Boundary Behavior of Certain Holomorphic Maps

H. ALEXANDER

1. Introduction

Our point of departure is the recent work of Alinhac, Baouendi, and Rothschild [3] and of Bell and Lempert [4] on the boundary behavior of holomorphic maps from \mathbb{C} to \mathbb{C}^n . In the scalar case n=1, the results may be formulated as follows. Let H_r denote the intersection of the open disk of radius r centered at the origin with the upper half-plane, and let σ_r denote the closed semi-circle in its boundary.

THEOREM. Let Γ be a smooth Jordan arc in \mathbb{C} . Let f be a holomorphic function on H_r such that the cluster set of f along [-r, r] is contained in Γ . Then

- (a1) f extends to be continuous on (-r, r),
- (a2) f is smooth on $(-r, r) \cup H_r$, and
- (b) f has finite order at each point of (-r, r) unless f is constant.

Part (a1) is not explicitly stated in [4] but follows from the argument there because the classical reflection principle yields such continuity. The meaning of "smoothness" is \mathbb{C}^{∞} for f and Γ in [4], while [3] treats f in Lipschitz spaces and Γ being \mathbb{C}^k with $k \ge 2$. In the former case, "finite order" at x simply means that some derivative $f^{(N)}(x) \ne 0$; in the latter case it means not of infinite order, that is, $f(z) - f(x) = O((z - x)^N)$ does not hold for every N.

The main objective in the cited work is to handle higher-dimensional mappings where Γ is replaced by a totally real manifold. The first results of this type were due to Chirka [6]; previous work has also been done by Rosay [12] and Pinchuk and Khasanov [10]. However, according to [3], the unique continuation property (b) is new even in the scalar case. It is proved in [3] and [4] by PDE methods. We first consider the case when Γ is not assumed to be smooth but is just a (continuous) Jordan arc. It turns out that a sort of finiteness (b1) still holds, with no assumption of smoothness.

Received February 6, 1990.

The author was supported in part by a grant from the National Science Foundation. Michigan Math. J. 38 (1991).

THEOREM 1. Let Γ be a Jordan arc (or Jordan curve) in \mathbb{C} . Let f be a holomorphic function on H_r such that the cluster set of f on [-r, r] is contained in Γ . Then

- (a) f extends to be continuous in $(-r, r) \cup H_r$.
- (b1) For each point x in (-r,r) there is, assuming f to be nonconstant, a positive integer N such that f has finite multiplicity N near x in the following sense: There exists a Jordan arc γ containing f(x) in its interior and a one-to-one conformal map g of a small semi-disk centered at x and contained in H_r to a one-sided neighborhood of γ at f(x), with the real axis near x being mapped by g to γ , g(x) = f(x), and such that $f = f(x) + (g g(x))^N$ near x. There are N-1 Jordan arcs each of which has x as one endpoint and all of whose other points lie in H_r and which are otherwise disjoint. These arcs together with the real axis split H_r locally at x into N sectors, each of which is mapped conformally by f onto a one-sided neighborhood of Γ at f(x); the derivative of f is nonzero at all points of H_r sufficiently close to x.
- (b2) Suppose that Γ has a tangent line at f(x). Then, for all $\epsilon > 0$,

(i)
$$\limsup_{\substack{z \to x \\ \operatorname{Im} z \ge 0}} \frac{|f(z) - f(x)|}{|z - x|^{N + \epsilon}} = \infty,$$

(ii)
$$\liminf_{\substack{z \to x \\ \text{Im } z \ge 0}} \frac{|f(z) - f(x)|}{|z - x|^{N - \epsilon}} = 0,$$

(iii) if f vanishes to infinite order at x, then $f \equiv f(x)$ in H_r .

The hypothesis that Γ have a tangent line at f(x) means by definition that the real tangent cone to the set Γ at the point f(x) is a real line. Part (b1) shows that near a point $x \in (-r, r)$, f behaves geometrically much like a function which is analytic in a full neighborhood of a point; that is, after a (one-sided) change of coordinate, f looks like a power of f. In general (b2) does not hold for f ends even if f is a f curve. Rosay [13] discusses the example $f(x) = x \log(1/x)$ at f where f and the image of the real axis is f clearly in this case (ii) fails with f ends even and the function $f(x) = x \log(1/x)$ is f ends even and f and the image of the real axis is f curve through the origin. It satisfies (i) and (ii) for f ends even and f ends even and f is known to be f ends even and f ends even f

In considering (a) of Theorem 1 it is natural to ask, more generally, what properties of a set E, assumed to be a continuum (i.e., compact, connected, and not reducing to a single point), ensure that a holomorphic function f on H_r with cluster set on [-r, r] contained in E always extends continuously

to (-r, r). One such property, that E have finite 1-dimensional Hausdorff measure, was conjectured by Globevnik and Stout [9] and verified independently using different methods by Pommerenke [11] and in [2]. More general results involving local connectivity were subsequently obtained by Carmona and Cufí [5]; their hypotheses are directly on the cluster set of f, rather than on a containing set E, and have a global character as they take f to be holomorphic on the unit disk with hypotheses on its global cluster set. The following gives a simple necessary condition for E which can often be easily checked; for example, (a) of Theorem 1 is an obvious consequence. The method of proof uses ideas from [2] which will also be useful for considering mappings into \mathbb{C}^n in Theorem 3 below.

