Interpolating Blaschke Products
and Factorization in Douglas Algebras

PAMELA GORKIN! & RAYMOND MORTINI?

Introduction

The following problem of Guillory, Izuchi, and Sarason is proven: Let B be
a Douglas algebra and let # be a unimodular function in B which does not
vanish identically on any nontrivial Gleason part in B. If g is a function in
B whose zero set contains that of «, then u divides g”¥ for some Ne N. By
using function-theoretic methods we shall also generalize a recent theorem
of Tolokonnikov on zero sets of ideals in H*.

Let H* be the Banach algebra of all bounded analytic functions in the
open unit disk D ={z € C:|z| <1} and let M(H *) denote its maximal ideal
space. For m,xe M(H®>), let p(m,x)=supf|f(x)|: f(m)=0, |f|=1} de-
note the pseudohyperbolic distance of the points m and x in M(H™). By
Schwarz-Pick’s lemma, p(z, w) =|(z—w)/(1—2zw)| if z, we D. Let

P(m)={xeM(H%): p(m,x) <1}

be the Gleason part of m e M(H ). Defining m to be equivalent to x, m~ x,
if p(m, x) <1then one can show [4, p. 402] that ~ is an equivalence relation
in M(H ). Thus the Gleason parts of two points are either disjoint or equal.

A Gleason part P is called an analytic disk if there exists a continuous, bi-
jective map L of D onto P such that f-L is analytic in D for every fe H®,
where f denotes the Gelfand transform of fe H®.

In his famous paper [8], Hoffman showed that any Gleason part P(m) in
M(H ®) is either a single point or an analytic disk. Moreover, the latter oc-
curs if and only if m e D or lies in the (weak-*-) closure of an interpolating
sequence in D, that is, in the closure of a sequence {z,} satisfying

inf [I p(z4s2)=6>0.

meN neN
n#Em

This leads us to the following definition.
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Let G denote the set of all points in M (H *) whose Gleason parts are ana-
lytic disks. As in Hoffman [8], the elements of G will be called nontrivial
points.

The set of points in M(H ) whose Gleason part reduces to a single point
is denoted by S, and its elements are called trivial points. By Hoffman’s theo-
rem we have M(H *)=GUS, where G is an open and S a closed set in the
weak-*-topology of M(H ).

If {z,} is an interpolating sequence in D, then the associated Blaschke
product b given by
= Zn 2,2

b(z)=1]1

n=1 |zn] I—an

, zZ€D,

is called an interpolating Blaschke product (where Z,,/|z,|=1if z,=0).

Now let (z,,) be any p-separated sequence in D, that is, a sequence satis-
fying p(z,,2,,) =6 >0 for n # m. Then each z,, is a nontrivial point, and it is
easy to see from well-known theorems on interpolating sequences that there
exists an interpolating Blaschke product which vanishes on a subsequence
of (z,,) (see [7, p. 204]). It is now a natural question to ask whether a similar
situation holds for sequences of nontrivial points in G. In the first part of
this paper we shall give an answer.

Let L™ denote the space of essentially bounded Lebesgue measurable func-
tions on the unit circle dD. A Douglas algebra is a uniformly closed subalge-
bra of L™ containing H *. For a Douglas algebra B, the maximal ideal space
M(B) of B can be viewed as a compact subset of M(H *) (see [4, p. 375]).
We shall also identify a function in B with its Gelfand transform. In a recent
paper of the first author, the following result is proven.

THEOREM 0.1 ([5, Thm. 1]). Let f be a function in H* which does not
vanish on any trivial part in M(B). Then f can be factorized in a product
S=0byby---bng, where b; (j =1, ...,N) are interpolating Blaschke products
and where g € H® is invertible in B.

In Section 2 we shall present an extension of this result to ideals in A . In-
cidentally we obtain an extension of a result of Tolokonnikov [14], whose
operator-theoretic methods do not seem to work in the present context of
Douglas algebras.

