Boundary Behavior of
Derivatives of Analytic Functions
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Introduction

In this paper we study the boundary behavior of functions of the form
(1—1z|%)"f ™ (z); here f is an analytic function defined on the open unit disk
D in the complex plane and # is a positive integer. Many well-studied classes
of analytic functions arise from requiring functions of the above form to
have a certain growth rate. For example, the Bloch space ® is defined to be
the set of analytic functions f on D such that (1—|z|?)f’(z) is bounded on
D, and the little Bloch space ®, is defined to be the set of analytic functions
fon Dsuch that (1—|z|?)f’(z) — 0as |z]| — 1 (of course, z is restricted to the
values in D).

Let dA denote the usual Lebesgue area measure on the complex plane.
For p €[1, =), the Bergman space L# is defined to be the set of analytic func-
tions f on D such that

[ 1f1Pda<ew.

D

As is well known (e.g., see [2, Prop. 1.7]), if fe L} then

4)) f(r)y=— 1 S (lf( _))2 dA(w) for every zeD.

Equation (1) suggests that for fe L'(D, dA) (not necessarily analytic), we
define an analytic function P(f) on D by

PH@=1] L

It is useful to know the image under P of certain natural spaces. We begin
by noting that P restricted to L*(D,dA) is the orthogonal projection of
L*(D, dA) onto L2; furthermore, if p € (1, ) then Prestricted to L?(D, dA)
is a bounded projection of L?(D,dA) onto L? (see Theorem 1.10 of [2];
throughout this paper, we choose references most suited to our approach, so
the references are not necessarily to the original source).

dA(w).
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Table 2

Y P(Y)
1. LP(D,dA) (1<p <o) Lp
2. L*(D,dA) ()
3. C(D) &,
4. h>(D) BMOA
5. C(D)YNh=(D) VMOA
6. U ?

The images under P of some other spaces are listed in Table 2. We have al-
ready mentioned the result in line 1 of Table 2. Lines 2 and 3 of Table 2 state
that P maps L®(D, dA) onto the Bloch space ® and that C(D) is mapped
onto the little Bloch space 3, (see Theorem 2.7, Theorem 2.11, and page 22
of [2]); here and throughout the paper, if Q is a topological space then C()
denotes the set of continuous, complex-valued functions on Q.

In lines 4 and 5 of Table 2, #*(D) denotes the set of bounded, complex-
valued, harmonic functions on D. Also, BMOA and VMOA denote the usual
spaces of analytic functions in the Hardy space H? whose boundary values
have bounded mean oscillation and vanishing mean oscillation, respectively.

Let U denote the closed subalgebra of L*(D, dA) generated by the bound-
ed, complex-valued, harmonic functions on D (the product of two harmonic
functions is not necessarily harmonic, so £2°(D) is not an algebra). In sev-
eral contexts, U is much easier to work with than L*(D, dA). For example,
McDonald and Sundberg [10] used U to produce some striking results in the
theory of Toeplitz operators on the Bergman space.

Because the functions z and 7 are in U, the Stone-Weierstrass theorem
implies that C(D) C U; thus (by line 3 of Table 2) P(U) contains the little
Bloch space. In [2, p. 40], Axler raised the question of whether P(Ul) equals
the Bloch space. In the next section of this paper, we will prove (Theorem 6)
that an analytic function f lies in P(U) if and only if (1—|z|?)"f(z)e U
for every positive integer n. This description of P(U) will then be used (Cor-
ollary 11) to show that P(U) is a proper subspace of the Bloch space.

Let H*(D) denote the set of bounded analytic functions on D. The alge-
bra U is precisely the set of continuous functions on D that extend contin-
uously to the maximal ideal space of H*(D). The results in the next section,
when considered in light of this identification, lead to various questions that
are answered in the final section of the paper.

ACKNOWLEDGMENT. We thank Wade Ramey for helpful discussions.

The Algebra Generated by Bounded Harmonic Functions

In this section, we will attempt to fill in the last line of Table 2. Before we
can prove the main result of this section (Theorem 6), we need three lemmas.
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After proving Theorem 6, we will show (Corollary 11) that P(U) is a proper
subspace of the Bloch space.
The following lemma is well known; for example, see [6, Thm. 5.5].

