Support Sets and Gleason Parts

PAUL BUDDE

1. Introduction

The function algebra H ® is the collection of all bounded holomorphic func-
tions in the unit disc D of the complex plane. Under the supremum norm it
is a Banach algebra. The Gelfand theory represents H~ as a subalgebra of
C(M), the algebra of continuous, complex-valued functions on M, the max-
imal ideal space of H*. With the weak-star topology M is a compact Haus-
dorff space, and the point evaluations for points in the disc form a dense
subset [3].

For points z and w in the disc, the pseudo-hyperbolic distance from z to
w is
Z—wW

o(zZ,w)=

1—-wz
Pick’s lemma states that, for z and w in D and f a nonconstant H * function
with norm not exceeding 1, p(f(w), f(2)) < p(z, w). Taking points ¢ and
¥ in M and extending p to M XM by p(¢, ¥) =sup{p(f(¢),f(¥)): fe H®,
|f]lo <1}, we can partition M into equivalence classes known as Gleason
parts, calling ¢ and ¥ equivalent provided p(¢, ) <1. We denote the Glea-
son part to which ¢ belongs by P,.

Hoffman [9] has shown that the Gleason parts of M are either singletons
or discs. For the latter case he constructed [11] a one-to-one map L,, of D
onto P,, sending 0 to m such that f-L,, is holomorphic for all fin H*. Such
parts and points are called analytic, while points whose Gleason parts are
singletons are called trivial.

Viewing H* functions as continuous over the Shilov boundary of M,
which is the maximal ideal space of L™ and which we denote by X, one can
represent an element ¢ of M as integration against a positive measure p4:
Sf(¢)=] fdps. This representation allows us to extend ¢ to L™ in such a
manner that the Gelfand transforms of L* functions are also continuous on
M. The measure p, is called a representing measure, and its support in X is
known as a support set. Points in the same Gleason part have the same sup-
port set [9]. Support sets may meet, but if they do then one is entirely con-
tained within the other (unpublished work of Hoffman).
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The way one studies points of M outside of the disc is by looking at clos-
ures of sequences in D. Two types of Blaschke sequences are of particular
interest in such study. An inferpolating sequence (z,,) is one for which

I1

n,n#m

Lm—4n

>0
1—52m

for some positive 6 and all m. An interpolating sequence is thin if and only
if the limit of the above product as m approaches oo is 1. If a point lies in
the closure of an interpolating sequence, then so too does every point in its
Gleason part; these are precisely the analytic points. A point is called thin if
it lies in the closure of a thin sequence. It can be shown that any part which
contains a thin point consists entirely of thin points (see, e.g., [8]).

A more in-depth introduction to the study of the maximal ideal space of
H*® can be found in [10].

In this paper the closure of a Gleason part is shown to be a union of parts
(Theorem 2.3). For points of M in the closure of a certain broad family of
curves approaching the boundary of the disc in a somewhat steady fashion,
the support set of a point is shown to be contained in the support set of an-
other point if and only if the Gleason part of the first point lies in the closure
of the Gleason part of the second (Theorem 5.7). Finally, it is shown that
for two curves in D meeting the boundary at 1, one curve more tangential
than the other, then the support set for any point in the closure of the less
tangential curve contains a support set of a point in the closure of the more
tangential curve (Theorem 5.8). Hence, order of tangency in some sense
orders support sets, yet has no relation to the topology of Gleason part
closures.

Some of this work was part of the author’s 1982 dissertation at the Univer-
sity of California, Berkeley. The author is grateful to Donald Sarason for his
assistance at that time, and to the referee for his or her helpful comments.

2. Closures of Gleason Parts

We wish to study the closures of the analytic Gleason parts in M. Our main
tool will be an extension of the maps L,, to all of M: L,,,(¢)(f)=¢(f-L,,),
for fin H™. Then it is easy to see that the extended map is a continuous map-
ping of M onto the closure of P,,, and that it maps points in the same part to
the same part. We would now like to show that the range of L,, is a union of
Gleason parts. Recall Hoffman’s construction of L,,: for x and y in the disc
define the maps L,(y)=(y+x)/(1+xy). If a net (x(«)) converges to m,
the maps L,,) converge pointwise to L,,. This will be combined with the fol-
lowing lemmas to obtain our result.

LEMMA 2.1. For x, y, and z in D,
Lo(Ly(x)) =Ly ) (x(1+27) (1+29) 7).



Support Sets and Gleason Parts 369

LEMMA 2.2. Let m(c) be a net in M converging to m, and let (x(«)) be a
net in D converging to a point x in D. Then L,,,,(x(c)) converges to L,,(x).

The first proof is purely computational, while the second follows from the
fact that the holomorphic functions feL,,, converge pointwise and bound-
edly on D—and hence, uniformly on compact subsets of D—to feL,,.

THEOREM 2.3. If ¢ belongs to P, and y lies in the Gleason part of ¢, then
7 belongs to P,,.

Proof. It will be enough to find ¢ in M with L,,(¥)=r.