THEOREM 2. Let E be a plane continuum with empty interior with the following property: For every continuum Q contained in E and every point p in Q there exists a Jordan curve J such that

- (i) $p \notin J$,
- (ii) $E \cap J$ is finite, and
- (iii) Q meets both components of the complement of J.

Let f be a holomorphic function on H_r whose cluster set along [-r, r] is contained in E. Then f extends to be continuous along (-r, r).

The previously mentioned result of the case when E has finite linear measure is a simple corollary; indeed, using the fact that almost every vertical line hits E finitely often, one can easily produce J satisfying (i), (ii), and (iii).

Our last result involves extending Theorem 1 to the case when the Jordan curve Γ lies in \mathbb{C}^n . It is not known whether this result holds for an arbitrary continuous Jordan curve Γ . Globevnik and Stout [7] have shown, among other things, that if Γ is a rectifiable Jordan curve in \mathbb{C}^n and if f is a bounded proper holomorphic mapping of the open unit disk into $\mathbb{C}^n \setminus \Gamma$ (this amounts to saying that f has cluster set contained in Γ), then f extends to be continuous on the unit circle. In fact, since coordinate projection decreases linear measure, the continuity of the component functions of f follows immediately from the result (mentioned above) on functions with cluster sets of finite linear measure. In this connection, an example of Globevnik and Stout [8, Ex. 8] is perhaps relevant. They showed that f can be one-to-one and regular on the open unit disk, continuous on the closed disk, and map the circle in a two-to-one fashion onto a Jordan curve Γ .

In order to formulate a result which includes both the case of a Jordan curve in \mathbb{C} where no smoothness is required as well as the higher-dimensional case where the assumption that Γ be \mathbb{C}^1 is sufficient, we utilize a notion of complex tangent cone to Γ . We define the complex tangent cone TC(p) of Γ at $p \in \Gamma$ as follows: $v \in \mathbb{C}^n$ is in the tangent cone TC(p) if there exist $q_n \in \Gamma$ and $p_n \in \Gamma$ converging to p and $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ such that $p_n \in \Gamma$ converges to $p_n \in \Gamma$ such that $p_n \in \Gamma$ such that p

For our purposes, to define the real tangent cone at p (a notion which we have already used above), we take the z_n to be real and positive and $p_n = p$ for all n; this is the real analogue of Whitney's C_3 type tangent cone.

THEOREM 3. Let Γ be a Jordan curve in \mathbb{C}^n such that, at a dense set of points p in Γ , TC(p) is a complex line. Let f be a holomorphic map from H_r such that the cluster set of f along [-r,r] is contained in Γ . Then

- (a) f extends to be continuous on $(-r, r) \cup H_r$.
- (b) Moreover, if TC(f(x)) is a complex line for $x \in (-r,r)$, and if the real tangent cone to Γ at f(x) is a real line, then f-f(x) does not vanish to infinite order at x unless f is constant.

Two cases where the complex tangent cone hypothesis is clearly satisfied at a point p are: (a) locally, near p, when Γ is contained in a holomorphic 1-variety which is nonsingular at p; and (b) when Γ is a \mathbb{C}^1 manifold near p.

2. Proof of Theorem 1(b1)

As noted above, (a) follows from Theorem 2. We shall thus assume that f is continuous up to the real axis and, in proving (b1) and (b2), we may assume that x = 0 and that f(x) = 0.

We next define two multiplicities $N_1(f)$ and $N_2(f)$ for f at x=0. By decreasing r, we may assume that f is continuous on \bar{H}_r and that $f \neq 0$ on the closed circular part σ_r of ∂H_r , since, taking f nonconstant, $f \neq 0$ on a dense subset of [-r,r]. Then $f(\sigma_r)$ is a curve with endpoints on Γ and $f(\sigma_r)$ is bounded away from 0. Now Γ subdivides a small neighborhood of 0 into two components, Ω_1 and Ω_2 , which are disjoint from $f(\sigma_r)$ (and Γ) if the neighborhood is sufficiently small. Then $f(\partial H_r)$ is the union of $f(\sigma_r)$ and the subset f[-r,r] of Γ . The winding number of $f(\partial H_r)$ about all points of Ω_1 is the same, call it $N_1(f)$; likewise define $N_2(f)$. These numbers cannot both be zero, and moreover they decrease as r decreases. We may assume that r is chosen so small that $N_j(f)$ are minimal. We claim that this implies that $f \neq 0$ on $\bar{H}_r \setminus \{0\}$. In fact, if f(z) = 0 for some $z \in \bar{H}_r$ ($z \neq 0$) then, for some $z' \in H_r$ near z, f(z') is in Ω_1 or Ω_2 . But by decreasing r so that z' is not \bar{H}_r we could then, by the argument principle, decrease $N_1(f)$ or $N_2(f)$, a contradiction of minimality.

