul53, |  PONH-B)(©) ab.
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In particular, for P = (P;B,)(P,°B,), where P, € ®(T*) and P, e ®(T"%),
after using the change of variable § = A(7, {) we have that

ST" [STH—-/( u(A(T, g'))F—Z(_g‘—)W(A(T, g‘)) dg‘]m d’T

=lul52, [an_kpz( ) d;] [XTkPI(T)H(T) dr],
from which we conclude, as in Proposition 2.4, that for a.e. 7€ T* we have
VPe®(T), | uOPEw ) & =lulsiHn | | P,

where we use the same notation as in the proof of Proposition 2.4. We
define C={re T*, H(r) =0]}. Let us first consider the case of a 7e T* for
which H(7)#0, that is, 7¢ C. Because (as can be easily checked) for a.e.
re Tk, u, belongs to the closure of ®(77") in L%,,T, it follows from the pre-
vious computation and the result of Helson and Lowdenslager [3, p. 171]
that, for a.e. 7¢ C,

6 [ P Om@ de=julzh @ |- [ logw ) ds |

If, on the contrary, 7€ C, then u, =0 a.e. on T"~*. Since }3j(0) converges
to |u]3 ,, as j— oo, it follows easily that the sequence {|u|3 ,,+ Q;},;50 con-
verges to u in L2,. We therefore obtain, after using the change of variable
0= (7, ), that

0=fim Lk[STn_klufm—nun%,w—Q,- (A7, DPw, (§) dr] dr.
After extracting a subsequence which converges pointwise a.e. to zero on T
and using the fact that, for a fixed 7, the function { — Q;(A(7, {)) belongs to
®(T;+\[0}), we obtain that, for a.e. 7€ T*, u,—|ul3 ,, belongs to the closure
of ®(T7*\{0}) in L}, . If 7€ C, this implies in particular that &z+(w,)=0.
Since 777\ {0} is a half-space in the sense of Helson and Lowdenslager, it
follows from their theorem [3, p. 171] that, for a.e. 7€ C,

[, _clogwi(§) df = —eo.

Hence we deduce that, for a.e. re T¥,

H(r)=|ul},, exp[gﬂ_klog w,($) dr}

this last equality following immediately from the previous computation if
re C, and from (3.3) if 7¢ C, using the fact that for a.e. 7€ T%, |u, [*w, =
H(7) a.e. on T"~*. We thus have that



Two Problems in Multidimensional Prediction Theory 185
[ul3, ., = STHI u(0)>w(0) do = LH(H»B])(G) do

=| H@dr=ul}, | ex [ST,,_klog W(A(T, §) ds“] dr,

from which it follows that the set {7 € T*, {;n-xlog w(A(7, ¢)) d¢ > —]} has
nonzero measure in 7% and that

By (w) =|ul32 = STk exp [STn_klog w(A(r, £)) d;] dr. O

COROLLARY 3.5. Let we LI(T*) with w=0. Then, with the usual con-
vention exp(—o) =0, we have

d,(w) = STkexp [STn_klog w(A(7, {)) di‘] dr.

Proof. If ®,(w)> 0, this is the statement of Lemma 3.4. If $,(w) =0 then
the conclusion is easily obtained by considering the weights e+ w, € > 0, via
a limiting argument. ]

We now have all the ingredients to solve the prediction problem for S5 in
the case of an arbitrary measure pe M+ (T").

THEOREM 3.6. Let pe M*(T*) and let {,).~ o be any approximate iden-
tity. Define, for € >0, the positive function G,e L'/(T*) by

G(r)= exp[an_k(1og nI(A(T, §) dr], re T,

where p. = p* ¢.. Then, if ®,(n) >0, G, converges to |uly%v ase— 0% inthe
weak* topology of M(T*), where u and v are defined in Lemma 3.2. On the
other hand, if ®,(p) =0 then G, converges to zero in L'(T*). Furthermore,
in both cases we have

(3.4) o) = do(n)=lim | G(r)ar,

where o denotes the weak* limit of G. in M*(T*) as e » 0.