Since ¢ is in P,,, for some ¢ in M we have L,,(¢) = {. Take nets (z(«)) and
(¥(B)) in the disc converging, respectively, to m and ¢, and let M, and M,,
be the respective fibers of m and ¢. Since 7 is in P, for some x in D we have
L¢(x)=mn. Setting y equal to Ly(x0,/ay), we claim L, () =1.

By Lemma 2.1,

X0, xoz(1+z()y(B))
2.1 Lygy—= |= — .
=D L“‘“’( . 01) L"Z(ﬂ)‘y‘ﬁ”( ol<1+z<a)y<6>))

Since L,,)(y(B)) converges to L,,(y(8)) as o — oo, Lemma 2.2 applied to
both sides of (2.1) gives

¥ xo,(140,(B))
(2.2) Lm(%(ﬁ)'ff‘):l‘*ﬁm‘y‘ﬁ”( <:2(1+a—(:ly(6)) ) '

Since L,gy(x0,/01) converges to ¢ as 8 — oo, and since L, is continuous,
the left side of (2.2) converges to L,, (). Again by Lemma 2.2, the right side
of (2.2) converges to Ly _(4)(x). Thus, L, (¥) =L¢(x)=1. O

COROLLARY 2.4. If misin the fiber of M over o, and ¢ is in the fiber over
03, and if S is the rotation defined by S(x) = xo, /oy, then L, Ly°S(x) =
LLm(¢)(X).

COROLLARY 2.5. Ifxisin P,andy is in P, then x is in P,.

The first corollary is simply a restatement of the main calculation in the the-
orem, while the second is an immediate consequence of the theorem.

Corollary 2.4 is a statement about factorization; this is emphasized in the
following reformulation.

COROLLARY 2.6. Suppose that P, is contained in P,, and let ¢ satisfy
L,,(¢)=4. Then Ly=L,°Ly°S, where S is a rotation of the disc extended
continuously to M.

COROLLARY 2.7. IfL,(¢)=y andyisan analytic point, then the restric-
tion of Ly, to P, is a one-to-one map onto Py.

Proof. By Corollary 2.6, Ly = L,,°L4°S. This shows that when restricted to
P,, the image of L, is precisely Py. That the map is injective follows from
the fact that L, is one-to-one. |
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As a final consequence of this result, we see that there is an abundance of
trivial points in M, for if ¢ is any trivial point then so too is L,,,(¢). In par-
ticular, we have the following.

COROLLARY 2.8. For every point m in M there is a trivial point in P,,.

Whether every trivial point, excluding those in the Shilov boundary, lies in
the closure of an analytic part is unknown.

At this point it should be noted that Abram and Weiss [1] have also looked
at extensions of analytic maps from D to analytic parts. Using the theory of
transformation groups, they too have shown that the closure of a Gleason
part is a union of parts, and that any such closure contains trivial points.

Mortini [12] has conjectured that any closed, primary ideal of H® con-
tained in a maximal ideal determined by a trivial point is itself maximal. (An
ideal is primary if it is contained in a unique maximal ideal.) He has used the
existence of these trivial points in the closure of analytic parts to show that
there exist nonmaximal, closed prime ideals (ideals 7 for which if fe I and
f =gh then either g or he ) which lie in a maximal ideal determined by a
trivial part. Indeed, if ¢ is an analytic point, then I ={fe H™: f vanishes
identically on P} is such an example. In contrast to this, he has shown that
any closed, prime ideal contained in a maximal ideal determined by a point
in X is itself maximal.

For a thin point 7, Hoffman [11] has noted that L, is a homeomorphism
of the disc. In fact, if (z,,) is a thin sequence containing # in its closure, and
if B(z) is the Blaschke product with zero sequence (z,), then BeL, (z)=
Az for some constant A of unit modulus. Likewise, in case m is an oricycular
point and L,, a homeomorphism, Gerber and Weiss [5] have shown that L,,
is inverted by a multiple of a Blaschke product. The question of whether L,,
or its extension to M is a homeomorphism is equivalent to the question of
whether it is one-to-one. From Corollary 2.7, we see that a sufficient condi-
tion for L,, to be one-to-one is that it map distinct parts to distinct parts.
Hoffman [11] has constructed a point m in M for which L,, maps some points
in M —D into P,,, and so L,, is not a homeomorphism. His example actually
produces two distinct Gleason parts whose closures are identical. This can-
not happen if L,, is a homeomorphism, as the next result shows.

PROPOSITION 2.9. For some point Y of M suppose L, is a homeomorph-
ism. If Py =P, then ¢ and y belong to the same Gleason part.

Proof. Take points m; and m, in M such that L,(m;) =y and L, (m,)=¢.
Then
L¢(0) = ¢ =LL¢(m2)(m1) =L¢°Lm2°S(mI)

for some rotation S. Since L is one-to-one, we conclude that m, is a point
of the disc, and so ¢ is in Py. O
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For a thin point m, not only is L,, a homeomorphism but P,, is also maxi-
mal; that is, P,, does not lie in the closure of another Gleason part aside (of
course) from the disc itself. To prove this we will use the following lemma.