LEMMA 3. Let f be an analytic function on D. Then the following are
equivalent:

(@) fe@;
(b) sup{(1—|z|»)".f"(z)|: z € D} < for every positive integer n;
(¢) sup{(1—|z|®)"|f " (z)|: z € D} < o for some positive integer n.

The following lemma gives a formula for representing an analytic function
as an area integral of its derivatives.

LEMMA 4. Let fe ® and let n be a nonnegative integer such that f has a
zero of order at least 2n at 0. Then

_ 1 (1—|w|?)"f “(w)
f(Z)_n!’n'SD (1—zw)2(w)"

dA(w)

for every z e D.

Proof. First we must show that the integral in the statement of the lemma
is well defined. Because f is in the Bloch space, Lemma 3 implies that the
numerator in the integral is bounded. For fixed z € D, the denominator in
the integral is bounded away from 0 except near w=0. Because f has a
zero of order at least 2n at 0, £ has a zero of order at least n at 0. Thus
| £ " (w)/w"]| is bounded near w=0, and so the integral is well defined.

Let g be the analytic function on D defined by

1 S (1=|w[})"f "(w)
D

nlw (1—zw)%(w)"

g(z)= dA(w).

Let m be a nonnegative integer. By differentiating under the integral sign,
we see that the formula for the mth derivative of g is given by

(m+1)! (1=|w[»)"f D (w)
(1) —
g (2= nlz SD (1_zw)m+2(w)n—-mdA(w)
for z € D. In particular,
_ 2\n g(n)
g(m)(O)z(m—'H)!S A= PYS ) 4
n.,n- D (w)n m

Assume temporarily that f is analytic on a neighborhood of D. In the
above integral, replace f(w) with its power series expansion

o J
T S0,
j=n J:
interchange the summation and the integral, and change to polar coordi-
nates, yielding



132 SHELDON AXLER & KEHE ZHU

0 if m<an,
g"(0)=+4 (m+1)!125"(0)
n!(m—n)!

1
S (l__rZ)nr2m—2n+1dr if m=>n.
0

The last integral can now be computed by making the change of variables
t =r? and then integrating by parts m — s times; this yields

g"(0)=s"(0)

for every nonnegative integer m. Thus f =g, as desired.

Now remove the assumption that f is analytic on a neighborhood of D.
Let r € (0, 1). Applying the result from the previous paragraph to the func-
tion whose value at z is f(rz), we have

1 S (1=|w[H"f D(rw)r"
D (1—zw)2(w)"
for every ze D. Now (1—|w|?)"|f ™ (rw)| = (1—|rw|?)"|f " (rw)|, and the
latter quantity is a bounded function of w and r (by Lemma 3), so we can let

r increase to 1 and apply the Lebesgue dominated convergence theorem to
conclude that

flrz)= dA(w)

1 S 1A=|w»)"f “(w)
D

S = o a=zmzmyr 24AM)

for every z € D, completing the proof. l

For w, z € D, the pseudohyperbolic distance from w to z, denoted d(w, z), is
the metric on D defined by d(w, z) =|b,,(z)|, where b,, is the MObius trans-
form from D onto D defined by

w—2

bu(z) = 1—wz "~

LEMMA 5. Let he U and let e > 0. Then there exists 6 >0 such that
|h(b,(N\))—h(b,(N'))|<e forall zeD
whenever \,N'€ D and d(\,\') <é.

Proof. By Lemma 4.4 of [8], ‘U is the closed subalgebra of L*(D, dA) gen-
erated by H (D) and the complex conjugates of H (D) functions. By Lem-
ma 4.6 of [2], each H®(D) function is uniformly continuous as a map from
D (with the pseudohyperbolic metric) to the complex plane C (with the usual
metric). Thus each function in U also has this property. Finally,

d(b,(N), b,(N)) =d(\,\)

for all z, \, N e D (see [7, Chap. I, Lemma 1.2]), and so the uniform con-
tinuity of 7€ U (as discussed above) gives the equicontinuity of the family
{heb,: z € D}, as desired. l
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The following theorem is the main resuit of this section. Because ‘U contains
all bounded harmonic functions on D, the following theorem, together with
line 4 of Table 2, shows that if fe BMOA then

(1-z»)fMz)eu

for every positive integer n. For functions f in H*(D), this result was proved
by Hoffman [8, Thm. 4.5 and Lemma 4.4]).