Finally, in Section 3 we answer a question of Guillory, Izuchi, and Sara-
son [6] on the divisibility structure of Douglas algebras. To this end we show,
by using results of Section 1, that if b is a Blaschke product which does not
vanish identically on any nontrivial Gleason part contained in M(B), then
b actually satisfies the assumption of Theorem 0.1. This enables us then to
give a complete solution to the problem of Guillory, Izuchi, and Sarason.

This work was done while the first author was on sabbatical at the Uni-
versity of Bern. Some part of it was written when the second author was
visiting the University of Wisconsin in Madison. We thank these universities
for their support.
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1. Sequences of Nontrivial Points in H*

It is well known ([7] and [8]) that if (z,,) is a sequence in D then there exists
at least one cluster point of (z,)) whose Gleason part is nontrivial. Theorem
1.2 now will generalize this fact to an arbitrary sequence in G. To prove it,
we need the following notation and lemma.

Let Z(b) = {me M(H>): b(in) = 0} denote the zero set in M(H™) of
a Blaschke product b. Finally, for a set £E S M(H®) and xe M(H), let
p(x,E)=inf{p(x,m): me E}.

LEMMA 1.1. Let (¥,) be a sequence of nontrivial points in M(H®) and
let 0 < o< 1. If there exists a closed set E of nontrivial points such that
o(Yk, E) <nq for every k € N, then there exists a cluster point of (y,) whose
Gleason part is nontrivial.

Proof. By hypothesis, for every n there exists a point x, € E such that
p(Xp, Yu) < 1. Let x be any cluster point of (x,), say X, — x for some net
n(c). By taking subnets we may assume that y, ) converges to a point y €
M(H®). Since p is lower semi-continuous [8, p. 103], we get p(x, ) <1y.
But x € E is a nontrivial point, and since y € P(x), y is nontrivial, too. [J

HOFFMAN’S LEMMA ([8, pp. 86, 106]; see also [4, p. 404]). Let0<d<1
and 0 <n<(1—~/1—62)/8; that is, 0<n< p(8,n) and let
6—n
1-6y
If b is any interpolating Blaschke product with zeros z, such that 6(b) =
inf,cn(1=|2,]%) |6 (2,)| = 8, then

(me M(H%):|b(m)| <€) S kéJ(b){meM(H“ﬁ p(m,y) <n}.
ye

Later on we will need to use the facts that 0 < (1—+/1—62)/6 < é is a mono-
tone increasing function of 6 e(0,1) and that e <5< 6. These are easy to
check.

We are now ready to prove the following theorem.

e=¢€(6)=

7.

THEOREM 1.2. Let (y,) be a sequence of nontrivial points in M(H*).
Then there exists a cluster point of (y,) whose Gleason part is nontrivial.

Proof. If there are infinitely many y, in D, then we are done by the remarks
above. Solet y, e M(H®)\D forall ne N. Let 0 <e, <1satisfy II;-,¢,>0.
Choose 6, and %, as in Hoffman’s lemma so that ¢(é,) > ¢, and 5, is in-
creasing.

We shall now construct inductively a subsequence {yx,} of {y,} and a se-
quence of interpolating Blaschke products b, with b,(yx,) = 0 such that b,, is
“large” on the zero sets of the preceding b; and such that the preceding b;
(j=1,...,n—1) are “large” on the zero set of b,,.
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Step 1. Choose an interpolating Blaschke product b, with zeros z;  such that

1) by(y1)=0.

Using another result of Hoffman [4, p. 407], we can factor b, to make 6(b,)
as large as we wish. Thus we may assume

@ 5(by) >,

and

3 S (-lzeah <.
k=1

Step 2. Let y; = y,. Now every point in Z(b;) is nontrivial. Thus, by Lem-
ma 1.1 we may assume that there exists a point yx, such that p(y«,, Z(b,)) >
n,. Since for a compact set £ S M(H ) the function x~ p(x, E) is lower
semi-continuous on M(H*) (see [8, p. 103]), there exists a neighborhood
U, of yk, such that p(U,, Z(b,)) > 1.

