Boundary Behavior of
Certain Holomorphic Maps

H. ALEXANDER

1. Introduction

Our point of departure is the recent work of Alinhac, Baouendi, and Roths-
child [3] and of Bell and Lempert [4] on the boundary behavior of holomor-
phic maps from C to C”. In the scalar case n =1, the results may be formu-
lated as follows. Let H, denote the intersection of the open disk of radius r
centered at the origin with the upper half-plane, and let ¢, denote the closed
semi-circle in its boundary.

THEOREM. Let I' be a smooth Jordan arc in C. Let f be a holomorphic
Sfunction on H, such that the cluster set of f along [—r, r] is contained in I'.
Then .

(al) fextends to be continuous on (—r,r),
(@2) fis smooth on (—r,r)UH,, and
(b) f has finite order at each point of (—r, r) unless f is constant.

Part (al) is not explicitly stated in [4] but follows from the argument there
because the classical reflection principle yields such continuity. The mean-
ing of “smoothness” is € for f and I'" in [4], while [3] treats f in Lipschitz
spaces and T" being @* with k=2. In the former case, “finite order” at x
simply means that some derivative f)(x)#0; in the latter case it means
not of infinite order, that is, f(z) — f(x) = Oz — x)") does not hold for
every V.

The main objective in the cited work is to handle higher-dimensional map-
pings where I is replaced by a totally real manifold. The first results of this
type were due to Chirka [6]; previous work has also been done by Rosay [12]
and Pinchuk and Khasanov [10]. However, according to [3], the unique con-
tinuation property (b) is new even in the scalar case. It is proved in [3] and
[4] by PDE methods. We first consider the case when I' is not assumed to be
smooth but is just a (continuous) Jordan arc. It turns out that a sort of fi-
niteness (b1) still holds, with no assumption of smoothness.
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THEOREM 1. Let I" be a Jordan arc (or Jordan curve) in C. Let f be a ho-
lomorphic function on H, such that the cluster set of f on [—r,r] is con-
tained in I'. Then

(a) fextends to be continuous in (—r,r)UH,.

(bl) For each point x in (—r, r) there is, assuming f to be nonconstant, a
positive integer N such that f has finite multiplicity N near x in the
following sense: There exists a Jordan arc vy containing f(x) in its
interior and a one-to-one conformal map g of a small semi-disk cen-
tered at x and contained in H, to a one-sided neighborhood of v at
JS(x), with the real axis near x being mapped by g to v, g(x) = f(x),
and such that f= f(x)+ (g —g(x))N near x. There are N—1 Jor-
dan arcs each of which has x as one endpoint and all of whose other
points lie in H, and which are otherwise disjoint. These arcs together
with the real axis split H, locally at x into N sectors, each of which is
mapped conformally by f onto a one-sided neighborhood of T" at
Sf(x); the derivative of f is nonzero at all points of H, sufficiently

close to x.
(b2) Suppose that T has a tangent line at f(x). Then, for all ¢ >0,
. : |f(z)—f(x)]
1 lim su = 00,
) z—»xp Iz_xlN+e
Imz=0
. (@)= f(x)]
(ii) lim inf =0,
X |z—x|N"E
Imz=0

(iii) if f vanishes to infinite order at x, then f= f(x) in H,.

The hypothesis that I" have a tangent line at f(x) means by definition that
the real tangent cone to the set I' at the point f(x) is a real line. Part (bl)
shows that near a point xe(—r,r), f behaves geometrically much like a
function which is analytic in a full neighborhood of a point; that is, after a
(one-sided) change of coordinate, f looks like a power of z. In general (b2)
does not hold for e =0, even if I' is a @! curve. Rosay [13] discusses the ex-
ample f(z)=zlog(1/z) at x=0 where N=1 and the image of the real axis
is @l. Clearly in this case (ii) fails with e =0. Similarly the function f(z) =
z/log(1/z) is C' on H, and maps the real axis to a @! curve through the ori-
gin. It satisfies (i) and (ii) for N=1, but f’(0) =0 and (i) fails for e =0. If,
on the other hand, an f is known to be @V** (where a > 0) on [—r, r], then
(i) and (ii) imply that f(x) =0 for 0 <k <N and f™(x) 0. The proof
of (b2) involves very simple estimates of extremal length in certain quadri-
laterals.