The corollary in [11, p. 254] states that U may be replaced by L?(D, dA)
(for 1< p <) in statements (a), (b), and (c) of Theorem 6. Thus the fol-
lowing theorem demonstrates one sense in which U is a good replacement
for L*(D,dA).

THEOREM 6. Let f be an analytic function on D. Then the following are
equivalent:

(@) feP(U);

(b) (1—|z]*)"f ™(z) € U for every positive integer n;

(© (1—=|z|)"f")(z) € U for some positive integer n.

Proof. First suppose that (a) holds, so there exists g € U such that f= Pg.
Thus
1 g(w)
=—\| ————dA
JR)=7 SD (—zmw)2 4A0)
for every z € D. To prove that (b) holds, let n be a positive integer. Differ-
entiating both sides of the above equation # times, we have

(n+1)! S g(w)(w)"
D (1—zw)n+2

for every z € D. For convenience, let #(w)=g(w)(w)", so he U. Make the

change of variables w =b,(\) in the above integral (here \ is the new vari-

able, because z is fixed in the integral), so that dA(w) =|b.(\)|>*dA(N), and

the above integral formula becomes

(n+1)! S (1—zX)"+2
D |1—z\|*

f(z2)=

dA(w)

(7) (1—|z[»)"f"(z) =

for every z € D.
For z,ANe D, let

h(bo(\)dAN)

(n+1)! (1—z\)"+?

iz M= [E=NE

h(b-(N),
so that
®) A=lzPyr @)= HzNdan

for every z € D.
Let e > 0. We claim that there exists 7 € (0, 1) such that

®

<e forevery zeD.

S H(z,\)dA(\)
D\tD
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If n =2 then H is bounded on D X D, and the claim is clearly true. To verify
the claim when n =1, note that the function sending w to (1—w)~"/?is ana-
lytic on D, so we have a power series expansion

1
—(1 W72 E a; w/
for we D. Thus, if ze D we have
L _$ 0o
(1—2!'6’0)1/2 =0 J

for all r € (0,1) and all real 6. Thus, if ze D and r €(0, 1), then

=f2wmdo.
Thus, if £ €(0,1) and z € D, then
SD\tD |1—IZ)\| dA(M:Szlrsswmdgdr—Sl rwmdﬁdr
(10)
| Ilikl dAQN).

The function that sends X to 1/[1— )| is integrable on D (as is easily verified
by changing to polar coordinates based at the point 1), so the above inequal-
ity shows that there exists 7 € (0, 1) such that

S dA(N) <e forevery zeD.

D\tD |1—z)\|

If n=1 then |H(z,\)| is bounded by a constant (independent of z and \)
times 1/|1—Z\|, so the above inequality establishes the claim made at the
beginning of this paragraph.

By Theorem 4.5 and Lemma 4.4 of Hoffman’s paper [8], if Fe H*(D)
then F(b,(N)) (as a function of z) is in U for every A € D. Because 4 is in the
norm closed algebra generated by H (D) and the complex conjugates of
H®(D) functions, we conclude that 4#(b,()\)) (as a function of z) is in U for
every Ae D.

Lemma 5 implies that the map from D to U that sends \ to A(b,(N)) is
continuous as a map from D (with the pseudohyperbolic metric) to U (with
its usual sup-norm metric). Because the topology induced on D by the pseu-
dohyperbolic metric is the same as the usual topology on D, the map from D
to U that sends A to A(b,(N)) is continuous as a map from D (with the Eu-
clidean metric) to U (with its sup-norm metric).

Thus the map from the compact set D to U that sends A to H(z, \) is uni-
formly continuous, so there exists 6 > 0 such that, for every z € D, we have
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|H(z,\)—H(z,N)|<e whenever \,NetD and |\—N\|<8.

Write ¢D as a disjoint union of non-empty measurable sets E|, ..., E,,, where
each E; has diameter less than 6. For each j, choose a point \; € E;. Then

m
SID H(z,\)dA\) — 3 H(z,\)A(E))
ji=1
Thus the above inequality, along with equality (8) and inequality (9), shows
that

<we for every zeD.

m

|(1—|z|2)”f(")(z)— H(z,\)A(E;)|<(1+m)e for every zeD.
~1

J
The function
m
ji=1
is in U; thus (1—[z[*)"f“)(z) € U, and so (b) holds, as desired.
Clearly (b) implies (c).
Now suppose that (c) holds, and let n be a positive integer such that
(1=|z[)"f "M(z) € U.