LEMMA 2.10. Let (z,) be an interpolating sequence and let ¢ € (z,). If
¢ € Py, then ¢ also lies in the closure of those points in P, which (z,,) meets.

Proof. Suppose ¢ eﬁ‘; and Ly(m)=¢. Let K be the closure of P¢ﬂ(z—7{_).
Let us assume that ¢ ¢ K. Take disjoint, open neighborhoods U and V of
¢ and K, respectively. Let (w;) be the subsequence of (z,,) which lies in U,
and let its associated Blaschke product be A(z). Then A(¢)=0. Let g(z)=
A-Ly(z). Note that g(z) does not vanish on D, yet g(m) =0. It follows that
g vanishes identically on P, [11], and so A does the same on P,. But because
A is interpolating, it must instead be true that ¢ € K. U

PROPOSITION 2.11. A thin part is maximal.

Proof. Suppose ¢ is a thin point in a Gleason part P. Then there is a thin
sequence (z,) and an associated Blaschke product B(z) such that B(¢) =0.
If ¢ € Q, where P # Q, then by the preceding lemma ¢ belongs to the closure
of the zeros of B that lie in Q. But since B is thin, it has at most one zero in
any Gleason part. Hence, ¢ ¢ Q. O

If ¢ and ¢ are thin-points and m = L¢(y), then L,, is a homeomorphism,
yet m lies in P;. Proposition 2.9 shows that P, is properly contained in Py;
thus, there are many points whose Hoffman maps are homeomorphisms, yet
their Gleason parts are not maximal.

These extensions L,,: M — P,, have been used to construct counterexam-
ples of conjectures about ideals in subalgebras of L. For example, it is
known that for every closed ideal I in H * whose zero set (the set of points in
M on which every function in the ideal vanishes) lies in X, there is an ideal
J in L% such that 7=JNH™ [6]. For certain types of Douglas algebras B
(closed algebras between H* and L*), Gorkin and Mortini [7] have charac-
terized when closed ideals in QAz = BN H* “lift” to OB = BN B. (Here, OB
is the largest C* algebra contained in B, and QAy is its analytic subalgebra.)
They have found that such ideals lift if and only if they have the property
that for every function in the ideal, its outer factor is also in the ideal. Given
a Douglas algebra B, one might ask whether every closed ideal I in QA4p
whose zero set lies in the Shilov boundary of M(QAg) has this property.
Gorkin and Mortini [7], however, have provided a counterexample using
these extensions of L,,.

In another application, Gorkin, Hedenmalm, and Mortini [6] have shown
that if 7 is a closed ideal in H* such that {meM: f(m)=0 for all fel}C
M(L®), then there is a unique, continuous homomorphism from L* onto
H /I which is canonical on H*. One might ask whether the same is true
when L® is replaced by a Douglas algebra B. They answer this question
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affirmatively for B = H* + C, under the added condition that the weak-
star closure of 7 is H®. In general, however, this is not true. They use the
extension of L,, for a thin point m to construct a counterexample, where
B is the smallest Douglas algebra containing the complex conjugates of all
thin Blaschke products. (See Hedenmalm ([8] for a study of this Douglas
algebra.)

3. Closures of K-Curves in the Disc

Several authors have attempted to classify points in M according to how
they can be approached from the disc. Most notable among this work has
been Hoffman’s discovery [9] that points with nontrivial Gleason parts are
precisely those that can be approached along interpolating sequences. Wort-
man [15] has shown that the closures of convex curves contain only analytic
points. Weiss [14] has demonstrated that convexity is not crucial: as long as
the curve can be parametrized as r(¢)e’®”) (0 <t <1), where r(¢) is strictly in-
creasing and 6(¢) strictly decreasing, the same conclusion holds. Such curves
are known as M-curves. It is not too difficult to see, however, that not every
analytic point lies in the closure of such a curve. (For a classification of
curves which meet only analytic points, and which meet every analytic point
in the relative interior of a fiber, see Gerber and Weiss [4].)

In this section we want to examine the relationships of the support sets
and Gleason parts of points in the closure of the curves in a certain family.
Symmetry allows us to restrict our attention to Mj, the points in the fiber
M, which can be approached from the set of points in D with nonnegative
imaginary parts. M-curves are too general for our analysis, and so we will
work with a certain subclass called K-curves, which were first studied by
Weiss and Satyanarayana ([13], [14]).

Letting I" be an M-curve defined by f(6) = 1—r for some real-valued con-
tinuous function f which is defined near 0, vanishes at 0, and is strictly in-
creasing, we say I' is a K-curve if f(0+kf(0))/f(0) -1 as 0 approaches 0*
for all real numbers k. Weiss [14] has characterized these curves extensively.
One particularly useful characterization is that I" is a K-curve if and only
if the slope of the tangent to I' approaches —oo as I' tends to 1. Of course,
there is no a priori reason why the tangent should exist at all points along I'.
Curves are defined to be equivalent if their closures are identical on M — D.
It is easy to see that for any K-curve there is an equivalent curve with a well-
defined tangent, and so we may assume all X-curves have well-defined tan-
gents everywhere. Clearly, tangential convex curves are K-curves.