The origin subdivides Γ into two closed "legs" meeting only at the origin. We consider two cases. In the first case, the endpoints of $f(\sigma_r)$ lie on the same leg (and, as we know, are nonzero). We can deform f([-r, r]) in Γ to the arc in Γ joining f(-r) and f(r). This does not change the winding numbers $N_1(f)$ and $N_2(f)$. Since the deformed closed curve (we have $f(\sigma_r)$ unchanged during the deformation) is bounded away from 0, we conclude that $N_1(f) = N_2(f)$.

In the second case, the endpoints of $f(\sigma_r)$ lie on different legs of Γ . We again deform $f(\partial H_r)$ to a curve τ by deforming f([-r, r]) to the arc in Γ

joining f(-r) to f(r). Since τ agrees with Γ locally at 0, we conclude that the winding numbers $N_1(f)$ and $N_2(f)$ differ by 1. By relabelling, we may assume that $N_1(f) = N_2(f) + 1$. We define $N = N(f) \equiv N_1(f) + N_2(f)$; $N \ge 1$.

Set $g = f^{1/N}$ (choose a branch). Then g is continuous on \overline{H}_r , g = 0 only at z = 0, and g is holomorphic on H_r . To define γ , consider the images of the two legs Γ_+ and Γ_- of Γ under the maps $w \mapsto w^{1/N}$. We get a set of 2N Jordan arcs through 0 which are otherwise disjoint. Since g = 0 only at 0, g maps \mathbb{R}^+ and \mathbb{R}^- each into one of the 2N arcs. If we get two such arcs, let γ be their union. If they should coincide (we shall see below that in fact they are different), choose γ to be the union of the image arc and any other of the 2N-1 remaining arcs.

Now g becomes a mapping satisfying the hypotheses that f does, except that Γ is replaced by γ ; in particular, we have that $N_1(g)$ and $N_2(g)$ are well defined.

LEMMA 1. $N_1(g) = 1$ and $N_2(g) = 0$.

Proof. Choose $q \in \Omega_1(\Gamma)$ close to 0 such that q is a regular value of f and such that the N roots $q^{1/N} = b_1, b_2, ..., b_N$ are regular values of g and such that none of the b_k 's are contained in γ . By reordering, we may assume that there is an s $(0 \le s \le N)$ such that $b_k \in \Omega_1(\gamma)$ for $k \le s$ and $b_k \in \Omega_2(\gamma)$ for $s < k \le N$. Set $h(\zeta) = \zeta^N$. Since $h \circ g = f$,

$$f^{-1}{q} = g^{-1}{b_1, b_2, ..., b_N}.$$

Counting these sets in two ways we get, by the argument principle,

$$N_1(f) = s \cdot N_1(g) + (N-s)N_2(g) \equiv A.$$

Hence, since $N_1(g) \ge N_2(g)$,

$$N \ge N_1(f) = A \ge N_2(g) \cdot N.$$

This gives $1 \ge N_2(g)$.

If $N_2(g) = 1$ then all of the above inequalities are really equalities. Hence $N = N_1(f)$ and $N_1(g) = N_2(g) = 1$. Therefore $N_2(f) = 0$ and so $N_1(f) = 1$ and N = 1. Hence g = f and $N_2(g) = N_2(f) = 0$, a contradiction.

Therefore,
$$N_2(g) = 0$$
 and so $N_1(g) = 1$ and we are through.

Continuing with the proof of (b1), we have $f = g^N$, where g is a conformal map of a one-sided neighborhood of 0 in H_r to a one-sided neighborhood $\Omega_1(\gamma)$ of γ at 0.

Consider the 2N arcs $\Gamma_+^{1/N}$ and $\Gamma_-^{1/N}$ discussed above. Some of these lie in $\Omega_1(\gamma)$ and subdivide $\Omega_1(\gamma)$ into sectors each of which is mapped by $\zeta \mapsto \zeta^N \equiv h(\zeta)$ to a one-sided neighborhood of Γ at 0. Since $f = h \circ g$ and $N_2(g) = 0$, we conclude that in $\Omega_1(\gamma)$ there are $N_1(f)$ sectors which are mapped to $\Omega_1(\Gamma)$ and $N_2(f)$ sectors which are mapped to $\Omega_2(\Gamma)$. Thus there are N sectors in $\Omega_1(\gamma)$. Pulling these sectors back to H_r by g^{-1} gives sectors claimed for H_r . Finally, since g is conformal and one-to-one, we have $g' \neq 0$ and hence $f' \neq 0$ in H_r .

3. Proof of Theorem 1(b2)

The main step will be the following lemma. We shall consider quadrilaterals of the form

$$S(r_1, r_2, \theta_1, \theta_2) = \{re^{i\theta} : r_1 < r < r_2 \text{ and } \theta_1 < \theta < \theta_2\},$$

where $\theta_2 < \theta_1 + 2\pi$; the four distinguished points are the intersections of the boundary circular arcs with the boundary radial arcs. Consider the family C of curves joining the two circular arcs. Then the extremal length $\lambda(C) = \log(r_2/r_1)/(\theta_2-\theta_1)$. In fact, $\log z$ maps the quadrilateral to the rectangle $\{z: \log r_1 < \operatorname{Re} z < \log r_2, \ \theta_1 < \operatorname{Im} z < \theta_2\}$ conformally. We just employ the known extremal length for the rectangle; see Ahlfors [1, p. 53].