To prove that (a) holds, define functions g and # on D by

2 £0) _ % () _
gx)=% / .(O)z’, h(z)= X A .(0)2’,
j=o0 J! j=2n+1 J!

so f=g+h. Clearly (1—|z|*)"g"™(z) e U, so (1—|z]|*)"h")(z) € U. Let
(1—|z|?)"h")(z)
s(z)= — .
n!(zZ)"

Clearly s is the uniform limit of functions of the form

(1=[2])"h"(z)

n! (zZ)"

where Q € C(D) is identically 0 on a small neighborhood of the origin and
is identically 1 outside another small neighborhood of the origin. Because
(1—1z|*)"h")(z) € Wand Q(z)/(Z)"€ C(D) C U, we see that s € U. By Lem-
ma 4, we have A= P(s). Thus f=g+ P(s)=P(g+s),and so fe P(‘Ul). Thus
(c) implies (a), and the proof of the theorem is complete. L]

0(z),

We can now answer the question mentioned in the introduction.
COROLLARY 11. P(U) is properly contained in the Bloch space G.

Proof. Let f be the analytic function on D defined by

f@)=3 2"

n=1

By Lemma 2.1(b) of [1], fe B. We will show that f¢ P(U).
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Suppose that fe P(U). Then by Theorem 6, the function (1—|z|?)f’(z) is
in U. The function z/(1+|z|) is continuous on the closed disk and thus is in
U; multiplying (1—|z]*)f’(z) by z/(1+]z]), we see that (1—|z|)zf"(z) € U,
Because U is the algebra generated by the bounded harmonic functions, and
because every bounded harmonic function on D has a nontangential limit
at almost every point of 3D, we conclude that (1—|z|)zf’(z) has a non-
tangential limit at almost every point of dD. To complete the proof, we will
show that this last statement leads to a contradiction.

Note that

(1—|z\)zf'(z)=(1-]z|) §_Iln!z"’.

For each positive integer N, let

If N=2, then

N—1 '
(1—=rn) gln!("N)”'=

< NI!—((N—?.)(N—Z)! +HN=1)!)< %

and so
N—1
(12) (1—ry) S nl(ry)* >0 as N— oo,

n=1

Also, if N=1 then
o o0 ! N!qnl/N! oo ' 1 n!/N!
(I-ry) X nlr)"= 3 ° [(1_7\(1—1> ] = X Z [ ]

n=N+1 n=nN+1N! n=n+1 N | e
= ) k[—],
k=N+1 L€

where the last inequality holds because, for each n=N+1, n!/N! is some
integer greater than or equal to N+ 1. The last series above converges, and so

(13) (I=ry) S nl(ry)™ -0 as N-o oo,
n=N+1

Now let ¢ € dD. If N is a positive integer greater than 1, then
(A=|rnSDrnsf (rnd)

=(1—ry) 3 0t (ry)™

n=1

N—1 \ I N! \ o) \
(=) 3 n!(rNs“)"-+<1———) V(=) S nl ()™

n=1 N! n=N+1
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By statements (12) and (13), the first and third terms above tend to zero as
N — oo, The absolute value of the middle term tends to 1/e. Thus if { € dD
is such that (1—|z|)zf’(z) has a nontangential limit at ¢, then this limit is
nonzero, and so f’ must have a nontangential limit of co at ¢. Thus f" hasa
nontangential limit of oo at almost every point of dD. However, by Privalov’s
theorem (see [5, Cor. 1 to Thm. 8.1]; replace f by 1/f to obtain the version
needed here), no analytic function can have a nontangential limit of co at
almost every point of dD. This contradiction completes the proof. Ol

The Maximal Ideal Space of H*(D)

Let O denote the maximal ideal space of H (D). Thus 91 is the set of multi-
plicative linear functionals from H (D) onto the complex numbers C. With
the usual topology (the weak-star topology that I inherits as a subset of the
dual of H*(D)), I becomes a compact Hausdorff space. We will think of
the disk D as a subset of M by identifying each point of the disk with the
multiplicative linear functional of point evaluation. The topology that D
inherits as a subset of 91 coincides with the usual topology on D.