Although Stolz curves are not K-curves, both classes behave similarly. If
I' is a Stolz curve, define A(I") to be the union of all Stolz points. Then A(I")
is an open union of analytic parts, each of which intersects each Stolz curve.
In case I' is a K-curve, similar results hold ([13], [14]). Suppose I" is defined
by f(6) =1—r. For any positive number A let T, be the curve given by f(0) =
M1 -=r). Define A(T") to be the union of T, —T, over all possible N. Then
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A(T") is an open union of analytic parts, each of which intersects each I'.
Furthermore, A(I') separates M, topologically. Thus, relative to a K-curve
I" there are three types of points in M": points with the same order of tan-
gency (those in A(I")), points more tangential, and points less tangential.

This leads to several definitions. For a K-curve I" approaching 1 and ¢ in
M;i", we say ¢ is more tangential than I' if every net (z(«)) approaching ¢
eventually lies between I' and the upper half of the boundary of D and if
p(z(a),T') converges to 1 as o — 0. We say ¢ is less tangential than I if
every net (w(a)) approaching ¢ eventually lies between I' and the positive
real axis and if p(w(a),I') converges to 1 as a — co. These definitions corre-
spond to the topological picture obtained when separating M i by A(D).

The crucial question in what follows will be whether points can be sepa-
rated by a K-curve: Given two points in Mj", can we find a X-curve I" such
that one point is more tangential than I" and the other either lies in A(T") or
is less tangential than I'? If not, does this mean that both points belong to
A(T) for some K-curve I'? There are pairs of points in M for which both of
these questions have negative answers. One such example is a pair of ana-
lytic points in A(T') — A(T"), for I" the positive real axis. Unfortunately, pairs
of this type are not amenable to our techniques.

4. Behavior of Blaschke Products
with Zeros along K-Curves

We would like to estimate the behavior of certain Blaschke products which
have their zeros on K-curves. As these calculations are more easily done in
the right half-plane (RHP), we will transfer everything to that setting via
the map
1+z
= =——, z€D.
w=17(2) 1—2 4

For z =x+iy and w = u + iv in the RHP, the pseudo-hyperbolic metric
(which we again denote by p(-, -)) becomes

5 2—wl? (x—u)’+(y—v)?
Pz, W)= = 3 5
Z+w (x+u)*+(y—v)
and so we have
dxu
4.1) 1—p*(z,w) =

(x+u)2+(y—v)? ;

For 0 < 6 < 1the set {z €e RHP: p(z, w) = 6} is a circle
with center (x(1+62%)/(1—62%), v) and radius 26u/(1—62).

A Blaschke product in the RHP has the form

4.2)

Z"‘Zn
z2+%,;’

B(z)= H Cn
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where the ¢, are constants of unit modulus, chosen to make the product
converge. Under the map 7 the image of a K-curve approaching 1 with posi-
tive imaginary part has a particularly nice form: it approaches o through
the first quadrant in such a manner that the absolute value of the slope of
the tangent to the curve also tends to co. Curves in the RHP that are images
of K-curves in the disc will also be called K-curves.

We are interested in those Gleason parts which meet the closure of a par-
ticular Stolz or K-curve. Since the closure of every Stolz curve meets pre-
cisely the same Gleason parts, for this case we may assume that the curveis
the positive real axis. In either case, for such a curve I' we select a sequence
of distinct points (z,) along I' which have the property that p(z,, z,+1) is
constant. Every part which I' meets will also be met by (z,,), so it is sufficient
to study the closure of this sequence; we shall do so by examining the be-
havior of the Blaschke product with zero sequence (z,). (Such a sequenceis
interpolating [14], so the Blaschke product certainly exists.)

It is known that a Blaschke product with zeros p-equally spaced along a
radial arc has unit modulus on every Gleason part except the Stolz parts. In
particular, such a Blaschke product has unit modulus at every point of M
which is more tangential than some Stolz curve. Additionally, a sequence of
points (z,) on a radial arc is thin precisely when p(z,,z,4;) tendsto l asn
approaches o, Both of these results have analogs valid for K-curves, as we
now intend to demonstrate.

THEOREM 4.1. Let T be a K-curve approaching 1 from above and let (z,)
be a sequence of distinct points p-equally spaced along I'. Let B(z) be the
Blaschke product with zero sequence (z,). If ¢ is more tangential and  less
tangential than T, then |\B(¢)|=1 and |B(y)|<1.

Proof. We will work entirely in the RHP, and so we assume that (z,) and I"
are the images under the map w = 7(z) of the sequence and curve mentioned
in the theorem.