Now let b, be an interpolating Blaschke product with zeros z; , which
satisfies

(1) by(Yk,) =0 and Z(b,) SUy;
(2) 6(b3) > 6,
(again by using Hoffman’s result [4, p. 407]); and

> 1
3) 3 (-laa < 55

Since p(Z(b,), Z(b;)) > n,> 1, by Hoffman’s lemma we obtain

|by(m)|>e, for every meZ(bI‘)
and
|by(m)|>¢, for every me Z(b,).

Step n. Let us assume that b, b,, ..., b,_; have already been constructed.
By Lemma 1.1, we may assume that there exists a point yx_such that

o (1 U 22)> .
By lower semi-continuity, there exists a neighborhood U,, of yx, such that
p(UJL;Jj 20) >
We remark that the fact that {»,} is increasing implies p(U,, Z(b;)) > »; for
Jj=1...,n—1.

As above, we can find an interpolating Blaschke product b, with zeros
Zk,n and satisfying

) ba(,)=0 and Z(b,)SU;



Blaschke Products and Factorization in Douglas Algebras 151
(2) 6(b,) = 6,;

3) D u—lzk,nns%.
k=1

Since p(Z(b,), Z(b;)) > n,> n;, by Hoffman’s lemma we have that

|bj(m)|>¢; for every meZ(b,) (j=1,2,...,n—1)

and
n—1

|b,(m)|>e¢, forevery me Ul Z(b)).
J —1
This concludes our construction.

Now let b=T1I;_;b,. Since X7 1(1—|zx |) =1/2", the product converges
uniformly on compact subsets of D to the Blaschke product with zeros
{2k, n}k, nen- We shall show that b actually is an interpolating Blaschke prod-
uct.

Let 2z, ; be a fixed zero of b; and let m > j. Then

(41) e

m

= (1—|zx, ;1) |6}z, )] H |5, (2, )|

n#j

(1—|zx, ;1%

m

>6 Hen Hen Hen

n=1

( -4 n) (zk,j)

n#J
(Here we have used the fact that §; = ¢;.) Since

(1_;ijl )|b (Zk_])l_ lim (1'—

Hl1— oo

we obtain
6(b)= ] e,-
n=1

Thus b is an interpolating Blaschke product which vanishes at each yx, .
Since M(H ) is compact, there is a cluster point of {y }. Since b vanishes
on any cluster point, by [4, Lemma 3.3, p. 379] and Hoffman’s theorem [8,
p. 101], any cluster point {y,} is nontrivial; this concludes the proof. ]

2. Zero Sets of Ideals in H®

In Tolokonnikov’s recent paper [14, p. 94] it is proven that if 7 is an ideal in
H* whose zero set does not contain any trivial point in M (H *), then I con-
tains a Blaschke product b of the form b= b,--- by, where b; (j =1, 2, ..., N)
are interpolating Blaschke products. By using different methods we are able
to give an extension of this result to Douglas algebras. This will be done in
Theorem 2.3. We begin with some relevant definitions.

Let B be a Douglas algebra and let fe B. Then

Zp(f)={me MB): f(m) =0}
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denotes the zero set of fin B. The hull or zero set of an ideal 7 in B is the set

Zg()= (N Zp(f).
feB
If B=H®™, then we omit the subscript.
For an ideal 7 in H®, the set

n
IB= { figi: fiel, g;e B, neN}
i=1
is the ideal generated by 7 in B. Obviously we have Zz(IB)=Z(I)NM(B),
hence it leads to no confusion in writing Zz(/) for Z(I)NM(B).

Let feB, meM(B), and f(m)=0. Then

ord(f,m)=sup{neN: f=fi--- f,, fi(m)=0(i=1,..., n)]

denotes the order of zero of f at the point m e M(B). If f(m) #0, then we
set ord(f, m)=0.