In considering (a) of Theorem 1 it is natural to ask, more generally, what
properties of a set E, assumed to be a continuum (i.e., compact, connected,
and not reducing to a single point), ensure that a holomorphic function f
on H, with cluster set on [—r, r] contained in E always extends continuously
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to (—r, r). One such property, that E have finite 1-dimensional Hausdorff
measure, was conjectured by Globevnik and Stout [9] and verified indepen-
dently using different methods by Pommerenke [11] and in [2]. More general
results involving local connectivity were subsequently obtained by Carmona
and Cufi [5]; their hypotheses are directly on the cluster set of f, rather than
on a containing set £, and have a global character as they take f to be holo-
morphic on the unit disk with hypotheses on its global cluster set. The fol-
lowing gives a simple necessary condition for E which can often be easily
checked; for example, (a) of Theorem 1 is an obvious consequence. The
method of proof uses ideas from [2] which will also be useful for consider-
ing mappings into C” in Theorem 3 below.

THEOREM 2. Let E be a plane continuum with empty interior with the
Jfollowing property: For every continuum Q contained in E and every point
p in Q there exists a Jordan curve J such that

(i) peJ,
(i) ENJ is finite, and
(iii) Q meets both components of the complement of J.

Let f be a holomorphic function on H, whose cluster set along [—r,r] is
contained in E. Then f extends to be continuous along (—r,r).

The previously mentioned result of the case when E has finite linear measure
is a simple corollary; indeed, using the fact that almost every vertical line
hits F finitely often, one can easily produce J satisfying (i), (ii), and (iii).

Our last result involves extending Theorem 1 to the case when the Jordan
curve I' lies in C”. It is not known whether this result holds for an arbitrary
continuous Jordan curve I'. Globevnik and Stout [7] have shown, among
other things, that if I' is a rectifiable Jordan curve in C” and if f is a bounded
proper holomorphic mapping of the open unit disk into C”\I" (this amounts
to saying that f has cluster set contained in I'), then f extends to be contin-
uous on the unit circle. In fact, since coordinate projection decreases linear
measure, the continuity of the component functions of f follows immedi-
ately from the result (mentioned above) on functions with cluster sets of fi-
nite linear measure. In this connection, an example of Globevnik and Stout
[8, Ex. 8] is perhaps relevant. They showed that f can be one-to-one and
regular on the open unit disk, continuous on the closed disk, and map the
circle in a two-to-one fashion onto a Jordan curve I'.

In order to formulate a result which includes both the case of a Jordan
curve in C where no smoothness is required as well as the higher-dimensional
case where the assumption that I" be @!is sufficient, we utilize a notion of
complex tangent cone to I'. We define the complex tangent cone 7C(p) of
I' at p eI as follows: v e C"is in the tangent cone TC( p) if there exist g, T’
and p, eI converging to p and z,, € C such that z,(g,— p,) converges to v.
Whitney ([14], [15]) discusses a number of different complex tangent cones,
of which this is of his type Cs. In general, 7C( p) is a union of complex lines.
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For our purposes, to define the real tangent cone at p (a notion which we
have already used above), we take the z, to be real and positive and p,=p
for all #; this is the real analogue of Whitney’s C; type tangent cone.

THEOREM 3. Let T be a Jordan curve in C”" such that, at a dense set of
points p in ', TC(p) is a complex line. Let f be a holomorphic map from
H, such that the cluster set of f along [—r,r] is contained in . Then

(a) f extends to be continuous on (—r,r)UH,.