Let z,, =X, +iy,. Since p(2,,2,+1) =0, by (4.2) we see that

L4 +8%)x, . 26x,
1T 1-82) T (1-62)
where @ is the angle with vertex at the Euclidean center of the circle, one ray

in the direction of the positive real axis, and the other towards (X, 1, Yn+1)-
This immediately leads to

26x, .
cos 8, y,,+1==y,,+ﬁ—:8—%sm0,

1 - 6 5 xn+1 S 1 + 6 .
1+6 Xp 1-6
Using the fact that the slope of the tangent to I'" tends, in absolute value, to

oo, we see that 8 — Arccos(—4), and so for sufficiently large » we have the
following:

28 /0 148\ _ Yns1—Pn _ 20
4.4) 132 sm(Arccos(—- > ))s X, =< 152"

4.3)
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Any positive constant whose value depends only on & will be denoted by
C in the estimates that follow. Different uses of C may represent different
constants.

Suppose (w,,) is a sequence containing ¢ in its closure, where p(w,,I') = 1
as n—oo. Fix n and let w=w,=u+iv. Let a;, = p(w, z;) and d =inf; a; (so
that d —1 as w — ¢). Using the estimate

1—
l—xs-—logxs—d—x for d=x=<1,

we find that
1
exp(-— i S ——ak)) <|B(w)|=< exp(—E (1 —ak)>.
k k

To see that |[B(w)|— 1 it will suffice to show 3 (1—a?) —0.
Choose j so that y; <v <y; . Then by (4.1), (4.3), and (4.4),

4x,u
O PRy oy
4x,u
j§3 (X +u)2+ (¥ —v)?
i2 uke—i)
BRI T e
§ U(Yr—Yr-1)
13 (e u)2 4 (yp—v)?

Yi—i u (o] )
<% d dy ) +4(1—d?
(Syl Wt (y—v) ”Lm U+ (y—v)? y>+ (=9

+4(1—d?)

k
<3+
1

+C +4(1—-d?)

< C|Arctan

+ Arctan
V—)Yi—1 Yi+2—U

]+4(1—d2)

< C|Arctan _* + Arctan ———u———] +4(1-d?)
Yi—Yi-1 Yiv2—Vj+1

C
<2C-Arctan —% +4(1~d?).
Xj
It will be enough to show that u/x; —» 0 as w — ¢.
Using (4.1), (4.3), and (4.4) again, we see that

(1—u/x;)*+C
(1+u/x))?+C
But p(z;,w) > 1 as w— ¢, and since ¢ is more tangential than T, u/x; is
bounded above by (1+62)/(1—42). It follows that u/x; — 0, so |B(w)| —1.
Next, take ¢ less tangential than I". For w on T, | B(w)| is clearly bounded
away from 1. It will be enough to show |B(w)| is bounded from 1 along the

positive real axis, and we shall do so by showing I (1— p%(w, z;)) is bounded
away from 0.

=<1

p*(zj, W) <
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Let w=u and let y. =supy, <, V4. Then

4xku
(1—p%(w,z)) =
% “ k,ESu (xi+u)2+y?

U(Vr+1— k)
=C- )
k,kau 4u2+y[%

Px u
=2C-\ ———d

C Y Y1
= Arctan — — Arct
5 [ rcan2u rcanzu]
for some positive constant C. As w -, y, /u is bounded away from 0 while
»,/u approaches 0. It follows that ¥ (1—p2(w, Zx)) is also bounded away
from 0. This proves the second statement. U

THEOREM 4.2. Let (z,) be a sequence of points ordered along a K-curve
I'. This sequence is thin if and only if p(z,,2,+1) tends to 1 as n approaches
0o,

Proof. Clearly, it is necessary that p(z,, 2,+1) tends to 1 in order that (z,)
be thin. To see that this is sufficient will require an estimate similar to the
one used in the last theorem. Again, we assume (z,) and I'" are the corre-
sponding sequence and arc in the RHP. Let
2y =X,+iy, and d,=inf p(z4,z,).
k#n

In order to show H k. kxnP(Zk,Zy) =1 as n— oo, it will be enough to check
that X4 4x,(1—p 2(2k» 24)) — 0. This follows from the fact that

X X
1 -0 and 1

4.5)  — _—
Yn—Vn—-1 Yn+1=Vn

—(0 as n—-oo;

indeed,
—2 Axp X,

2
kk2¢n(1 P Gk 2n)) = E +n§2 (X +X,)2+ (Vi —Yn)?
"2 Xy (Yks1— V&)
¥ X2 (—y)?
§ xn(yk_yk—-l)
n+2 xt%+(yk ".yn)z
Yn—i Xp
°§0 YTt o—rE Y

+2(1-d?)

+C +2(1—d?)

<<

X
+C- d dy+2(1—d?
S)’n+1 Y+ (—yyz Y H2d-di)

‘ X
<C-Arctan —" 4 C.Arctan — " +2(1—d})

Yn—Vn-1 Yn+1—Vn
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for some positive constant C. As n increases this last quantity tends to 0,
proving our result. It remains for us to show that (4.5) holds.