Let Pp(m) ={xe M(B): p(m, x) <1} be the Gleason part of the point m €
M (B). In the sequel we shall tacitly assume that

Pg(m)=P(m)={xeM(HT): p(m,x) <1},

a fact proven by Izuchi [9, p. 437].
By a result of Hoffman [8, p. 101] we have ord(f, m) =0 or o for every
trivial point me M(H *) and fe H*. Let

Zg(f)={meM(B):ord(f,m)=w} (feB).

For B=H®, welet Zg'(f)=Z>(f).
Now we have the following proposition.

PROPOSITION 2.1. The function m — ord(f, m) is upper semi-continuous
on M(B) for every fe H®; that is, {meM(B): ord(f, m) = n} is a closed
set for every ne N. In particular, the set Zg (f) is closed (fe H™).

Proof. We will show that for each n the set {xe M(B):ord(f, x) < n} is
open in M(B). For n=1, the result is clear. Let ord(f, m) = p and let f = bg
be the Riesz factorization of f, where g € H™ has no zeros in D and where
b is a Blaschke product. Because every zero of g in M(H *) has infinite or-
der (see [8, p. 78]), we have g(m)# 0. By [8, p. 100], m lies in the closure
of an interpolating subsequence of the zero sequence of b in D. Repeating
this argument p times, we obtain f=b,---b,-h, where b; are interpolating
Blaschke products with ord(b;, m) =1 and where he H* does not vanish at
m. Hence there exists a neighborhood U of m on which ord(f,x)<p<p+1.
It therefore follows that {x € M(B): ord(f, x) < n} is open. Hence Zg'(f) =
Ni={xeM(B): ord(f, x) = n} is closed. O

We do not know if Proposition 2.1 holds for every f e B.
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PROPOSITION 2.2. Let fe H® and let E be a compact subset of M(H™)
such that sup,,.gord(f, m)=<N for some NeN. Then f can be written in
the form f=cg, where c is a finite product of interpolating Blaschke prod-
ucts and where g e H™ does not vanish on a neighborhood of E.

Proof. This works the same way as part of the proof of Theorem 1 in [5],
as soon as one notices that there exists a neighborhood U of E on which
sup,,,e y ord(f, m) < co. But this holds because, by Proposition 2.1, the map
m — ord(f, m) is upper semi-continuous. ]

THEOREM 2.3. Let B be a Douglas algebra and let I be an ideal in H”
whose zero set does not contain any trivial point in M(B). Then the ideal
IBNH® contains a function of the form b=>b,---b,, where b; are interpo-
lating Blaschke products.

Proof. By compactness there exist finitely many functions f, ..., fy € I with
NN, Zg(f;)NS=9. Let J=(f;, ..., fy) be the ideal generated by the func-
tions f; (i=1,...,N) in H*®. We claim that

1) sup min ord(f;, m)=k <.
meZg(J) j=1,...,.N

Otherwise, there would exist for each n e N a point m,, € Zg(J) with
ord(fj,m,)=n for every jefl,...,NJ.

Let m e {m,}\m,, where {m,} denotes the (weak-*-closure) of {m,) in
M (H ). By Proposition 2.1, we have ord( f;, m) = o for every j € (1, ..., N}.
Thus all the functions f; vanish identically on the closure P(m) of the part
P(m) (see [8, pp. 79, 101]). But by Budde’s result [2, p. 11], P(m) contains a
trivial point x. Therefore x € Zz(J)N S # @, which contradicts our assump-
tion. Thus (1) holds.

Let E= ﬂ_j,-\;] Z%(f;). Then (1) implies that ENZg(J) =0. Choose open
neighborhoods U; in M(H ) of Z*(f;) such that

N
2 ﬂllj}ﬂZB(J)=ﬂ.

j=
Put V. M(H°°)\U Then V; N Z*(f;) =0 (j =1,...,N) and Zg(J) <
U ;. This implies that
3) sup ord(f;,m)=K;<o (j=1,...,N).

me V

By Proposition 2.2 we have f;=c;g;, where Z(g;)N I_/J, = and where the ¢;
are finite products of interpolating Blaschke products. Because

N
Zp(g)) SM(H*)\V;=U; and DZB(gj)gZB(J),

relation (2) yields that N i=1Zp(g;) = 0. Thus there exist functions g; € B such
that I—ZJ 149;8;- Hence
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N N

c,---cN=2<qj | §i ck)cjgjeJBﬂH”EIBﬂH”. O
eI R

We note that if B=H ® then we obtain Tolokonnikov’s result [14, p. 94]. If

I=(b), where b is a Blaschke product, we obtain Gorkin’s result (see Theo-

rem 0.1).