LEMMA 2. Let γ_1 and γ_2 be Jordan arcs containing the origin as an interior point and suppose that γ_1 and γ_2 each have a tangent line at 0. Let φ be a one-to-one conformal map of a one-sided neighborhood W_1 of γ_1 at 0 to a one-sided neighborhood W_2 of γ_2 at 0 such that $\varphi(\gamma_1) \subseteq \gamma_2$ and $\varphi(0) = 0$. Then, for all $\epsilon > 0$,

(i)
$$\limsup_{\substack{z \to 0 \\ z \in W_1}} \frac{|\varphi(z)|}{|z|^{1+\epsilon}} = \infty$$

and

(ii)
$$\liminf_{\substack{z \to 0 \\ z \in W_1}} \frac{|\varphi(z)|}{|z|^{1-\epsilon}} = 0.$$

Proof. For (i), it suffices to show that the lim sup is positive for all $\epsilon > 0$. Suppose not. Then $|\varphi(z)| \le |z|^{1+\epsilon}$ for all $z \in W_1$ with |z| sufficiently small, say for $|z| \le \rho$.

We may assume that the tangent line to γ_1 and to γ_2 at z=0 is the real axis. Choose $\eta>0$. We may also suppose that ρ is sufficiently small so that, if $w\in\partial W_j$ $(0<|w|<\rho)$, then $w\in\gamma_j$ and thus either $|\arg w|<\eta$ or $|\arg w-\pi|<\eta$. Take $0<\delta<\rho$. It follows that $S_1\equiv S(\delta,\rho,\eta,\pi-\eta)$ is contained in W_1 . Choose R>0 such that $|\varphi(z)|\geq R$ if $z\in W_1$ and $|z|=\rho$. We have that if $z\in W_1$ and $|z|=\delta$ then $|\varphi(z)|\leq \delta^{1+\epsilon}$. Then $\varphi(S_1)\subseteq W_2$, and the images of the circular arcs of S_1 which constitute two edges of the quadrilateral $\varphi(S_1)$ are separated by the circular edges of $S_2\equiv S(\delta^{1+\epsilon},R,-\eta,\pi+\eta)$. Since the radial edges of S_2 lie outside W_2 , they are separated by the corresponding edges of $\varphi(S_1)$. By the fundamental comparison principle on extremal length ([1, p. 54], cf. Fig. 4-1 there), we have $\lambda(\varphi(C_1)) \geq \lambda(C_2)$, where C_j is the family of curves joining the circular boundary curves of S_j . By conformal invariance, $\lambda(C_1) \geq \lambda(C_2)$. Hence

$$\frac{\log(\rho/\delta)}{\pi-2\eta} \ge \frac{\log(R/\delta^{1+\epsilon})}{\pi+2\eta}.$$

Dividing by $\log(1/\delta)$ and letting $\delta \rightarrow 0$, we have

$$\frac{1}{\pi - 2\eta} \ge \frac{1 + \epsilon}{\pi + 2\eta}.$$

Letting $\eta \to 0$ gives $1/\pi \ge (1+\epsilon)/\pi$, a contradiction. We conclude that (i) holds.

To obtain (ii) we need only apply (i) to
$$\psi = \varphi^{-1}$$
.

To complete the proof of (b2), consider the 2N arcs, $\Gamma_+^{1/N}$ and $\Gamma_-^{1/N}$, discussed above. Since the tangent cone to Γ at 0 is a real line, it follows that the tangent cones at 0 to any two consecutive arcs of the 2N arcs are rays through the origin making an angle of π/N . Hence the curve γ constructed above and associated to the mapping $g = f^{1/N}$ is such that its two legs γ_+ and γ_- make an angle of π at 0. Thus we can apply Lemma 2 with $\varphi = g$, $\gamma_1 = \mathbf{R}$, and $\gamma_2 = \gamma$ to conclude that

$$\limsup_{\substack{z\to 0\\ \text{Im }z\geq 0}}\frac{|g(z)|}{|z|^{1+\epsilon}}=\infty,$$

and a corresponding statement for the lim inf. Then (i) and (ii) of the theorem follow from $|g(z)|^N = |f(z)|$. Part (iii) follows since (i) and (ii) hold unless f is constant.

4. Proof of Theorem 2

It suffices to show that f is continuous at x = 0. By decreasing r, we may suppose that f is bounded on H_r and holomorphic on $\overline{H}_r \cap \{\text{Im } z > 0\}$, that $f' \neq 0$ on σ_r^0 , and that f has nontangential limits a.e. on (-r, r). We argue by contradiction and suppose that the cluster set Q of f at 0 is a set of more than one point; that is, Q is a continuum contained in E.

Our hypothesis gives, for an arbitrary choice of p in Q, a Jordan curve J which meets E in a finite set $\{p_1, p_2, ..., p_N\}$. Then $J \setminus E$ is a finite union of open Jordan arcs $\gamma_1, \gamma_2, ..., \gamma_N$, where the endpoints of γ_k are p_k and p_{k+1} $(p_{N+1} = p_1)$. By modifying the γ_k we may assume that each γ_k contains none of the singular values of f, the latter set being countable. Then all components of $f^{-1}(\gamma_k)$ in H_r are open arcs and these are mutually disjoint.