From (4.1), note that
(xn+l_xn )2+1
Yn+1—Vn

Xpi1+Xn \?
( n+1 n) +1
Yn+1—=Vn
As n increases, p(z,,2,+1) converges to 1 and (x, .1 —X,)/(Vn+1—Yn) tends

to 0, since these points lie on a K-curve; hence, the quantity (x,,;+x,)/
(¥n+1—Yn) also tends to 0. This proves (4.5). ]

=<1.

P(ZnyZn+1) =

Notice that we actually proved a stronger result; it is stated as a corollary.

COROLLARY 4.3. If T isa K-curve, B(z) an interpolating Blaschke prod-
uct with zero sequence (z,) along T, and (w;) a sequence of points on T" for
which p(wy, (z,,)) tends to 1 as k increases, then |B(wy)| converges fo 1.

5. Separation of Support Sets

Our major concern now is to recognize when support sets are separated.
Hoffman’s work (unpublished) shows that either two support sets are dis-
joint or one is contained in the other. A sufficient condition for the latter
possibility to occur concerns Gleason parts.

PROPOSITION 5.1.  Let ¢ and y be points in M. If ¢ is in P, then the sup-
port of p, is contained in the support of p.

Proof. Suppose x is a point in supp p4, yet not in supp py. Take a nonnega-
tive L* function f which vanishes on the support of 1, and is positive at x.
Then f vanishes identically on Py, yet f(¢)>0. This shows that ¢ is not
in P,. O

This condition is certainly not necessary: some points of the Shilov bound-
ary lie in analytic support sets, yet Shilov points are never in the closure of
an analytic part.

There are two simple techniques we shall use to separate support sets;
they are described in the next two lemmas.

LEMMA 5.2. If B(z) is a Blaschke product, ¢ and y belong to M, and
|B(¥)| <1, |B(¢)|=1, then the support of py is not contained in the sup-
port of pg.

One can see this by viewing points in M as integrations against representing
measures over support sets.

If E is a measurable subset of the boundary of D, denote its characteristic
function by xg.
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LEMMA 5.3. For ¢ and y in M:

(a) the support sets of ¢ and  are disjoint if and only if, for some meas-
urable subset E of the unit circle, xg(¢) =1 and xg(¢) =0;

(b) the support of . is contained in the support of p if and only if, for
all measurable subsets E with xg(¢) =1, we have xg(¥)=1.

These results hold because L* = C(X) and the sets {¢ € M: xz(¢) =1} form
a basis for the topology of X.

Of course, the support sets of points in different fibers can always be sepa-
rated. Upper- and lower-tangential support sets of M can be separated asin
Lemma 5.3(a) by taking E to be the upper half of the boundary of D. Thus,
we are safe in restricting our attention to the Stolz and upper-tangential
points of M. Combining Lemma 5.2 with Theorem 4.1, we immediately
deduce the following theorem.

THEOREM 5.4. Let T" be a K-curve approaching 1 from above and lei ¢
and ¥ be points in M with ¢ more tangential than T", and  either in A(T") or
less tangential than T'. Then the support of py is not contained in the sup-

port of pg.

In Proposition 2.11 we showed that thin parts are maximal. We say that a
support set is maximal if it is not properly contained in any other support
set. Hoffman (unpublished) has shown that thin points also have maximal
support sets. This follows rather easily from the next result, which is pre-
sented for completeness but can also be found in [8]. Note that both versions
of the proof rely in an essential manner on an estimate of Hoffman of where
an interpolating Blaschke product can be small.

PROPOSITION 5.5. Let B(z) be a Blaschke product whose zero sequence
(zp) is thin. Then |B(¢)|<1 if and only if B vanishes at some point in P,,.

Proof. 1f B(y)=0and ¥ is in Py, then certainly |B(¢)|<1.

Suppose that |B(¢)|=d < 1. Discarding a finite number of zeros of B, we
may assume
in—23
1 —ZkZn

=0

n,n#k

for ¢ as near to 1 as we like. Note that this does not change the value of |B)|
on M—D.

Choose 6§ strictly between d and 1. For some sequence (w;) in D we have
¢ € (wy) and |B(wy)| < 6. By a result of Hoffman [11], for some ¢ <1 the set
of points in D where |B(z)|<é is contained in the union of pseudo-hyper-
bolic discs about the z, with radius £. (To get this for 6 arbitrarily near 1 we
need to be able to choose ¢ arbitrarily near 1.) Thus, the sequence (wy) lies
entirely in the union of these discs. Using the lower semi-continuity of p [11],
we see that (z,) meets P,. It follows that B vanishes somewhereon P,. [
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COROLLARY 5.6 (originally due to Hoffman). If ¢ lies in the closure of a
thin sequence then the support of p, is maximal.

Proof. Let (z,) be a thin sequence containing ¢ in its closure. Take ¢ in
M —P,. The set P,N (z,,) consists of at most one point, so by adjusting (z,)
we may in fact assume Py, N (z,) is empty. Using Proposition 5.5 and Lem-
ma 5.2 we can conclude that the support of p, is not contained in the sup-
port of u,. Since y was arbitrary, the support of u, must be maximal. J

Now we would like to describe the situation in the closure of a K —curve.
For this case the converse of Proposition 5.1 is true.