(b) Moreover, if TC(f(x)) is a complex line for xe (—r,r), and if the
real tangent cone to T" at f(x) is a real line, then f— f(x) does not
vanish to infinite order at x unless f is constant.

Two cases where the complex tangent cone hypothesis is clearly satisfied at
a point p are: (a) locally, near p, when I'" is contained in a holomorphic 1-
variety which is nonsingular at p; and (b) when I' is a @' manifold near p.

2. Proof of Theorem 1(b1)

As noted above, (a) follows from Theorem 2. We shall thus assume that f is
continuous up to the real axis and, in proving (b1) and (b2), we may assume
that x =0 and that f(x)=0.

We next define two multiplicities N;(f) and N,(f) for f at x=0. By de-
creasing r, we may assume that f is continuous on H, and that f 0 on the
closed circular part o, of dH,, since, taking f nonconstant, f # 0 on a dense
subset of [—r,r]. Then f(g,) is a curve with endpoints on I" and f(o,) is
bounded away from 0. Now I'" subdivides a small neighborhood of 0 into
two components, Q; and Q,, which are disjoint from f(g,) (and I') if the
neighborhood is sufficiently small. Then f(dH,) is the union of f(o,) and
the subset f[—r, r] of I. The winding number of f(dH,) about all points of
Q, is the same, call it N;(f); likewise define N,(f). These numbers cannot
both be zero, and moreover they decrease as r decreases. We may assume
that r is chosen so small that N;(f) are minimal. We claim that this implies
that f# 0 on H,\{0}. In fact, if f(z)=0 for some z € H, (z#0) then, for
some z’€ H, near z, f(z’) isin Q; or ©,. But by decreasing r so that z’ is not
H, we could then, by the argument principle, decrease N;(f) or N,(f), a
contradiction of minimality.

The origin subdivides I" into two closed “legs” meeting only at the origin.
We consider two cases. In the first case, the endpoints of f(o,) lie on the
same leg (and, as we know, are nonzero). We can deform f([—r,r]) inI' to
the arc in I" joining f(—r) and f(r). This does not change the winding num-
bers N;(f) and N,(f). Since the deformed closed curve (we have f(o,) un-
changed during the deformation) is bounded away from 0, we conclude that
Ni(f)=No(f).

In the second case, the endpoints of f(o,) lie on different legs of I". We
again deform f(dH,) to a curve 7 by deforming f([—r,r]) to the arcin I
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joining f(—r) to f(r). Since 7 agrees with I" locally at 0, we conclude that
the winding numbers N, (f) and N, (f) differ by 1. By relabelling, we may as-
sume that Ny(f) =N,(f)+1. We define N=N(f)=N,(f)+N,(f); N=1.

Set g=_f1/N (choose a branch). Then g is continuous on H,, g =0 only
at =0, and g is holomorphic on H,. To define v, consider the images of
the two legs ', and I'_ of T" under the maps w~ w!'/~. We get a set of 2N
Jordan arcs through 0 which are otherwise disjoint. Since g =0 only at 0,
g maps R* and R~ each into one of the 2N arcs. If we get two such arcs, let
v be their union. If they should coincide (we shall see below that in fact they
are different), choose + to be the union of the image arc and any other of the
2N —1 remaining arcs.

Now g becomes a mapping satisfying the hypotheses that f does, except
that I' is replaced by v; in particular, we have that N,(g) and N,(g) are well
defined.

LEMMA 1. N;(g)=1 and N,(g)=0.

Proof. Choose ge Q,(I") close to 0 such that g is a regular value of f and
such that the N roots g'/N=b,, b,, ..., by are regular values of g and such
that none of the b;’s are contained in . By reordering, we may assume that
there is an s (0<s=<N) such that b,e Q,(y) for k<s and b, € Q,(y) for
s<k=N. Set h(¢{)=¢N. Since hog = f,

f_l[q} =g_]{bl! bZ’ seey bN}
Counting these sets in two ways we get, by the argument principle,
Ni(f)=s-Ni(g)+(N—s)N,(g)=A.
Hence, since N;(g) =N,(g),

N=N;(f)=A=N,(g)-N.
This gives 1 = N,(g).