Lemma 4.4 of [8] allows us to identify U with C(IM) in the following
manner:

A complex-valued function u defined on D is in U if and only if u can
be extended to a continuous, complex-valued function defined on .

Carleson’s corona theorem (see [7, Chap. VIII]) states that D is dense in
I, so if a function ¥ on D has a continuous extension to 9 (or any sub-
set of M) then the extension is unique. We will denote a function ¥ on D
and its continuous extension to any subset of 9 by the same symbol .

Theorem 6 and Corollary 11 from the previous section show that if # is
a positive integer, then there is a function f in the Bloch space such that
(1—|z|%)"f™(z) cannot be extended to a continuous function on 9. But
Theorem 16, our first major result in this section, states that (1—|z|*)"f“(z)
extends to a continuous function on a large subset of I for every function
f in the Bloch space and every positive integer n. This large subset of 9 is
the set of nontrivial Gleason parts (defined below). Theorem 17, our second
major result in this section, states that if (1—|z|?)"f “)(z) has a continuous
extension to some trivial Gleason part of 91T, then the value of the extension
at this trivial Gleason part is 0.

For ¢ € 9, the Gleason part of ¢ is defined to be the set of all 7 € M such
that

sup{|7(f)|: fe H®(D), f(D)C D, and o(f)=0}<1.

The Gleason part of ¢ is called nontrivial if it contains more than just o.
We define G to be the union of all the nontrivial parts in 9\ D. Hoffman’s
paper [8] contains several remarkable descriptions of the Gleason parts of
M. In particular, G is a dense open subset of M\ D (see [8, pp. 89, 102];
note that our DUG is equal to Hoffman’s G).
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The topological space DU G (which of course has the topology it inherits
as a subset of 90 is not compact. Nevertheless, the following proposition
states that every complex-valued, continuous function on DU G is bounded.
In this connection, we note that although DU G is not a closed subset of N,
it is a sequentially closed subset of 91T (see [3, Cor. 9]).

The proof of the following proposition will use the connection between G
and interpolating sequences discovered by Hoffman. Recall that a sequence
(z,)m=1in D is called interpolating if, for every bounded sequence («,);—; C
C, there exists fe H*(D) such that f(z,) = «, for every n.

PROPOSITION 14. Let ue C(DUG). Then u is bounded on DUG.

Proof. Suppose that u e C(DUG) and that « is unbounded on DUG. By
the corona theorem, D is dense in DUG. Thus u is unbounded on D, and
so there is a sequence (z,);—; in D such that |u(z,)| — o as n— c. Clearly
we must have |z,| — 1 as n — . Dropping to a subsequence, we can assume
without loss of generality that (z,,);,= is an interpolating sequence (see [6,
Thms. 9.1 and 9.2}), so (z,);=; has a limit point ¢ € G [8, Thm. 5.5]. The
continuity of # on DU G now implies that |u(¢)| = oo, which is nonsense be-
cause u is supposed to be a complex-valued function on DU G. This contra-
diction completes the proof. L]

We need the following lemma to prove Theorem 16. Here and throughout
the paper, when we write that a function on D is in C(DUG), we mean that
the function has a continuous, complex-valued extension to DUG.

LEMMA 15. Let u be a bounded, continuous, complex-valued function on
D such that

u(w)—u(z)

sup[(l—-lz|2)limsup :zeD} < o0,

w—Z

Then ue C(DUG).

Proof. In Theorem 4 of [4], Brown and Gauthier proved that a normal
meromorphic function on D can be extended to a continuous function on
DUG with values in the Riemann sphere CU {o}. Although Brown and
Gauthier restrict their attention to normal meromorphic functions, the only
property of such functions that they use in their proof is that each normal
meromorphic function is uniformly continuous as a map from D (with the
hyperbolic metric) to the Riemann sphere (with the chordal metric); see [4,
Lemma 2]. We have assumed that u is bounded, so no continuous extension
of u to a function on DU G with values in CU {oo} could take on the value
co. Thus to complete the proof we need only show that # is uniformly con-
tinuous as a map from D (with the hyperbolic metric) to the Riemann sphere
(with the chordal metric). This statement follows immediately from our hy-
pothesis on ¥ and Theorems 1 and 3 of Lappan’s paper [9]. CJ
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The following theorem should be compared to Theorem 6 in the previcus
section, identifying U (in parts (b) and (c) of Theorem 6) with C(91).

