Traces and the Bass Conjecture

JAMES A. SCHAFER

1. Introduction

Let A be an arbitrary ring with unit. If P is a finitely generated projective
A-module then one would like to associate to P a rank function generalizing
the function which assigns to the free A-module A” the integer n. Since in
the commutative case n is the trace of the identity endomorphism of A4”,
one wishes to define a trace for endomorphisms of finitely generated projec-
tive A-modules in the case of noncommutative A. This was achieved inde-
pendently by Hattori [7] and Stallings [12]. Unfortunately, in order for the
“trace” to have the natural property of a trace function (i.e., for the trace
of a-b to be equal to the trace of b-a), one is forced to have the trace take
values not in 4 but in A/[A, A], where [A, A] is the subgroup of A gener-
ated by all commutators ab— ba. The resulting trace function

trp: End4(P) > A/[A, A]

has many of the properties of the trace function in the commutative case,
including additivity, commutativity, and linearity. For details, see [2]. For
the results of this paper, the only two properties that will be needed are as
follows.

(1) Functoriality. If oo: A - B then « induces a map «: A/[A, A] —
B/[B, B], and if u € End 4(P) then

trp®3(u®id) = Ol*(trp(u)).

(2) Linearity. Suppose P = P;@® P, and u € End4(P) restricts to u; €
EndA(Pl) and to PXS EndA(Pz); then

trp(u) =trp (1) +trp, (7).

This last property allows one to note that, if P is a finitely generated projec-
tive A-module and one defines the rank rp of P to be trp(idp), then if Pis a
direct summand of the free A-module F and e: F— F is the idempotent de-
fining P (i.e., P =e(F)) then rp=trg(e). Also, since e M (A) for some d
and the matrix defining e only involves finitely many elements of A4, we see
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from Property (1) that there exists a finitely generated subring A’ of A and a
finitely generated projective A’-module such that rp = a.(7p-), where « is the
natural map of A4’ into A.

If R is any commutative ring and G an arbitrary group, then it is easy
to see, for the group ring R(G), that 7(G) = RG/[RG, RG] is the free R-
module with one generator for each conjugacy class of G. (For g,he G,
gh—hg=h"g’h—g’, where g=h"1g’.) One denotes the component of rp
on the conjugacy class s by rp(s). The Bass conjecture [3] is then as follows.

Let G be an arbitrary group and R any subring of the complex numbers C
which intersects the rationals Q only in the ring of rational integers Z. Then,
for any finitely generated projective RG-module P, rp(s)=0if s #1.

The object of this paper is to describe Linnell’s result [9] for the ring Z and
our generalization to any subring of the ring of algebraic integers in C. It
will follow that the Bass conjecture is valid for locally finite and residually
finite groups.

2. Statements and Proofs

We wish to give an account of Linnell’s proof of the Bass conjecture for
locally finite groups, and for residually finite groups in the case of integral
group rings and our slight extension to group rings over rings of integers in
number fields.

Let R be a ring of integers in an algebraic number field, P a prime ideal of
R, G an arbitrary group, and R(G) the group algebra. The following lemma
is implicit in CIiff [4].

LEMMA 1. Let A be a ring of characteristic p" and e e M,;,(A(G)) an idem-
potent. Then IN>O0 and a,,...,aye A, &,,...,gn€ G such that, for any
k=1,

A(G)
[A(G), A(G)]

tr(e)=Y a”* (g e

Now suppose that p is a rational prime in R, (p)=P°...; that is, P lies over
p and has exact power e dividing (p). Then using valuations it is easy to see
pE-Deting = (p°) with s=1and 1< j <e. It follows that the ring R/"
contains the ring Z/p* where n=(k—1)e+j, 1< j=<e.

LEMMA 2. The characteristic of (R/P")=p*, n=(k—1)e+j, 1<j=<e.

Proof. In light of the above discussion we see that p*-1=0; thus p¥ is a
multiple of the characteristic of R/%" and therefore char(R/%”")=p" with
l=sr<k.