Of course we cannot expect that under the assumptions of Theorem 2.3
the ideal 7 itself contains a function of the form b =2b,-:- by, where the b;
are interpolating Blaschke products. For example, take B=L% and I = (u),
where u is a singular inner function. Such counterexamples occur if and
only if there exists a trivial point which does not belong to the maximal ideal
space of B. This can be shown in the following way.

Let x e S\M(B). Then the ideal I={fe H™: f(x) =0} does not contain
any interpolating Blaschke product; nevertheless, Zz(Z7)N.S =0. On the other
hand, if S € M(B) then Zzg(I)NS =Z(I)N S. Therefore, if Zzg(I)NS =9,
Tolokonnikov’s result [14, p. 94] shows that I contains a Blaschke product
of the desired type.

Using Theorem 6.1 in [11, p. 47], we obtain the following corollary.

COROLLARY 2.4. Let I be an ideal in H™ such that Zg(I)NS=0. Then I
contains a function of the form bu, where b is a finite product of interpolat-
ing Blaschke products and where u is an inner function invertible in B.

Proof. Let J'=(gy, ..., &), where the g; are the functions constructed above
with the property that ﬂ}"zl Zp(g;)=0. By [11, p. 47], the ideal J’ contains
an inner function « invertible in B. Thus ¢;---cy-u€(c18y,...,cNEN) €1,
where ¢; are the functions constructed in the proof of Theorem 2.3. Let b=
c;++-cn. Then bu is the desired function. Ll

In [11, p. 47], the second author has proven that if 7 is an ideal in H* whose
zero set does not meet M (B), then [ is generated algebraically by inner func-
tions invertible in B. We do not know, under the weaker assumption of The-
orem 2.3 (or Corollary 2.4), if I is generated by functions of the form bu,
where u are inner functions invertible in B and where b are finite products
of interpolating Blaschke products.

3. Divisibility in Douglas Algebras

In [6], Guillory, Izuchi, and Sarason proved the following result.

THEOREM [6, p. 3]. Let f be a function in H* + C which does not vanish
identically on any nontrivial Gleason part of H*+C. If g is a function in
H>+ C such that every zero of f is a zero of g of at least as high multiplicity,
then f divides g in H®+C.
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In the same paper they asked if this result could be extended to arbitrary
Douglas algebras. In this section we shall give a positive answer to their ques-
tion. Further results on the divisibility in Douglas algebras are then deduced.

Let me M(H °°) Then we denote the support set of the unique represent-
ing measure of m on the Shilov boundary of H * by supp m. Since supp m is
a weak peak set for H® (see [7, p. 207]), the restriction algebra H |5 18
a uniformly closed subalgebra of C(supp #2) (see [3, p. 571f.]). Its maximal
ideal space is the set

M(Hcolsuppm) = {XEM(HOO): Suppxgsuppm}

(see [3, p. 39]). The main tool to achieve our goal will be the following ver-
sion of Marshall’s theorem.

THEOREM (Marshall [10]). Let 6 > 0. Given finitely many inner functions
Uy, ..., u, and an a with 0 < a <1, there exists 3, 0 < <1 (depending only
on o but not on u,,...,u,) and an interpolating Blaschke product b, such
that the following hold:

(@) If b,(z) =0, then max, o j<,|u;(z)|<8B.
(b) If max, ;< ,|uj(z)|<a, then |b,(z)|<é.

For a proof of Marshall’s result see Garnett [4, p. 336]. This version can be
obtained by applying the proof in Garnett’s book to each function separately.