Consider a component τ of $f^{-1}(\gamma_k)$ for any fixed k. Consider the cluster set in \overline{H}_r of one of the two "ends" of τ . If this cluster set meets σ_r^0 at some point b, then $f(b) \in \overline{\gamma}_k$ and f is locally one-to-one at b, and so τ continuously approaches b. Otherwise, the cluster set of the end of τ is a connected subset of $A \cup [-r, r]$, where A is the countable set $f^{-1}\{p_1, p_2, ..., p_N\}$. If this (connected!) cluster set meets A then again it is a single point in A, by connectedness. Finally the cluster set could be a subinterval of [-r, r]. We claim this subinterval K reduces to a point. Suppose not. Since f maps τ to γ_k , the cluster set of f along the end of τ is a single point, either p_k or p_{k+1} . This implies that the nontangential limit of f is a.e. on K equal to p_k or p_{k+1} . This implies that f is constant, which we are assuming is not the case. We

conclude that K reduces to a single point. We have shown then that τ has a limit in \bar{H}_r along both its "ends."

LEMMA 3. For each k $(1 \le k \le N)$ there exists ρ $(0 < \rho < r)$ such that only finitely many components of $f^{-1}(\gamma_k)$ meet H_{ρ} .

Proof. Fix $q \in \gamma_k$. Choose ρ ($0 < \rho < r$) such that

- (a) $f^{-1}(q) \cap H_{\rho}$ is empty, and
- (b) the limit of f along σ_{ρ} at $\pm \rho$ exists and is not equal to p_j for $1 \le j \le N$. Clearly (a) is true for all ρ sufficiently small since $q \notin E$, and (b) holds for all ρ except a set of measure zero.

From the above discussion of the components of $f^{-1}(\gamma_k)$, it follows that each component τ is one of two types:

- (1) $f(\tau) = \gamma_k$, or
- (2) $f(\tau) \subsetneq \gamma_k$.

In type (2), at least one endpoint b of τ lies on σ_r^0 and satisfies $f(b) \in \overline{\gamma}_k$.

We argue by contradiction and suppose that $f^{-1}(\gamma_k)$ contains an infinite set of distinct components $\{\tau_j\}$ such that each τ_j meets H_ρ . We may assume that either all τ_j are of type 1 or all are of type 2.

Suppose that all τ_j are of type 1. Then there is a $q_j \in \tau_j$ such that $f(q_j) = q$. By (a), q_j is not in H_ρ . Hence τ connects q_j to a point in H_ρ and so meets σ_ρ^0 at a point z_j . Let $z \in \sigma_\rho$ be a limit point of the z_j . If $z \in \sigma_\rho^0$ then $f(z) \in J$ and $f^{-1}(J)$ is, locally at z, just a finite set of arcs through z which are otherwise disjoint, as f' vanishes at most to finite order at z. This contradicts the fact that $f^{-1}(J) \supseteq \{\tau_k\}$ which cluster at z. The alternative is that z be an endpoint of σ_ρ . Then $f^*(z) \in E \cap J$. But $f^*(z) \neq p_j$ by (b) for all j, another contradiction.

Now suppose that all τ_j are of type 2. Then τ_j joins some point of H_ρ to σ_r and so again meets σ_ρ^0 at some point z_j . Just as before, this leads to a contradiction. This proves the lemma.

Applying Lemma 3 for each k, $1 \le k \le N$, we see that if ρ is sufficiently small then $f^{-1}(\gamma_k) \cap H_\rho$ contains a finite number of components for all k. We claim that one of these components converges to 0, at one endpoint. Suppose not. Then, since the number of these components in H_ρ is finite, there is a δ $(0 < \delta < \rho)$ such that $H_\delta \cap f^{-1}(\gamma_k)$ is empty for all k. Consider the open set $W = f(H_\delta)$. Then $W \cap J$ could contain at most the set $\{p_1, p_2, ..., p_N\}$. Since W is open, we conclude that W is disjoint from J. Since W is connected, then either W lies in the bounded component of the complement of J or in the unbounded component. Hence \overline{W} does not meet both components of $\mathbb{C} \setminus J$. As $Q \subseteq \overline{W}$, this is a contradiction. We conclude that there is an arc τ in H_r which goes to 0 such that the limit of f along τ at 0 exists and equals some $p_k \in J \cap Q$ (since $f(\tau) \subseteq J$).

Now apply the hypothesis of the theorem again with $p = p_k$ and Q as before to get a Jordan curve J' not containing $p = p_k$. Repeating the above

argument, we get another τ' which goes to 0 such that the limit of f along τ' at 0 exists and equals some $p' \in J'$. As $p' \neq p_k$, we get a contradiction to a classical theorem of Lindelöf. We conclude that f extends to be continuous at x = 0.

5. Proof of Theorem 3(a)

It suffices to show that f is continuous at x = 0. For this we need the following lemma, which says that the image of f, in some sense, looks like the image of a continuous function near a dense set of points of Γ .