If N,(g) =1 then all of the above inequalities are really equalities. Hence
N = N;(f) and N,(g) = N,(g) = 1. Therefore N,(f) =0 and so N;(f)=1
and N=1. Hence g = f and N,(g) = N,(f) =0, a contradiction.

Therefore, N,(g) =0 and so N;(g) =1 and we are through. O]

Continuing with the proof of (b1), we have f=g®, where g is a conformal
map of a one-sided neighborhood of 0 in H, to a one-sided neighborhood
Q,(y) of v at 0.

Consider the 2N arcs I'YN and TN discussed above. Some of these lie in
Q,(v) and subdivide Q,(v) into sectors each of which is mapped by ¢~ V=
h({) to a one-sided neighborhood of T at 0. Since f=h-g and N,(g) =0,
we conclude that in @, (vy) there are N, (f) sectors which are mapped to Q(T")
and N, (f) sectors which are mapped to Q,(I"). Thus there are N sectors in
Q,(7). Pulling these sectors back to H, by g ! gives sectors claimed for H,.
Finally, since g is conformal and one-to-one, we have g’# 0 and hence f'# 0
in H,. U
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3. Proof of Theorem 1(b2)

The main step will be the following lemma. We shall consider quadrilaterals
of the form

S(ry, 1y, 01,0,)={re’’: ry,<r<r,and 6, <0<86,},

where 6, < 0;+ 2=; the four distinguished points are the intersections of the
boundary circular arcs with the boundary radial arcs. Consider the family
C of curves joining the two circular arcs. Then the extremal length \(C) =
log(ry/r;)/(6,—86,). In fact, log z maps the quadrilateral to the rectangle
fz:logri<Rez<logr,, 6;<Imz<0,} conformally. We just employ the
known extremal length for the rectangle; see Ahlfors [1, p. 53].

LEMMA 2. Let v, and v, be Jordan arcs containing the origin as an inte-
rior point and suppose that v, and v, each have a tangent line at 0. Let ¢ be
a one-to-one conformal map of a one-sided neighborhood W, of v, at 0 to
a one-sided neighborhood W, of v, at 0 such that ¢(vy,) €y, and ¢(0)=0.
Then, for all e >0,

X . le(2)]

1 limsup ——— = o

() z—»Op |Z|l+‘E
ZEWI

and

(i) 1iminf|‘°(f_)| =0.
z—0 |Z| ¢
ZEWI

Proof. For (i), it suffices to show that the lim sup is positive for all ¢ > 0.
Suppose not. Then |¢(z)|<|z|'*¢ for all z € W, with |z| sufficiently small,
say for |z| < p.

We may assume that the tangent line to v, and to vy, at z=0 is the real
axis. Choose > 0. We may also suppose that p is sufficiently small so that, if
wedW; (0<|w|< p), then we~; and thus either |arg w| <y or |arg w—7|<n.
Take 0 <6< p. It follows that S; = S(4, p, 3, * — ) is contained in W;. Choose
R >0 such that |¢(z)|= R if z€e W) and |z| = p. We have that if z€ W and
|z| =6 then |p(z)| <8'*< Then ¢(S;) € W,, and the images of the circular
arcs of S; which constitute two edges of the quadrilateral ¢(S;) are separated
by the circular edges of S,=S(6'7¢ R, —, w+7). Since the radial edges of
S, lie outside W,, they are separated by the corresponding edges of ¢(S)).
By the fundamental comparison principle on extremal length ([1, p. 54],
cf. Fig. 4-1 there), we have A(¢(Cy)) = M(C5), where C; is the family of
curves joining the circular boundary curves of S;. By conformal invariance,
A(C)) =\(C,). Hence

log(p/8) _ log(R/8'*°)
=27 w42y

Dividing by log(1/6) and letting 6 — 0, we have
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1 I+e€
= .
w—2n T+2y