If p”-1=0then there exists a map Z/p"— R/P" induced by the inclusion of
Zin R, and therefore a map (p)” — P" which must be a monomorphism since
it is the restriction of one. That is, (p)"' S P"NZ=(p*). Hence r=k. 0O
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We will also have need of the following.

LEMMA 3. Let f=residue degree =|U(R/*P")|. Then for all a € R and any
n=1, (a?" "/=aqr""" mod P”.

Proof. If q=pfthen R/‘P=F and we must show, for any a € R, that

If aeP then a”eP” and p"~'=n for all primes p and all n=1. If a¢ P
then ¢ is a unit in the local ring R/*P" and maps to a unit in R/P = F, under
the natural map. Hence a9 'e kernel(U(R/P") - U(R/P)) =1 +J where
J=P/P" Filtering 14+J by 14+J' with J'=PY/P" and using the fact that
the multiplicative group 1+J/1+J'*! is isomorphic to the additive group
PY/*! (which in turn is isomorphic to R/%P), we see that if b€ 1+J then
bP"~'=1. Therefore (a9~1)?"""'is congruent to 1 modulo P”. O

By raising both sides of the above congruence to the p!"~"4~D_power we
have the following.

COROLLARY. IfaeR and n=1, then a?™ =a?""" mod P".

LEMMA 4. Let x € G and suppose that x is conjugate to x?" for some u~ 0
and that x is of finite order. Then order(x) is relatively prime to p.

Proof. Let x*=1 and suppose s = p-m. Then
id=idr,* '= (xs)P*~! = xpim xm

since x?" ~ x. Hence x™” =id. O

We are now in a position to state and prove the generalization of Linnell’s
result.

THEOREM. Let R be the ring of integers in a number field and let G be an
arbitrary group.

(a) Let P be a prime in R with PNZ = (p) and let Q be a finitely gen-
erated projective Rp(G)-module. Let f=[R/*P: ¥,] and suppose that
xe€G with ro(x) #0. Then x is conjugate to xP" for some u>0 and
ro(x) = rQ(fo)

(b) Suppose Pis a finitely generated projective R(G)-module and x € G\ 1
with rp(x) #0. Then there exist subgroups C,H< G with xe CCH
and C=Q™, H is finitely generated, and the elements of C lie in fi-
nitely many H-conjugacy classes.

Proof. (a) Let Q correspond to the idempotent e e M;(RpG). Since ro(x)=
tr(e),# 0 € Ry, 3n =2 such that ro(x) ¢ P". Let S=Ryp/P" and let o be the
image of e in M4(SG). By Lemma 2, char S=p” where n=(m+1)e+J,
1 =< j=<e. Cliff’s result, together with Lemma 3, implies that by choosing
k =n,n+1 there exist N>0and a,...,aye S, g, ..., gv € G such that
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tr(e) =3 a;-[gi1=3 a;-[g7].

Let C(G) denote the conjugacy classes of G and T: C(G) — C(G) the map
senc}mg [g] to [gl’f] Let b; =% a;, where [g;] ~ [g;]; let bi=3 b;, where
[g/"1~[gf ’]. Then

tr(e) =3 bilg;1 =3 b;lg? 1€ T(SG).

If A=supp(a) < C(G) and/{g,] € A (i.e., b; # 0), then the above show that
there exists _] such that [gf"]=[g;] and b b; # 0. Since b =Xb;, 3gre A
w1th gi~ that is, AC T (A) and hence equal since A is ﬁmte Since x € A,

=|A|= 1 and A~ NP“for all e A; therefore x ~xP*, Moreover, T|, a bi-
Jectlon implies that &; ~ x if and only if g7 ~xl’f and so

rko(x) =rko(x?")ymod P”.

Since n can be arbitrarily large, rky must have the same value on x and xp,
(b) Let P be a finitely generated projective RG-module. By considering
the idempotent determining P we can find a finitely generated subgroup H
of G and a finitely generated projective module Q over RH such that ry
maps to rp under the natural map 7H — 7G. Since rp(x) # 0 we may (by
taking a conjugate in G, if necessary) assume x € H.
For each rational prime p let

S(p)=min{[R/P: F,]|P|p}.