LEMMA 4. There exists a dense set of points p in Γ such that, after possibly decreasing r, there exists an affine change of coordinates in \mathbb{C}^n with the following properties: The point p has coordinates 0. There exist an arbitrarily small neighborhood W_1 of 0 in \mathbb{C}^1 and an arbitrarily small neighborhood W_2 of 0 in \mathbb{C}^{n-1} such that, setting $W = W_1 \times W_2 \subseteq \mathbb{C}^n$, we have

$$(\Gamma \cup \overline{f(H_r)}) \cap (\overline{W}_1 \times \partial W_2) = \emptyset$$
 and $(\overline{f(H_r)} \setminus f(H_r)) \cap W \subseteq \Gamma \cap W$.

Moreover, there exists an open Jordan arc γ in W_1 such that $W_1 \setminus \gamma$ is a union of two disjoint, nonempty domains Ω_1 and Ω_2 . The coordinate function z_1 maps $(\Gamma \cup f(H_r)) \cap W$ homeomorphically to a subset L of W_1 and maps $\Gamma \cap W$ homeomorphically to γ . There are four possible cases:

- (1) $L = \gamma \cup \Omega_1$,
- (2) $L = \gamma \cup \Omega_2$,
- (3) $L = W_1$,
- (4) $L = \gamma$.

Assuming Lemma 4 for the present, we continue with the proof of the theorem. Arguing by contradiction, we suppose that the cluster set Q of f at x = 0 does not reduce to a single point. Then Q is a subarc of Γ . Choose an interior point $p \in Q$ where Lemma 4 holds. Choose W sufficiently small so that $\Gamma \cap W \subseteq Q$. Then, by Lemma 4, z_1 restricted to $W \cap (\Gamma \cup f(H_r))$ maps homeomorphically to $L \subseteq W_1$. Let ψ be the inverse map.

Choose a Jordan curve J_0 in W_1 such that $J_0 \cap \gamma$ contains two points and such that γ meets both components $\mathbb{C} \setminus J_0$. Set $J = \psi(J_0) \subseteq W$.

Then, if case (3) of the lemma holds, J is a Jordan curve such that $J \cap \Gamma$ consists of two points p_1 and p_2 , and $J \setminus \Gamma$ is a union of two open Jordan arcs γ_1 and γ_2 both contained in $f(H_r)$. If cases (1) and (2) hold, then J is a Jordan arc with endpoints p_1 and p_2 , $J \cap \Gamma = \{p_1, p_2\}$, and $\gamma_1 \equiv J \setminus \Gamma \subseteq f(H_r)$. We set $\gamma_2 = \emptyset$ for a uniform notation. Note that case (4) of the lemma does not hold, since Q is the cluster set of f at 0 and $Q \cap W = \Gamma \cap W \neq \emptyset$.

By choosing r and W sufficiently small we may assume that the closure of $f(\sigma_r)$ is disjoint from W. Also we may choose J_0 to be disjoint from the singular values of f_1 . Now consider a component τ of $f^{-1}(\gamma_k)$ in H_r for k=1,2. Just as in the proof of Theorem 2, one shows that τ has a limit at each of its

"ends"; just as before, τ is an open arc in H_r . Lemma 3 is also valid for f, the proof being the same except that, since $f(\sigma_r)$ is disjoint from W, there are no τ of type (2). Hence, if ρ is sufficiently small then $f^{-1}(\gamma_k) \cap H_\rho$ contains a finite number of components for k = 1, 2. We claim that one of these components τ has 0 as an endpoint. If not, then for some δ ($0 < \delta < \rho$), $H_\delta \cap f^{-1}(\gamma_k)$ is empty for k = 1, 2.

Consider $V = f(H_{\delta})$. Let Ω_0 be the bounded component of $\mathbb{C} \setminus J_0$. V is disjoint from γ_1 and γ_2 , hence V is disjoint from J. Set $V_1 = V \cap \psi(\Omega_0)$ and $V_2 = V \setminus \psi(\overline{\Omega}_0)$. Then V is a disjoint union of its relatively open sets V_1 and V_2 . Since V is connected, it follows that (i) $V = V_1$ or (ii) $V = V_2$. Since $Q \subseteq \overline{V}$, it follows that (i) $Q \subseteq \psi(\overline{\Omega}_0)$ or (ii) Q is disjoint from $\psi(\Omega_0)$. In view of the fact that $Q \cap W = \Gamma \cap W$, either one of these possibilities yields a contradiction. We conclude that some component τ of $f^{-1}(\gamma_k)$ for k = 1 or 2 has 0 as one endpoint and that f(z) has a limit equal to p_1 or p_2 as z approaches 0 along τ . As before, by choosing a different J_0 disjoint from the first choice, we get a different τ' with 0 as an endpoint along which f has a different limit. This contradicts Lindelöf's theorem, in its obvious vector formulation. We conclude that Q reduces to a single point; that is, f is continuous at x = 0.