Letting n— 0 gives 1/7=(1+¢)/m, a contradiction. We conclude that (i)
holds.
To obtain (ii) we need only apply (i)to y =\, O

To complete the proof of (b2), consider the 2N arcs, I‘L/N and T''/V, dis-
cussed above. Since the tangent cone to I' at 0 is a real line, it follows that
the tangent cones at 0 to any two consecutive arcs of the 2NV arcs are rays
through the origin making an angle of 7/N. Hence the curve vy constructed
above and associated to the mapping g =f "V is such that its two legs Y4
and y_ make an angle of 7 at 0. Thus we can apply Lemma 2 with ¢ =g,
v1=R, and vy, =+ to conclude that

lg(2)|

IZP+6_- ’

lim sup

z—0
Imz=0
and a corresponding statement for the liminf. Then (i) and (ii) of the theo-
rem follow from ]g(z)INE | f(z)|. Part (iii) follows since (i) and (ii) hold
unless f is constant. L]

4. Proof of Theorem 2

It suffices to show that f is continuous at x =0. By decreasing r, we may
suppose that f is bounded on H, and holomorphic on A,N{Im z > 0}, that
f'#0on ¢°, and that f has nontangential limits a.e. on (—r, r). We argue
by contradiction and suppose that the cluster set Q of f at 0 is a set of more
than one point; that is, Q is a continuum contained in E.

Our hypothesis gives, for an arbitrary choice of p in Q, a Jordan curve J
which meets E in a finite set {p,, p5, ..., bn}. Then J\E is a finite union of
open Jordan arcs vy, v», ..., Yn, Where the endpoints of vy, are p; and p,
(PN+1=p1). By modifying the v, we may assume that each v, contains none
of the singular values of f, the latter set being countable. Then all compo-
nents of f ~!(vy,) in H, are open arcs and these are mutually disjoint.

Consider a component 7 of f ~!(y,) for any fixed k. Consider the cluster
set in A, of one of the two “ends” of 7. If this cluster set meets ¢ at some
point b, then f(b) €, and f is locally one-to-one at b, and so 7 continu-
ously approaches b. Otherwise, the cluster set of the end of 7 is a connected
subset of AU[—r, r], where A is the countable set f ~{py, ps, ..., pn}. If this
(connected!) cluster set meets A then again it is a single point in A, by con-
nectedness. Finally the cluster set could be a subinterval of [—r, r]. We claim
this subinterval K reduces to a point. Suppose not. Since f maps 7 to v, the
cluster set of f along the end of 7 is a single point, either p; or p;, ;. This
implies that the nontangential limit of f is a.e. on K equal to p; or p;,;.
This implies that f is constant, which we are assuming is not the case. We
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conclude that K reduces to a single point. We have shown then that 7 has a
limit in H, along both its “ends.”

LEMMA 3. Foreach k (1<k=<N) there exists p (0 < p <r) such that only
finitely many components of f () meet H,.

Proof. Fix q € ~y;. Choose p (0< p <r) such that

(@) f~'(g)NH, is empty, and
(b) thelimit of falong o, at +p exists and is not equal to p; for 1< j<N.

Clearly (a) is true for all p sufficiently small since g ¢ E, and (b) holds for all
p except a set of measure zero.

From the above discussion of the components of f ~!(v;), it follows that
each component 7 is one of two types:

(1) .f(T) = Yk OF

() f(7) G vk
In type (2), at least one endpoint b of 7 lies on ¢ and satisfies f(b) € Y.

We argue by contradiction and suppose that f ~!(v,) contains an infinite
set of distinct components {7;} such that each r; meets H,. We may assume
that either all 7; are of type 1 or all are of type 2.