Proof. If ®,(u) > 0then it is easily checked, as in the proof of (3.2) in Lem-
ma 3.4, that the following identity holds for every P € ®(S;):

|, 4@P@) du®) =lulz2 | PO dweB)0).

In particular, if P = P,°B; where P; € ®(T*), we have
|, 1O PB (0 dp(0) =[ul32 | Pi(Bi0) d(voB)(0)

=Julz} | ,Pi(m) dv(r),
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by definition of the measure veB,. Since P, is arbitrary in ®(T¥), it follows
that

3.5 véecm), | u@®eBi0)du®)=]ulz2 |  o(r)dv(.

Since ®,(u.) >0 by Lemma 1.1, there exists a unique element u,, belonging
to the closure of ®(S5) in Lf;f, that satisfies (3.1) with u replaced by u, and u
by u,. Since |u,[*n. =]u|3,, G. by the proof of Lemma 3.4, we obtain, by
the same argument as above, that

36 | u@eBO)p0) do=[ul,, | (G r)dr

for all ¢ € C(T*). It therefore follows from Lemma 1.1 and Lemma 1.3, using
(3.5) and (3.6), that lim,_, o G, =|u|3%» in the weak* topology of M(T*).
In particular, if ¢ =1, using Lemma 1.1 and Lemma 3.4 we obtain that

-1 -1

2 _ 2 _ —

el = lim Julf,, = tim | [ Gunyar| = do |

where o = |u|3%», which proves (3.5). If ®,(x) = 0 then, for a fixed e >0, we

have either that G, =0 a.e. on T* or that ®,(x.) > 0. In that latter case, it

follows from (3.6) that, for every ¢ € C(T*),

| (oG ar
T

=Julz, ST,,UE(B)(rbf’Bl)(H)pe(G)d0|

1/2
<2 ks 1ol [ o) |

1/2
=[‘I)z(ﬂe)]l/zuﬁb"w[STndlL(e):' .
We thus obtain that, for every ¢ >0,

1/2
vo e C(T*), Skab(T)Ge(T)drS[‘I’z(ﬂe)]l/z[STndﬂ(ﬁ)J [¢]s

this last inequality being trivial if ®,(u,)=0. This implies, by Lemma 1.1,
that G, converges to zero in LY(T*) as e— 0%, In that case, (3.4) is clearly
satisfied with 0 =0, and the theorem is proved. ]

EXAMPLE 3.7. The following example shows that the solution of the pre-
diction problem for S5 can depend upon the singular part of the measure u
considered. If n=2, let S§ = {(m, n), m>0,neZ} VU {(0, 0)} and suppose that
p has the form u = pu;® pu,, where uy, p, € M(T). We can choose an approxi-
mate identity {¢,} > on T2 of the form ¢, = ¢, . ® ¢, ., where {¢; J.>o and
{¢2 Je>0 are approximate identities on 7. In that case we can choose v, =
(0,1) and v, = (1, 0), and thus A(7, ¢)=(¢{, 7). Hence, if 7€ 7T,

Gu(ry=exp|[ o8 w) () | = exp| | log s 1,51 |tz % 2, ),
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and, using Corollary 1.2,

lim G, =exp [S log w;({) di’]#z
e—0 T

in the weak* topology of M(T), where w, denotes the absolutely continuous
part of the measure y;. Hence, using Theorem 3.6, we conclude that

D,(p) = eXPBTIOg wi($) df’] Srdﬂz(T)-

REMARK 3.8. A result of Kolmogorov states that, if pe M*(T¥) and p=
W+ pg, then ®z4(p) = (74 1/w(6) d6)~!, the harmonic mean of w, while, triv-
ially, ®;(n) = §7xdu(0), the arithmetic mean of u. Now, if one looks at the
explicit expressions for ®;(x) and ®,(u), one can see, at least when p, =0,
that they are obtained by computing a geometric mean in one set of variables
and then by calculating the harmonic mean of the result (in the case of ¢,)
or its arithmetic mean (in the case of ®,) with respect to the other variables.
This suggests, perhaps, that the methods presented in this paper might be ap-
plicable to other multidimensional prediction problems. For example, other
combinations of subsets of the “k-dimensional boundary” of the half-space
might be considered in the approximation process.
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