Now we prove Lemma 4. Take any point \tilde{p} in Γ where $TC(\tilde{p})$ is a complex line; such \tilde{p} are dense in Γ . Without loss of generality, we may assume that $TC(\tilde{p})$ is the z_1 axis. Let π denote the coordinate projection $\pi(z) = z_1$ and write, for $z \in \mathbb{C}^n$, $z = (\pi(z), z')$ with $z' \in \mathbb{C}^{n-1}$. We claim that π is one-to-one on a neighborhood of \tilde{p} in Γ . If not, there would exist $\{p_n\}, \{q_n\} \subseteq \Gamma$ with $p_n \neq q_n$, $\pi(p_n) = \pi(q_n)$, $p_n \to \tilde{p}$, and $q_n \to \tilde{p}$. Then some subsequence of $(q_n - p_n)/\|q_n - p_n\|$ converges to a $v \in TC(\tilde{p})$ with $\|v\| = 1$ and $\pi(v) = 0$. Since π is injective on $TC(\tilde{p})$, this is a contradiction. Hence there exists an open Jordan arc γ in \mathbb{C} containing $\pi(\tilde{p})$ such that γ is the homeomorphic image by π of a neighborhood of \tilde{p} in Γ .

By decreasing r, we may assume that $f(\sigma_r)$ is bounded away from \tilde{p} . Thus, if \tilde{W} is a sufficiently small neighborhood of \tilde{p} , so that \tilde{W} is disjoint from $f(\sigma_r)$, then, by the proper mapping theorem, $(f(H_r) \cap \tilde{W}) \setminus \Gamma$ is a subvariety of complex dimension 1 of $\tilde{W} \setminus \Gamma$.

Consider the set $\pi^{-1}(\pi(\tilde{p})) \cap (f(H_r) \cup \Gamma)$, viewed as a subset of $\mathbb{C}^{n-1} = \{z_1 = \pi(\tilde{p})\}$. This set, near $\tilde{p}' \in \mathbb{C}^{n-1}$, consists of \tilde{p}' and a countable set of points in $f(H_r) \setminus \Gamma$. Let W_2 be an arbitrarily small neighborhood of \tilde{p}' in \mathbb{C}^{n-1} such that ∂W_2 is disjoint from $f(H_r) \cup \Gamma$. Now, if W_1 is a sufficiently small neighborhood of $\pi(\tilde{p})$ in \mathbb{C} , then $W = W_1 \times W_2 \subseteq \tilde{W}$ and $f(H_r) \cup \Gamma$ is disjoint from $\bar{W}_1 \times \partial W_2$. We can choose W_1 such that π maps $\Gamma \cap W$ homeomorphically to $\gamma \subseteq W_1$ and such that γ divides W_1 into two nonempty domains Ω_1 and Ω_2 , with $W_1 \setminus \gamma = \Omega_1 \cup \Omega_2$.

Let $V_j = f(H_r) \cap (\Omega_j \times W_2)$, j = 1, 2. Then V_j is a subvariety of $\Omega_j \times W_2$ and $\pi: V_j \to \Omega_j$ is a proper holomorphic map with some multiplicity m_j , j = 1, 2.

We claim that, by replacing W_1 and W_2 by smaller sets W_1' and W_2' , we can arrange that the restriction of π to $(f(H_r) \cup \Gamma) \cap (W_1' \times W_2')$ has fibers over γ consisting of one point: the unique point of $\Gamma \cap (W_1' \times W_2')$ lying over a given point of γ . The smaller set $W_1' \times W_2'$ may not contain \tilde{p} , but it will contain some point $p \in \Gamma$.

Consider a point $q \in (f(H_r) \setminus \Gamma) \cap (W_1 \times W_2)$ such that $\pi(q) \in \gamma$. Then π restricted to $f(H_r)$ is an open map near q and so maps each neighborhood of q in $f(H_r)$ to a neighborhood of $\pi(q)$ in C which consequently meets both Ω_1 and Ω_2 . We conclude that for each $\lambda \in \gamma$ there are at most $1 + \min(m_1, m_2)$ points q in $(f(H_r) \cup \Gamma) \cap (W_1 \times W_2)$ such that $\pi(q) = \lambda$. For each $\lambda \in \gamma$, let $m(\lambda)$ be the (finite) number of such q. Choose λ_0 such that $m(\lambda_0)$ is maximal and let $q_1, q_2, ..., q_t$ ($t = m(\lambda_0)$) be the corresponding points in $W_1 \times W_2$ with $q_1 \in \Gamma$ and $q_i \in f(H_r) \setminus \Gamma$ for $2 \le j \le t$; $\pi(q_i) = \lambda_0$ for $1 \le j \le t$. For $2 \le j \le t$ $j \le t$, choose small neighborhoods N_i of q_i in $f(H_r)$ such that the N_i are mutually disjoint and bounded away from q_1 . Then $\pi(N_i)$ is a neighborhood of λ_0 . Choose W_1' a neighborhood of λ_0 in $\bigcap_{i=1}^t \pi(N_i) \subseteq W_1$ and W_2' a neighborhood of $q_1 \in \mathbb{C}^{n-1}$, where $W_2 \subseteq W_2$ such that $W_1 \times W_2$ is disjoint from all N_i , $2 \le j \le t$. By the maximality of $t = m(\lambda_0)$, we conclude that for $\lambda \in$ $\gamma \cap W_1'$ the only point $q \in (W_1' \times W_2') \cap (f(H_r) \cup \Gamma)$ such that $\pi(q) = \lambda$ is the unique point $q \in \Gamma$ lying over λ . We can choose W'_1 and W'_2 so that π maps $\Gamma \cap (W_1' \times W_2')$ homeomorphically to $\gamma' = W_1' \cap \gamma$ and that $W_1' \setminus \gamma' = \Omega_1' \cup \Omega_2'$, two nonempty domains. By our construction, W'_1 and W'_2 have the desired property. We now change notation, dropping the primes, and thus may assume that π restricted to $f(H_r) \cup \Gamma$ has one-point fibers over γ . For the point p we take q_1 .