THEOREM 5.7. Let T be a Stolz curve or a K-curve approaching 1 from
above, and let ¢,y € T —T. Then supp p, C supp py if and only if ¢ € Py,

Proof. The easy half being contained in Proposition 5.1, we may assume
¢ is not in E; Working in the RHP, we shall construct a subset E of the
boundary of the RHP such that xz(y¥) =1 and xz(¢) <1. Combining this
with Lemma 5.3(b) will give the desired conclusion.

First consider the case where I is a Stolz curve. Since our result concerns
Gleason parts rather than points, and because the closure of the sequence
(2"); =1 meets every Stolz Gleason part, we may assume ¢, y e (2"). Take
disjoint open sets U and V with ¢ in U and P, contained in V. Take nets
2m@) _, o and 2P - ¢. We assume that the latter net lies entirely in U. For
any integer k, 2™®*k will converge to a point in P,; hence, for any positive
integer K there exists ax in the directed set such that @mI+tkhK__CV for
all o= ay.

We define a certain subset of the boundary of the RHP. Let

— U U [l'zm(a)—K’ i2m(a)+K],

K=1 (IZQK

E=E*UE* (here“ ” denotescomplex conjugate).
Extending x g by its Poisson integral, we see that
xE(Zm("‘)) = 2X [i2m(a)—-K, izm(cx)+K] (2’"("‘))

2
> = (Arctan 2X — Arctan 27X)
T
and

2
xg("P)<1-Z= (Arctan 2 —Arctan %—)
iy

for all @ = g and all 8. Thus, xz(¥) =1and xz(¢) <1, which completes the
proof of the theorem. il

Now suppose I' is a K-curve, (z,) is a sequence of points along I' equally
spaced with respect to pseudo-hyperbolic distance, and ¢, ¢ lie in (z,,). We
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assume (z,() and (wpg)) are subnets of (z,) converging, respectively, to
¥ and ¢, and that ¢ ¢ P,. Separate ¢ and P, with disjoint open sets Uand ¥,
say ¢ in U and Py, contained in V. Again, we may assume the net (w,g,) lies
entirely in U. As in the Stolz case, for each positive integer K there is an ag
such that for o = ay, (z,,(o,)+k)f= _xCV.

In order to simplify the notation for the remainder of this argument, we
will write « for n(a) and o+ k& for n(a)+k.

Let z,=x,+1iy, and wg=ug+ivg, and define

E= U U [iya—-K, iyoz+K]-

K=1 a=ay

Extending xz by its Poisson integral and taking o = ay for some large X,
we have
x(!
dt
xc% + (ya - t)Z

1 po
xe@)==|"_xe(0
T J—o0

1 Sya_}.]{ xa d
- T Vyo—k x(%+(y0z_'t)2
1 — -
_- [Arctan !g_'*'_K_& — Arctan _.)_;G_K_y_a:l
™ Xa Xq
and
1 ¢ MB
= t dt
xso) = | xe gt
1 u
<t-— "2
m UB_,] uﬁ+(vB—t)

1 Vgyi1—V Vg_1—V
=1——|Arctan 218 _ Arctan —£=1 78|,
T uﬁ uﬁ

For each « let K(a) denote the largest integer K for which oy < . Note that
K(a) — o as o — oo, It will be enough to show

(1) PVa+k(e)—Ya)/Xa— o as a— oo,
(il) (ya —ya-—K(a))/xa — 00 aS @ — 00,
(111) (U,G+1 — UB)/ug >C, and
(iv) (vﬁ - vﬁ—l)/uB =C
for some positive constant C. Statements (iii) and (iv) follow immediately
from (4.3) and (4.4). Writing
(xa+K(a) —Xo )2 +1

ya+K(o¢) —Va
Xo+K(a) T Xa )2+1
Ya+K(a) ~ Va

2
;O(Za, za+K(a)) = (

and noting that

Xa +K(o) —Xa
Ya+K(a) — Vo
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we see that (i) holds. A similar argument is used to show that (ii) is true.
Hence, xz(y¥) =1 while xg(¢) <1.

For a K-curve or a Stolz curve T', recall that A(I") is an open union of
parts. This means that if I'; and I', are two K-curves approaching 1, one
more tangential than the other, and if ¢ and ¢ are points of M, in T and T',,
then P and P, do not meet. Support sets of points in T and T, however,
are not separated this way; hence, the converse to Theorem 5.7 fails badly —
even for analytic points.

THEOREM 5.8. Let 'y and T, be two curves in D tending to 1 with T’y more
tangential than T'y. Let ¢ belong to T',—T,. Then for some  in T, the sup-
port of py Is contained in the support of p.

Proof. Suppose at first that ¢ is not a Stolz point. Continuing to work in
the RHP, let Q2 denote the collection of measurable subsets of E of the imag-
inary axis with the property that xz(¢) =1. For each E in Q let A denote
the set of points in T, where x takes the value 1. Since L* functions are
continuous on M, Ag is closed and hence compact. Let A=\g.q Ag. By
Lemma 5.3(b) it will be enough to show that A is nonempty. The intersec-
tion of a finite collection of sets in € is again in Q, and N% -, Ag, =AnE,.
Together with the compactness of the sets Ag, this implies it is enough to
know that A is never empty.