THEOREM 16. Let f be an analytic function on D. Then the following are
equivalent:

(@) feG;
(b) (1—(z]*)"f"(z) e C(DUG) for every positive integer n;
© (1—|z]?)"f " (z) e C(DUG) for some positive integer n.

Proof. First suppose that (a) holds, so that fe &. To show that (b) holds,
let n be a positive integer. Define a function ¥ on D by

u(z)=(1-|z>)"f"(z).
Thus u is a bounded continuous function on D.
We now show that u satisfies the hypothesis of Lemma 15. Let z € D. Then
u(w)—u(z)

lim sup
w—z

w—Z

S Pw) =)

<lim sup(1—|w|*)"

wo 2z w—2
1— 2\n _ 1— 2\n
+|£ " (z)|lim sup (= w]Ty" = (=2 ]) ’
w—oZ w—2

(l_lwIZ)n__(l_IZIZ)n

=(1—|z)»"| ") +|f " (z)|lim sup =

w—2

5(1—IZIZ)nlf(n+1)(Z)I+2n(1“‘|Z|2)”_1|f(n)(2),.

Thus
u(w)—u(z)

— s(l_lz|2)11+l|f(n+l}(z)|

+2n(1—|z%)"| f"N(z)),

and by Lemma 3 the right-hand side of the above inequality is bounded by a
constant independent of z € D. Thus, by Lemma 15, we see that

(1—|z|*)"f"Nz) e C(DUG),

completing the proof that (a) implies (b).
Clearly (b) implies (c).
Now suppose that (c) holds, so that there is a positive integer » such that

(1—z|»)"f"Nz) e C(DUG).

By Proposition 14, (1—|z|?)"f ™) (z) is bounded on D, which implies by Lem-
ma 3 that fe @, proving that (c) implies (a) and completing the proof of
the theorem. U

(1—1z|?)limsup

W2

We say that ¢ is a trivial Gleason part of 9Uif the Gleason part of ¢ contains
only ¢. Theorem 16 says that for every Bloch function f and every positive
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integer n, the function (1—|z|%)"f "(z) can be continuously extended to the
nontrivial Gleason parts. The function (1—]|z|?)"f “)(z) may extend contin-
uously to some other points of . The following theorem says that when
this happens, the extension equals 0 on every trivial Gleason part on which
the extension is defined. Theorems 6 and 17 combine to say that if fe P(U)
(in particular, if fe BMOA) and # is a positive integer, then

(1-]z|)"f"(z)=0

on every trivial Gleason part of 9.

For ¢ € M, ceC, and u a function on D, the statement that lim, _, , u(z)
exists (and equals ¢) means that # has an extension to a continuous, complex-
valued function on DU {¢} (and that this extension equals ¢ at ¢).

THEOREM 17. Let fe ®, let n be a positive integer, and let ¢ be a trivial
Gleason part of M. If lim,_, ,(1—|z|*)"f "(z) exists, then

lim (1—-|z])*f®(z)=0

-0

Jor every positive integer k.

Proof. Suppose that lim, _, ,(1—|z|*)"f“)(z) exists. By subtracting a poly-
nomial from f (which affects neither the hypothesis nor the conclusion), we
can assume without loss of generality that f has a zero of order at least 2n
at 0.

Define a function g on D by

(A=|w?)"f "(w)
(w)" '
By Lemma 4, f = Pg. Let k be a positive integer. From formula (7) we obtain
(k+ 1) S (1—zN)k+2
D |1—z\|*

where # is the function on D defined by A(w)=g(w)(w)X. Note that 4 is
bounded on D (by Lemma 3). Let

gw) =~
n.

(1—]z|H* R (z) =

h(b(N\))dA(N),

c=lim A(z);
Zo0p

the above limit exists because lim,_, (1 —|z|2)"f(”’(z) exists.
Let € >0. Then, as shown by inequality (9) and equality (8) (with » re-
placed by k), there exists f € (1—¢, 1) such that

(k+1)!g (1—zX)k+2
i |1—2z\]*

(1—|z])*f ®)(z) — h(b.(N\)dAN)|<e

for every z € D.
We claim that there is an open set £ of O containing ¢ such that

|z|>1—¢ for every ze END



Boundary Behavior of Derivatives of Analytic Functions 141

and
|h(b,(N\))—c|<e forevery ze END and every NetD.