We claim the multiplicities m_1 and m_2 over Ω_1 and Ω_2 now satisfy $m_j = 0$ or 1, j = 1, 2. To see $m_1 = 0$ or 1 we argue by contradiction (the same argument for m_2). Suppose $m_1 \ge 2$. We define a bounded holomorphic function $F(\lambda)$ for $\lambda \in \Omega_1$ as follows. We have $\pi: V_1 \to \Omega_1$ an analytic cover of multiplicity m_1 . For $\lambda \in \Omega_1$, set $\{w_1, w_2, ..., w_{m_1}\} = \pi^{-1}(\lambda) \subseteq V_1$, counting multiplicity. Set $F(\lambda) = (\prod_{i < j} (P(w_i) - P(w_j)))^2$, where P is a polynomial chosen so that F is not identically zero on Ω_1 , but, as is well known, is holomorphic there. But if $\lambda_0 \in \gamma$ and if $\lambda \in \Omega_1$ approaches λ_0 , then $F(\lambda)$ approaches 0 because the fiber over λ_0 of $\pi \mid \overline{f(H_r)}$ has a single point. It follows, say by Rado's theorem, that $F \equiv 0$ in Ω_1 , a contradiction. We conclude that $m_1 = 0$ or 1.

Now the four cases of the lemma follow from the four cases $m_1 = 0$ or 1, $m_2 = 0$ or 1. Since the original set of points $\{\tilde{p}\} \in \Gamma$ was dense in Γ , it is clear that the points $\{p\}$ are also dense. This completes the proof of the lemma.

6. Proof of Theorem 3(b)

We may assume that x = 0 and that p = f(0) = 0. We may further assume that TC(0) is the z_1 axis. As in the proof of Lemma 4, the projection π to the first

coordinate is one-to-one on a neighborhood of 0 in Γ , and maps this neighborhood homeomorphically to a Jordan arc γ through 0 in the z_1 -plane. Then, assuming that $f = (f_1, f_2, ..., f_n)$ is continuous on $H_r \cup (-r, r)$ by (a) but not constant, it follows that f_1 is not constant.

Let l be the real tangent cone to Γ at 0, which, by hypothesis, is a real line. Clearly l is contained in the z_1 axis = TC(0). It is easy to check that l is then also the real tangent cone to γ at 0. Hence we can apply Theorem 1(b2) to f_1 for some $N \ge 1$. Since $|f_1| \le |f|$, we see that (b2)(i) for f_1 implies

$$\limsup_{\substack{z \to 0 \\ \text{Im } z \ge 0}} \frac{|f(z)|}{|z|^{N+\epsilon}} = \infty$$

for all $\epsilon > 0$. This means that f vanishes at 0 to order at most N.

References

- 1. L. Ahlfors, *Conformal invariants, topics in geometric function theory*, McGraw-Hill, New York, 1973.
- 2. H. Alexander, *Polynomial hulls and linear measure*. Complex Analysis II (Univ. of Maryland), Lecture Notes in Math., 1276, pp. 1-11, Springer, Berlin, 1987.
- 3. S. Alinhac, M. S. Baouendi, and L. Rothschild, *Unique continuation and regularity at the boundary for holomorphic functions*, preprint, 1989.
- 4. S. Bell and L. Lempert, $A C^{\infty}$ Schwartz reflection principle in one and several complex variables, preprint, 1989.
- 5. J. J. Carmona and J. Cufí, *On analytic functions with locally connected cluster sets*, preprint, 1986.
- 6. E. M. Chirka, *Regularity of the boundaries of analytic sets*, Math. USSR-Sb. 45 (1983), 291–335.
- 7. J. Globevnik and E. L. Stout, *Analytic discs with rectifiable simple closed curves as ends*, Ann. of Math. (2) 127 (1988), 389–401.
- 8. ——, The ends of discs, Bull. Soc. Math. France 114 (1986), 175–195.
- 9. ——, Boundary regularity for holomorphic maps from the disc to the ball, Math. Scand. 60 (1987), 31–38.
- 10. S. I. Pinchuk and S. V. Khasanov, *Asymptotically holomorphic functions and their applications*, Math. USSR-Sb. 62 (1989), 541–550.
- 11. Ch. Pommerenke, On analytic functions with cluster sets of finite linear measure, Michigan Math. J. 34 (1987), 93-97.
- 12. J. P. Rosay, Une remarque à propos de fonctions holomorphes et du front d'onde e[∞], Comm. Partial Differential Equations 12 (1987), 1323-1332.
- 13. ——, A remark on a theorem of Forstnerič, preprint, 1989.
- 14. H. Whitney, *Local properties of analytic varieties*, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N.J., 1965.
- 15. ——, Complex analytic varieties, Addison-Wesley, Reading, Mass., 1972.

Department of Mathematics MC249 The University of Illinois at Chicago Chicago, IL 60680