Suppose that all 7; are of type 1. Then there is a g, € 7; such that f(g;) =
By (a), g; is not in H Hence 7 connects g; to a point in H and so meets
0 at a point z;. Let z € g, be a limit point of the z;. If ze 0, Othen f(z)eJ
and f71(J) is, locally at z, just a finite set of arcs through z Wthh are other-
wise disjoint, as f’ vanishes at most to finite order at z. This contradicts the
fact that f~!(J) 2 {r,} which cluster at z. The alternative is that z be an
endpoint of o,. Then f*(z) e ENJ. But f*(z) # p; by (b) for all j, another
contradiction.

Now suppose that all 7; are of type 2. Then 7; joins some point of H, to o,
and so again meets o at some point z;. Just as before, this leads to a con-
tradiction. This proves the lemma. ]

Applying Lemma 3 for each &k, 1 <k <N, we see that if p is sufficiently small
then £~ (v4) N H, contains a finite number of components for all k. We
claim that one of these components converges to 0, at one endpoint. Sup-
pose not. Then, since the number of these components in H,, is finite, there
is a 8 (0<6<p) such that HsN f () is empty for all k. Consider the
open set W= f(H;). Then WNJ could contain at most the set {p;, ps, ...,
pn}- Since W is open, we conclude that W is disjoint from J. Since W is con-
nected, then either W lies in the bounded component of the complement of
J or in the unbounded component. Hence W does not meet both compo-
nents of C\J. As Q =W, this is a contradiction. We conclude that there is
an arc 7 in H, which goes to 0 such that the limit of f along 7 at 0 exists and
equals some p; e JN Q (since f(7) S J).

Now apply the hypothesis of the theorem again with p = p; and Q as be-
fore to get a Jordan curve J’ not containing p = p;. Repeating the above
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argument, we get another 7° which goes to 0 such that the limit of f along 7’
at 0 exists and equals some p’eJ’. As p’# p;, we get a contradiction to a
classical theorem of Lindel6f. We conclude that f extends to be continuous
at x=0. L]

5. Proof of Theorem 3(a)

It suffices to show that f is continuous at x = 0. For this we need the follow-
ing lemma, which says that the image of f, in some sense, looks like the im-
age of a continuous function near a dense set of points of I.

LEMMA 4. There exists a dense set of points p in T such that, after pos-
sibly decreasing r, there exists an affine change of coordinates in C" with the
JSollowing properties: The point p has coordinates 0. There exist an arbi-
trarily small neighborhood W, of 0 in C' and an arbitrarily small neighbor-
hood W, of 0 in C"~! such that, setting W=W,x W, < C", we have

TUSH)N W xoW2)=8 and (f(HI\S(H)NWSTNW.

Moreover, there exists an open Jordan arc vy in W, such that W\ v is a union
of two disjoint, nonempty domains Q, and Q,. The coordinate function z,
maps (I'U f(H,)) NW homeomorphically to a subset L of W; and maps
I'NW homeomorphically to . There are four possible cases:

(1) L=yUQ,,
(2) L=yUQ,,
(3) L=wy,
4) L=v.

Assuming Lemma 4 for the present, we continue with the proof of the theo-
rem. Arguing by contradiction, we suppose that the cluster set Q of f at
x =0 does not reduce to a single point. Then Q is a subarc of I"'. Choose an
interior point p € Q where Lemma 4 holds. Choose W sufficiently small so
that TNW < Q. Then, by Lemma 4, z, restricted to WN(I' U f(H,)) maps
homeomorphically to L € W,. Let ¢ be the inverse map.

Choose a Jordan curve Jy in W, such that JyN~ contains two points and
such that y meets both components C\ J,. Set J=y(J,) S W.

Then, if case (3) of the lemma holds, J is a Jordan curve such that JNT
consists of two points p; and p,, and J\I'is a union of two open Jordan arcs
v and vy, both contained in f(H,). If cases (1) and (2) hold, then J is a Jor-
dan arc with endpoints p, and p,, JNT' ={p,, p,}, and v,=J\I' € f(H,).
We set v, =6 for a uniform notation. Note that case (4) of the lemma does
not hold, since Q is the cluster set of fat 0 and QNW=TNW #0.