By (a), ro(x) =ro(x?”%”) for all p. This implies that, if # is any rational in-
teger with f(p)lvp(n) vp|n, then rg(x)=rgo(x"). Also from (a) we have
that, for all p, x ~ x?*” for some u( p) > 0. Note that f(p)| u(p) Let p; be
the ith prime. By the above there exists g;e H with g;-x-g71=x"® where
n(i)=ptPd, Let r; be any sequence of integers >0, m; = n(r;)---n(ry), and
h;=gr;+-- & If we define x; = h;'-x- by and xo=x, then it is clear that
Xr_1 =XV, Hence if Cy is the cyclic subgroup generated by x; then we
have x € Cl__ CCrc---€H. Let C= C, < H. To show C= Q we first
note that x is of infinite order by Lemma 4, since x is conjugate to a pth
power of x for all primes p. We obtain the following exact ladder:

7 n(rl); 7 n(rz)L 7 n(r3)‘ 7z

i 1 lml"l lmz_l lm{l
1 1 1

Q— Q—Q—— Q-

We thus obtain a monomorphism C— Q. In order to see that this map is
onto, we first choose the sequence r; so that every positive integer appears in-
finitely often. This guarantees that, by going far enough out in the sequence,
any arbitrarily high power of p will be inverted and hence any a/b € Q will
be in the image. To see that C is contained in only finitely many H-conjugacy
classes, we note that any element of C equals xj for some & and s and that
xi = (X 41)" %%, Since n(i) = p/»? and f(p;) |u(p;), we see that by going far
enough out in the sequence we can represent any element of C by (x;)"
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where, for all p|n, f(p)|v,(n). Since x; is H-conjugate to x,
ro(xg)=ro(x")=rg(x)

by the divisibility condition on n. Since ro(x) # 0 and supp 7k, is finite, we
see that the elements of C must be contained in finitely many H-conjugacy
classes. L]

COROLLARY 1. Let R be any subring of the ring of algebraic integers A
in C. Then the preceding theorem is valid for R.

Proof. 1f P is a finitely generated projective R(G)-module and e € M;(RG)
the corresponding idempotent, then the entries of e contain only a finite
number of elements from R (and from G). So if S is the subring of R gen-
erated by these elements then P is induced from a projective S(G)-module
and SS K c C (K a number field), and so S<S Ay the integers in K. Hence
the validity of the theorem for A g implies its validity for R by the functor-
iality of the rank. L]

COROLLARY 2. Let RS A, and let G be an arbitrary group. If Pis any fi-
nitely generated projective RG-module, then rp vanishes on any conjugacy
class of finite order not equal to the identity.

Proof. This is just (a) of the Theorem and Lemma 4. [l

COROLLARY 3. Let RS A. Let G be a group of residually bounded ex-
ponent; that is, given any x #1 in G, there exists a homomorphism ¢ of G
into a group H such that ¢o(x) # 1 and that 3An=1so that h" =1 forall he H.
Then, for any finitely generated projective RG-module P, rp(x)=0 for all
x#1.

Proof. There exist no nontrivial homomorphisms of Q into such a group
H, since the image must be divisible. The result follows from part (b) of the
theorem. Ll

Note that since residually finite groups are obviously residually bounded ex-
ponent, the following classes of groups satisfy Bass’s conjecture for subrings
of the ring of algebraic integers in C:

(a) groups with a faithful representation over some field (this is equiva-
lent to “every finitely generated subgroup has a faithful representa-
tion over some field [M;]”);

(b) polycyclic groups (equivalent to solvable groups with maximum con-
dition);

(c) extensions of abelian groups by nilpotent groups, and consequently
any meta-abelian group;

(d) the fundamental group of a graph whose vertex groups are residually
finite and whose edge groups are finite.