THEOREM 3.1. Let m be a trivial point and let B be a Blaschke product
vanishing at m. Then there exists a nontrivial point x e M(H ™ |y ,,) Such
that B vanishes identically on the Gleason part P(x) of x.

Proof. Since m is a trivial point, we can, according to Hoffman’s theorem
(see [4, p. 412]), inductively factor Bas B=B,C,=BB,C,=B|B,---B,C,
with B;(m)=C;(m)=0 (j=1,2,...,n) and C;,_;=B;C; (j=2,...,n). For
the same reason, we can factor B; as B;=B,;B,;--B,;C,; with B;;(m)=
Cyj(m)=0, k,je{l,2,...,n}. For each n, let

Sp(z) =max{|Byj(z)|: 1=sk=n,1<j=<n}.

Since there are only finitely many B, ;, we can find an open set U about m
such that | By ;(y)| < % forevery yeUandall k,je{l,2,..., n}. By Marshall’s
theorem there exists 3, 0 < 8 <1, and interpolating Blaschke products &,
such that the following hold for z € D:

(a) if b,(z) =0then |S,(z)|<B; and

(b) if |S,(2)] = ; then |b,(2)| <}

Therefore, for z € U ND we have |b,(z)| < 3. The corona theorem now
implies that |b,(m)| < If b,, | suppm € FI | supp m» We would have 1 =m(1)=
’n(bn)m(b ) = Im(b )12 . Thus b Isuppm¢ H? Isuppm

So b, is not invertible i m H* |gyppm- Thus there exists p, e M(H* |gyppm)
with b,(p,) =0. Since p, is in the closure of the zeros of b, in D (see [4,
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p. 379]), from (a) above we have |By;(p,)|<@ for I<sk<nand 1=j=<n.
Thus

1B ()| < |Byj(P)|-++ | Buj(P) | (B)" (j=1,2,...,n).

Since {p,} is a sequence of nontrivial points, by Theorem 1.2 there exists
a cluster point p of p, whose Gleason part is nontrivial, too. Since p, e
M(H® | gyppr) for every n, we have pe M(H |yppm)-

Given € >0, there exist infinitely many p, such that |B;(p,)—B;(p)| <e.
Hence |Bj(p)|<e+|Bj(p,)|<e+(B)". Letting n— c, we see that (8)"—0
and B;(p) =0 for every j=1,2,.... Thus B has a zero of infinite order at p
and hence B vanishes identically on P(p) (see [8, p. 79]). 3

COROLLARY 3.2. Let m be a trivial point in M(H °)\M(L>). Then m
lies in the closure of the set

V={xeM(H®%): x nontrivial and supp x < supp m};

in other words, m belongs to the closure of M(H ™ |4ppm)NG.

Proof. If this were not true, there would exist a neighborhood U of m in
M(H *) such that the closure of V does not meet U. By Marshall’s theorem
[10, p. 20], we may take U to be of the form

N
U=NIxeMH®): |b;(x)|<e, bj(m)=0)}
i=1
for some Blaschke products b; (i =1, ...,N).
The proof of Theorem 3.1, however, shows that if b;(m)=0 (i=1,...,N),
then there exists a nontrivial point x with supp x S supp m such that all the
b; vanish at x. Thus x € U, which contradicts the choice of U. U

REMARK. The proof shows that every trivial point x e M(H *)\M (L")
with suppx Ssuppm belongs to the closure of M(H* |gppn)NG. How-
ever, we were unable to answer the following question.

QUESTION. Let m be a trivial point in M(H ). Is the set of nontrivial
points in M(H % |gpp,,) dense in M(H* | gyppm)?

In the final section we shall see that at least the union of the support sets of
nontrivial points in M(H* |, ;) is dense in supp m, where m is a trivial
point.

Combining the results of Sections 1 and 2 with Theorem 3.1, we now obtain
the extension of Guillory, Izuchi, and Sarason’s result to arbitrary Douglas
algebras.