By choosing r and W sufficiently small we may assume that the closure of
f(o,) is disjoint from W. Also we may choose J to be disjoint from the singu-
lar values of f,. Now consider a component 7 of £ ~!(v,) in H, for k=1, 2.
Just as in the proof of Theorem 2, one shows that 7 has a limit at each of its
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“ends”; just as before, 7is an open arc in H,. Lemma 3 is also valid for f, the
proof being the same except that, since f(o,) is disjoint from W, there are no
7 of type (2). Hence, if p is sufficiently small then f ~!(y4)N H, contains a fi-
nite number of components for k=1, 2. We claim that one of these compo-
nents 7 has 0 as an endpoint. If not, then for some 6 (0<86<p), HsNf ' (vx)
is empty for k=1, 2.

Consider V' = f(Hj). Let Q, be the bounded component of C\ J,. V'is dis-
joint from 7, and v,, hence V is disjoint from J. Set V; =V Ny (Qy) and V, =
V\¥(Qy). Then V is a disjoint union of its relatively open sets ¥; and V,.
Since V is connected, it follows that (i) ¥=V; or (ii) V=V,. Since Q <V,
it follows that (i) Q € ¥() or (ii) Q is disjoint from ¥(Qy). In view of the
fact that QNW=T"NW, either one of these possibilities yields a contradic-
tion. We conclude that some component 7 of f ~'(y,) for k=1or 2 has 0 as
one endpoint and that f(z) has a limit equal to p; or p, as z approaches 0
along 7. As before, by choosing a different J, disjoint from the first choice,
we get a different 7’ with 0 as an endpoint along which f has a different
limit. This contradicts Lindel6f’s theorem, in its obvious vector formula-
tion. We conclude that Q reduces to a single point; that is, f is continuous
at x =0. L]

Now we prove Lemma 4. Take any point p in I where TC( p) is a complex
line; such p are dense in I'. Without loss of generality, we may assume that
TC(p) is the z; axis. Let 7w denote the coordinate projection 7(z) =z, and
write, for ze C”", z=(w(z), z’) with z’e C"~!. We claim that = is one-to-one
on a neighborhood of p in I'. If not, there would exist {p,}, {g,} ST" with
Dn # qn, ©(p,) =7(q,), Pp — P, and q,, = p. Then some subsequence of
(@n—Pn)/|@n—Pn| converges to a ve TC(p) with |v|=1and 7 (v) =0. Since
w is injective on TC(p), this is a contradiction. Hence there exists an open
Jordan arc v in C containing 7 (/) such that v is the homeomorphic image
by 7 of a neighborhood of p in I'.

By decreasing r, we may assume that f(o,) is bounded away from p. Thus,
if W is a sufficiently small neighborhood of p, so that W is disjoint from
f(a,), then, by the proper mapping theorem, (f(H,)NW)\T is a subvariety
of complex dimension 1 of W\T.

Consider the set = ~!(w(p))N(f(H,)UT), viewed as a subset of C"~!=
{z;=7(p)}. This set, near p’e C"~!, consists of 5’ and a countable set of
points in f(H,)\I'. Let W, be an arbitrarily small neighborhood of 5’ in
C"~! such that W, is disjoint from f(H,)UT. Now, if W, is a sufficiently
small neighborhood of 7(p) in C, then W=W;xW,< W and f(H,)UT is
disjoint from W; x dW,. We can choose W, such that = maps I' " W homeo-
morphically to v € W, and such that v divides W, into two nonempty do-
mains 2; and Q,, with W \y=Q,UQ,.

Let V;=f(H,)N(Q;xW,), j=1,2. Then V; is a subvariety of ;X W, and
7: V;—Q; is a proper holomorphic map with some multiplicity m;, j =1, 2.
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We claim that, by replacing W, and W, by smaller sets W} and W7, we can
arrange that the restriction of 7 to (f(H,)UT')N(W{ X W3) has fibers over vy
consisting of one point: the unique point of I' N (W] X W3) lying over a given
point of . The smaller set W] x W; may not contain p, but it will contain
some point peT'.