108 JAMES A. SCHAFER

For (a), Mal’cev [10] proves that finitely generated subgroups of matrix groups
over fields are residually finite. That polycyclic groups are residually finite
was proven by Hirsch [8]. (d) follows since amalgamated free products of
residually finite-by-finite groups are residually finite. As for (c), Hall [6]
shows that finitely generated groups which are extensions of abelian groups
by nilpotent groups are residually finite. But it is easy to see that that hy-
pothesis on G passes to the finitely generated H of part (b) of the theorem.

REMARKS. (1) Polycyclic groups are contained in the class of solvable
groups with finite Hirsch number. These groups cannot be of the type in
part (b) of the theorem, since a finitely generated solvable group of finite
Hirsch number contains a finite index subgroup which is an extension of a
nilpotent group (the Hirsch-Plotkin radical) by a free abelian group of fi-
nite rank [1]. By Hall’s theorem [6] this subgroup is residually finite and
hence so is the original group.

(2) We have all the classes given by Eckmann [5] except for groups of
cd <2. Groups of cd =1 are free and thus residually finite, so we only lack
those of cd =2.

3. An Example and a Question

In [6], Hall produces an example of a finitely generated solvable group G of
class 3 which contains a normal subgroup isomorphic to Q“, a vector space
of countable dimension over the rational field Q. Let V be an infinite-dimen-
sional vector space over Q with basis v,,, m=0, £1,+2,.... Let p,, (meZ)
be an enumeration of the primes with p,, # p, if m # n, and let H be the sub-
group of Auty (V) generated by T and S where

T(Um)zvm+l’ S(vm)=pm'vm-

G is the semi-direct product of V and H. It is not difficult to see that G
is generated by three elements, H is meta-abelian, and ¥ is a minimal nor-
mal subgroup of G. Moreover, the conjugacy class determined by v, con-
tains the subgroups Qu,, for any m and hence any one of these subgroups is
contained in a single conjugacy class. G therefore fulfills the conditions in
part (b) of the theorem. Note also that G is of infinite cohomological dimen-
sion since it contains a copy of Q¢ which is obviously of infinite cohomolog-
ical dimension. Hence we have the following.

QUESTION. If G is a finitely generated group containing a copy of Q which
is contained in only finitely many conjugacy classes of G, must G necessarily
be of infinite cohomological dimension? Or better, must G contain a copy
of Q“?

NOTE. If G is solvable then the answer to the first question is yes, since fi-
nite cohomological dimension is equivalent to finite Hirsch number for solv-
able groups, and these are residually finite by Remark (1).



Traces and the Bass Conjecture 109

References

—

. R. Baer and H. Heineken, Radical groups of finite abelian subgroup rank, 1lli-
nois J. Math. 16 (1972), 533-580.
2. H. Bass, Euler characteristics and characters of discrete groups, Invent. Meth.
35 (1976), 155-196.

, Traces and Eucler characteristics, Homological Group Theory (C. T. C.
Wall, ed.), London Math. Soc. Lecture Note Ser., 36, pp. 1-26, Cambridge Univ.
Press, Cambridge, 1979.

4. G. H. Cliff, Zero divisors and idempotents in group rings, Canad. J. Math. 32
(1980), 596-602.

5. B. Eckmann, Cyclic homology of groups and the Bass conjecture, Comment.
Math. Helv. 61 (1986), 193-202.

6. P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc.
(3) 9 (1959), 595-622.

7. A. Hattori, Rank element of a projective module, Nagoya J. Math. 25 (1965),
113-120.

8. K. Hirsch, On infinite soluble groups. III, Proc. London Math. Soc. (2) 49
(1946), 184-194.

9. P. A. Linnell, Decomposition of augmentation ideals and relation modules,
Proc. London Math. Soc. (3) 47 (1983), 83-127.

10. W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305-316.

11. A. Mal’cev, On isomorphic matrix representations of infinite groups, Mat. Sb.
(N.S.) 50 (1940), 405-422.

12. J. Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem,

Topology 4 (1965), 129-134.

Department of Mathematics
University of Maryland
College Park, MD 20742