THEOREM 3.3. Let B be a Douglas algebra and let u be an inner function
which does not vanish identically on any nontrivial Gleason part of M(B).
Then u can be factorized in the form u = bv, where b is a finite product of
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interpolating Blaschke products and where v is an (inner) function invert-
ible in B.

Proof. We claim that the function u satisfies the assumptions of Theorem
0.1, that is, that # does not vanish at any trivial point in M(B). To see this,
let # = b,v,; be the Riesz-Smirnov factorization of «, where b, is a Blaschke
product and v, is a singular inner function. Assume there exists a trivial point
me M (B) at which u vanishes. Since {x e M (H ): supp x S supp m} is a sub-
set of M(B), we conclude from Theorem 3.1 that b;(m) # 0. Thus v,(m)=0.
By Corollary 3.2, m lies in the closure of the set E =M (H * |,ppm) N G. Thus
there exists a net x, € E with v;(x,) — 0. Choose for every n e N points x,,,
of the net such that |v;(x4,)|=1/n. By Theorem 1.2 there exists a cluster
point x of x,, whose Gleason part is nontrivial. Because M(H *|gppm)
is closed, x e M(H | gyppm) NG = E. Because v, has no zeros in D, v; (and
hence u = b,v;) vanishes identically on the Gleason part P(x). But P(x) S
M(H® | quppm) €M (B), which contradicts the hypothesis on u. Thus v, does
not vanish anywhere on M(B). Hence u does not vanish on a trivial point in
M(B). Theorem 0.1 now yields the assertion. Ul

REMARKS. Theorem 3.3 shows in particular that the (apparently) weaker
condition “u does not vanish identically on any nontrivial Gleason part in
M(B)” is in fact equivalent to the hypothesis “u does not vanish on any
trivial point in M(B),” provided that « is an inner function. This answers
a question in [5]. It is worth noting that this does not hold for outer func-
tions, as the following example shows.

EXAMPLE. For a Douglas algebra B, let M(B)={me M(B): m(z) =1}
be the fiber of M(B) over the point z=1. It is easy to see that A={fe L*:
S| my>ye H® | my 1=y} is a Douglas algebra with maximal ideal space M(A4)=
M(L=®)UM(H®) (see [4, §9]). The outer function f(z) =1+ z does not
vanish on any nontrivial Gleason part in M(A), but of course f vanishes on
many trivial parts in M(A).

We are now able to investigate the divisibility structure of Douglas algebras,
thus answering questions of Guillory, Izuchi, and Sarason [6].

THEOREM 3.4. Let u be a unimodular function in the Douglas algebra B.
Assume that u does not vanish identically on any nontrivial Gleason part in
M(B). Let g be a function in B satisfying one of the following conditions:

(a) Every zero of u is a zero of g of at least as high multiplicity.
(b) |g|=<|u| on M(B).

Then g is divisible by u in B.

Proof. We shall show that the hypothesis implies that ¥ does not vanish on
any trivial part in M (B). The assertion then follows from Gorkin’s result [4].
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Of course u does not vanish on the Shilov boundary M(L*) of B, because
u is invertible in L™, So let me M(B)\M(L*). By the Chang-Marshall the-
orem (see [4, §9]) there exists a function fe H® such that f |supp m = # | supp m-
In particular, f(x)=u(x) for every x with supp x Ssupp m. Let f=vF be
the inner-outer factorization of f. Note that F does not vanish on supp m.
The proof of Theorem 3.3 now shows that f cannot vanish on any trivial
point x with supp x S supp m. Thus u does not vanish on any trivial point
in M(B). ]

REMARK. If u is a finite product of interpolating Blaschke products, we
obtain [1, Lemma 3, p. 91].

COROLLARY 3.5. Let ue B be as in Theorem 3.4. If g is a function in B
with Zg(u) S Zg(g), then g™ti € B for some NeN.