To prove this claim, note that {7 € DU{¢}: |h(7) —c| <€} is an open subset
of DU{¢e]} containing ¢. This open subset of DU({¢} is equal to an open
subset of I intersected with DU [¢}. Because of the manner in which the
topology on M is defined, this means that there are finitely many functions
815 ---» &n € H*(D) such that ¢(g;) =0 for each j and

fzeD:|g;(z)|<eforeachj}C{zeD:|h(z)—c|<e}.

Because ¢ is a trivial Gleason part, Theorem 5.5 of [8] shows that, for each
\NeD,

lim b,(N\) =¢;

z—e
here we are taking the limit in 9, so b,()\) is thought of as the multiplica-
tive linear functional on H (D) of point evaluation at &,(\). The last sen-
tence implies that for each \ € D there is an open subset E), of I such that
g€ E) and

lg;(b,(\))|<e forevery jell,...,m] and every ze E\ND.
Thus there is an open subset E of )N such that ¢ € E and
Igj(bz(x))|<e for every jefl,...,m}, every ze END, andevery A€ (D;

to see this, cover D with a finite number of pseudohyperbolic disks with
small pseudohyperbolic radii, let £ be the intersection of the E\’s corre-
sponding to the pseudohyperbolic centers of these disks, and apply Lemma 5
to each g;. If necessary, replace E by the smaller set E\{zeD:|z|<1-¢]
to obtain a set E satisfying the claim.

Now
(k+1)! (1—zX)*+2
| 12Yk K)oy —
1=z M(z) CS(D [1—zX[* dA()\)’
<e<l+ (k:”! S’Du—zmk-sz(x))

for every z € EN D. The integral on the right-hand side of the above inequal-
ity is bounded by #2%~2if k=2 and by

_1

SD [1—\] dAM)

if k =1 (see the derivation of inequality (10)). As noted after inequality (10),
1/|1—\]| is integrable on D, so regardless of the value of &, we see that for
every z€e END,

(k+1)! (1—zN)+2
|

N P PAY. 9709 Fon
(1= z[H%f ®(z) o =K AN
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is bounded by a constant (depending only on k) times e. Thus, to complete
the proof we need only show that

5 (1—zR)F+2
tD

[

is small for every ze END.
Replacing the denominator in the last integral with (1—2zN\)?(1—2\)?, we
see that s o
(1—zX)** (1—2\)
LT a0 =§ ST dAN).
S:D |1—2zN|4 (A) D (1—2Z\)? (A)
Now make a change of variables A = tw; we see that the complex conjugate
of the last integral equals
2 S (1—rzw)*

D (1—1tzw)? dAw),

and that by equation (1) this integral equals 7z?(1—¢?|z|*)*. Because ¢ €
(1—¢,1) and |z| € (1—¢, 1) for every z € EN D, we see that

lim (1—|z]*)*f ©(z) =0,

P

completing the proof. ]

Let § denote the ideal of C(IM) consisting of those functions in C(9T) that
vanish on every trivial Gleason part of 9. The ideal g plays an important
role in the theory of Toeplitz operators on the Bergman space; see [10, Thm.
6]. Because U can be identified with C(91), we can think of g as an ideal of
U. The following corollary states that even though g is strictly smaller than
U, the sets P(U) and P(Y) are equal.

COROLLARY 18. P(U)=2P(9).

Proof. The ideal g is contained in U, so clearly P(g) C P(‘U).

To prove the other direction, let fe P(‘Ul). Let g be a polynomial of de-
gree 2 such that f—g has a zero at 0 of order at least 2, and let A= f—g.
Theorem 6 now implies that (1—|z|*)4’(z) € U, and so Theorem 17 implies
that (1—|z|*)h’(z) € . Thus

(1-|z[)h'(z)
— €
z

_ AY N
h___P((l lzl_)h (z)>’

rd

g.

By Lemma 4,

so he P(9). Easy calculations, which we leave to the reader, show that
P(1—|z|) is the constant function 1/3, that P(z(1—|z])) is the function z/3,
and that P(z%(1—|z|)) is the function z2/21. Hence every polynomial of de-
gree 2 is in P(g). Thus f, which is equal to h+g, is in P(Y), completing
the proof. O
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