Fix a measurable subset E of the imaginary axis. For z in the RHP and
0<6<7/2 we define

Iy(z) ={(0,y) € BRHP: |y —Imz| < (Rez)(tan)};
Ry(z) ={(x,y)eRHP: |y—Imz|<|x—Rez|(tanf)}.

Let m(0) denote the Poisson integral of x Ip(2) evaluated at z; note that m(6)
is independent of z, and m(0) —1as 6 - w/2.

Assume Af is empty. For some @ > 0 and all w in I', with sufficiently large
imaginary part, we have xz(w)<1—a. We now restrict our attention to
such w and choose 6 near enough to /2 that m(6)=1—a/2. Denote the
Lebesgue measure of a set S by |S|. We need to estimate |I,(w)N E|. Note
that x;,(w)—g(w) =a/2. Choose 6, so that m(6;) =a/2. Then Iy (w) is the
subset of I,(w) with the smallest Lebesgue measure whose characteristic
function at w is at least a/2; hence, |Iy(w) —E|= |l (w)| = b|Iy(w)|, where
b is a constant depending only on @ (0 <b <1). Thus,

[To(Ww)NE)| -

<1-b.
[ Tp(w)]
Choose a point z of I'; so large that if we Ry(z) NT',, then xg(w) <1—a.
Select a finite sequence of points wy, ..., w, on I'; so that

(i) the Iy(w;) are pairwise disjoint (aside from endpoints),
(ii) Iy(z) CUT Ig(wy), and
(i) 27, cr@ oW = 1(2)]/2.
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Now,

IIo(Z)ﬂE|=EIJIIe(Z)ﬂlo(Wk)ﬂEI

= ¥ |[LWINE[+ X |Lz)NI(we)NE|
Ig(wy) CIp(2) TIg(we) 1y (2)

=(1-b) X |gw)|+((1=D0)+b) X |L(z)NI(w)|
Ig(wy) Cly(z) Io(wy) Ty(2)

=(1-D)|)+b X |L(z)NTy(wy)]
To(wy) € 1g(2)
[15(2)|

<(1-0)|Iy(z)|+b >

b
5(1—5)|Ig(z)|.

So for some 6 > 0, xg(z) <1-—6. Since this is true for all large z, we conclude
that xz(¢) <1-4, so that E ¢ Q; hence, for all £ in 2, A is nonempty. It
follows that for some ¢ in I'; we have supp py CSUPD Hg.

In case ¢ is a Stolz point, the only place the preceding argument might
fail is in our ability to choose z so large that those w’s in Ry(z) are also suf-
ficiently large. At this point we choose a ray I'" from 0 to c making an angle
of (w—#0)/4 with the positive imaginary axis. As z approaches o along I,
Iy(z) is a set whose values also tend to c. Choose a point ¢ of ' which is in
the same Gleason part as ¢. Note that this does not change the set Q. Con-
tinuing our argument with ¢ in place of ¢, we complete the proof. O

In the above proof we never really used the fact that ¢ lies in the closure of a
curve. Indeed, we actually proved the folloyving.

COROLLARY 5.9. Let ¢ be a point in M, lying in the closure of some sub-
set S of the upper semi-disc. Suppose I is an upper tangential curve in D
tending to 1 strictly between S and the upper semi-circle. Then, for some
in T, the support of p, is contained in the support of p.

In particular, the support set of any trivial point lying in the closure of such
a set S (of which there are many, by Corollary 2.8) properly contains sup-
port sets of analytic points.

Another way to see this uses a result of Axler and Gorkin [2]. They have
shown that if b is a Blaschke product, ¢ € M, and |b(¢)| <1, then for some
¥ € M for which supp p, Csupp p,,, b(¢) =0. Combining this with Ziskind’s
result [16] that for every point ¢ not in the Shilov boundary there is an inter-
polating Blaschke product b such that |b(¢)|< 1, we see again that the sup-
port sets for trivial points outside of the Shilov boundary contain support
sets of analytic points. What Corollary 5.9 adds to this is a relationship be-
tween the orders of tangency of the trivial point and the analytic part.

A final consequence of Theorem 5.8 is that there are analytic parts which
do not lie in the closure of a thin part. We can see this as follows. Let ¢ be
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a thin Stolz point in M. Let I" be an oricycle approaching 1. By Theorem 5.8
there exists ¢ e I' such that supp u,, C supp pg4. If ¥ € P, for some thin point

B

then one can show P, also meets I'. Furthermore, the supports of u, and

1, both contain suppu,, and both are maximal. It follows that they are
identical, yet Theorem 5.4 shows that this cannot happen. Hence, y does
not lie in the closure of a thin part. It is not known whether every part lies

in

the closure of a maximal part, but if this is true, it is then clear that there

must be maximal parts which are not thin.
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