Proof. We claim that

4y sup ord(u, m)=N< o,
meM(B)NG

Otherwise there would exist for every ne N a point x, e M(B) N G with
ord(u, x,) = n. Then we can write u=u{"-.- u{" with u{"(x,)=0 for j=
1, ..., n. let Ly denote the Hoffman map from D onto P(x,). Using the
Chang-Marshall theorem and the fact that x,, e M(B) N G, we see that
u{"e Ly, is an analytic function on D for all j and 7. Now each u"> Ly, has
norm at most 1 and vanishes at the origin, so Schwarz’s lemma implies that
|u{Ly,(z)|<|z|. Thus |ueLy,(z)|<|z|" for all n. By Theorem 1.2 there
exists a nontrivial cluster point x of x,,. Since by Hoffman’s theorem [8, p. 93]
u has a continuous extension to M(H %), a subnet of uoL, converges there-
fore to u-L,. Hence u-L, is identically zero on D; in other words, # van-
ishes identically on P(x). Note that P(x) € M(B). This contradicts the as-
sumption on u, so we have (1).

Now it is easy to see that every zero of u is a zero of g”¥ with at least as high
multiplicity. Theorem 3.4 finally yields the assertion of the theorem. L]

4. Support Sets in M(H )

In [2, p. 35], Budde noticed that there exist trivial points in M(H *) whose
support sets contain the support set of a nontrivial point. In the following
we show that the support set of any point which does not belong to the Shi-
lov boundary of H* strictly contains the support set of a nontrivial point.
Convention: The symbol “C” denotes strict inclusion.

PROPOSITION 4.1. The maximal ideal space of a Douglas algebra is unique-
ly determined by its set of nontrivial points.

Proof. Suppose that B, and B, are two different Douglas algebras, with
M(B;)NG = M(B,)NG. By the Chang-Marshall theorem, there is an inter-
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polating Blaschke product & which is invertible in one of these algebras
but not in the other, say be B,\B,. Since b ¢ B,, there exists me M(B,)
with m(b)=0. By Hoffman’s theorem [8, p. 88] and our assumption, me
M(B,)NG=M(B;)NG. But be By, so |m(b)|=1, a contradiction. O

THEOREM 4.2. Let me M(H®)Y\M(L®). Then there exists a nontrivial
point x with supp x C supp m.

Proof. Let B be the Douglas algebra

B =Hsot?ppm: {fe Loo:fIsupprt:eHoo[suppm}-

Using Newman’s result [7, p. 179], choose an inner function # with u(m) =0.
Then @ ¢ B. A theorem of Sundberg [13] tells us that the Douglas algebra
B, =[B, it] is strictly contained in L*. Thus, by Proposition 4.1, there exists
a nontrivial point x € M(B,). Using the Chang-Marshall theorem we get an
interpolating Blaschke product b with b e B;\ B. Hence |b(x)|=1. Since the
representing measure for x is a probability measure, |#(x)|=1 implies that
b is constant on supp x. On the other hand supp x S supp m. But |m(b)| <1,
SO supp x C supp m. |

COROLLARY 4.3. There exist no minimal support sets containing more
than one point.

COROLLARY 4.4. The support set of a trivial point me M(H*)\M(L")
strictly contains the support set of another trivial point of M(H )\ M(L™).

Proof. Choose, according to Theorem 4.2, a nontrivial point x with suppx C

supp m. By Budde [2, p. 11] there exists a trivial point y € P(x), and thus

supp y S supp x (see [2, p. 25]).

THEOREM 4.5. Let me M(H*)\M(L®) be a trivial point. Then the set
E = J{supp x: x nontrivial, supp x S supp m}

is dense in supp m.

Proof. Assume that E is a proper subset of supp m. Consider the Douglas
algebras Bi=HE ={feL”: f|pe H®|g} and B, = Hg,, ,,. Since

me¢M(B) ={xeMH>):suppx < E}JUM(L"®)
[3, p. 39], we have B, C B; and hence M(B;) C M(B,). But if xe M(B,) is
a nontrivial point, then suppx S E. Thus x e M(B,), so we conclude that

M(B,)NG=M(B,)NG. By Proposition 4.1, B;=B,, which is a contra-
diction. U
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