Consider a point ge (f(H,)\I') N (W, X W,) such that w(g)e~y. Then 7 re-
stricted to f(H,) is an open map near g and so maps each neighborhood of g
in f(H,) to a neighborhood of 7(g) in C which consequently meets both ©,
and Q,. We conclude that for each A € y there are at most 14 min(m, m;)
points ¢ in (f(H,)UT)YN (W, xW,) such that w(g)=\. For each Ae v, let
m(\) be the (finite) number of such g. Choose A\, such that m()\y) is maxi-
mal and let q,, @5, ..., g, ({ = m(\y)) be the corresponding points in W; X W,
with g;eT" and g;e f(H)\I' for 2<j<t; w(q;) =N for1=j=<t Forl=<
J =t, choose small neighborhoods N; of g; in f(H,) such that the N; are
mutually disjoint and bounded away from g;. Then 7 (V;) is a neighborhood
of Ag. Choose Wy a neighborhood of Ny in N5 w(N;) € W, and W a neigh-
borhood of g{e C"~!, where Wj < W, such that W] x Wj is disjoint from
all N;, 2=<j=<t. By the maximality of /= m(\,), we conclude that for e
vNW/{ the only point g e (W{xW3)N(f(H,)UT) such that w(g) =\ is the
unique point g € I" lying over A. We can choose W/| and W so that = maps
I'N(W{xW;) homeomorphically to v'=W/N+vy and . that W{\vy'=Q{UQ3,
two nonempty domains. By our construction, W and W3 have the desired
property. We now change notation, dropping the primes, and thus may as-
sume that 7 restricted to f(H,) UT has one-point fibers over +y. For the point
p we take q;.

We claim the multiplicities 72, and m, over @, and Q, now satisfy m; =(Qor
1, j=1,2. To see m; =0 or 1 we argue by contradiction (the same argument
for m,). Suppose ;= 2. We define a bounded holomorphic function F(\)
for Ae Q; as follows. We have «: V;— Q; an analytic cover of multiplicity
my. For Ne Qy, set {wy, wa, ..., wm, } = 7 ~1(\) €V}, counting multiplicity. Set
F(N)=(I1i<j(P(w)) ——P(wj)))z, where P is a polynomial chosen so that Fis
not identically zero on Q,, but, as is well known, is holomorphic there. But
if Age vy and if Ae 2, approaches Ay, then F(\) approaches 0 because the
fiber over A\ of 7| f(H,) has a single point. It follows, say by Rado’s theo-
rem, that =0 in Q,, a contradiction. We conclude that ;=0 or 1.

Now the four cases of the lemma follow from the four cases m;=0 or
1, m, =0 or 1. Since the original set of points {5} eI was dense in I, it is
clear that the points {p} are also dense. This completes the proof of the
lemma. L]

6. Proof of Theorem 3(b)

We may assume that x = 0 and that p = f(0) = 0. We may further assume that
TC(0) is the z, axis. As in the proof of Lemma 4, the projection 7 to the first
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coordinate is one-to-one on a neighborhood of 0 in I', and maps this neigh-
borhood homeomorphically to a Jordan arc v through 0 in the z;-plane.
Then, assuming that f=(f}, f2,...,f,) is continuous on H,U(—r, r) by (a)
but not constant, it follows that f; is not constant.

Let / be the real tangent cone to I' at 0, which, by hypothesis, is a real line.
Clearly / is contained in the z; axis = TC(0). It is easy to check that / is then
also the real tangent cone to vy at 0. Hence we can apply Theorem 1(b2) to f;
for some N=1. Since | f1| <|f|, we see that (b2)(i) for f; implies

FACII

lim sup PILEE =

z—0
Imz=0

for all e > 0. This means that f vanishes at 0 to order at most N. ]
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