Isomorphisms of Alg £, and Alg £

YOUNG SOO JO & TAEG YOUNG CHOI

Let JC be a complex Hilbert space and let £,,, (£,,4) be the subspace lattice
of orthogonal projections generated by {[e;], [es], ..., [e2n—1], [€1, €2, €3],
[e3, eq,€5],...,[€2,_3,€2,_2, €2n_1],[€20_1, €24]} (respectively, {[e;], [€2; 1],
[esi_1,€2is€2:411:i=1,2, ..., n}) with an orthonormal basis {e;,e,, ..., e5,}
({eb €25 .00 e2n+1})°

In this paper the following are proved:

(1) If &: Alg £,,— Alg £,,, is an isomorphism, then there exists an in-
vertible operator T in Alg £,, such that ®(A)=TAT ~! for all A in
Alg £2n.

(2) If ®: Alg £,,,;— Alg £,,, is an isomorphism, then there exists an
invertible operator S in Alg £, such that either &(A4)=SA4S ! or
®(A) = SUAUS ™!, where U is a (2n + 1) X (2n + 1) matrix whose
(k,2n—k+2)-component is 1 for k =1, 2,...,2n+1 and all other en-
tries are 0.

(3) A map ®:Alg £, — Alg £, is an isomorphism if and only if there
exists an invertible operator (not necessarily bounded) 7 such that
®(A)=TAT ! for all Ain Alg £..

1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space was begun
in 1974 by Arveson [1]. Recently, such algebras have been found to be of use
in physics, in electrical engineering, and in general systems theory. Of par-
ticular interest to mathematicians are reflexive algebras with commutative
lattices of invariant subspaces. The algebras Alg £, and Alg £, are impor-
tant classes of such algebras. These algebras possess many surprising prop-
erties related to isometries, isomorphisms, cohomology, and extreme points.
In this paper, we shall investigate the isomorphisms of these algebras.
First, we introduce the terminologies used in this paper. Let JC be a com-
plex Hilbert space and let @ be a subset of B(3C), the class of all bounded
operators acting on JC. If @ is a vector space over C and if @ is closed un-
der the composition of maps, then @ is called an algebra. @ is called a self-

Received August 9, 1989. Revision received January 15, 1990.
Partially supported by Korea Ministry of Education (1988).
Michigan Math. J. 37 (1990).

305



306 YOUNG SOO JO & TAEG YOUNG CHOI

adjoint algebra provided A* is in @ for every 4 in @; otherwise, @ is called a
non-self-adjoint algebra. If £ is a lattice of orthogonal projections acting
on JC, then Alg £ denotes the algebra of all bounded operators acting on JC
that leave invariant every orthogonal projection in £. A subspace lattice £
is a strongly closed lattice of orthogonal projections acting on JC, contain-
ing 0 and 1. Dually, if @ is a subalgebra of ®(3C), then Lat @ is the lattice of
all orthogonal projections invariant for each operator in @. An algebra @ is
reflexive if @ = Alg Lat @ and a lattice £ is reflexive if £ =Lat Alg £. A lat-
tice £ is a commutative subspace lattice, or CSL, if each pair of projections
in £ commutes; Alg £ is then called a CSL-algebra. If x;, x,, ..., x,, are vec-
tors in some Hilbert space, then [xy, x,, ..., x,,] denotes the closed subspace
generated by the vectors xy, x5, ..., X,.

2. Isomorphisms of Alg £,,, Alg £,,.,1, and Alg £

Let £, and £, be commutative subspace lattices. By an isomorphism &:
Alg £, - Alg £, we mean a strictly algebraic isomorphism, that is, a bijec-
tive, linear, multiplicative map. An isomorphism &: Alg £, — Alg £, is said
to be spatially implemented if there is a bounded invertible operator 7T such
that ®(A) =TAT ~! for all A in Alg £,. Let Q,, be the tridiagonal algebras
discovered by Gilfeather and Larson [4]; that is, ,,, is an algebra consisting
of bounded operators acting on 2xn-dimensional complex Hilbert space 3C
of the form

* *

* % ¥

* %

— —

where all non-starred entries are zero, for some fixed basis {e;, e,, ..., €,,} of
JC. Automorphisms of ,,, need not be spatially implemented [5]. Let £,,, (or,
respectively, £, ) be the subspace lattice of orthogonal projections gener-
ated by {[e],[e3],...,[e2,-1],[e),€2,€3],[€3,€4,€5], ..., (€2, 3,€2,_2,€2, 1],
[e2n—1, €21} OF {[e1], [€zi41]; [€2i—15 €255 €2i411: 1 =1, 2, ..., n}, and let B,,
or ®3,, ., be the algebra consisting of all bounded operators, acting on 2»-
or (2n+1)-dimensional complex Hilbert space JC, that are of the form

*

* ¥ %

¥ ¥ ¥

or

[ % x
¥
* ok

|
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where all non-starred entries are zero and with an orthonormal basis {e;, e,
..es €3} OT {ey,ey,...,65,.1}, respectively.

Let £, be the subspace lattice of orthogonal projections generated by
tleri—il, [eri—1, ez, €2i41]:i=1,2,...}, and let B, be the algebra consisting
of all bounded operators acting on separable infinite-dimensional Hilbert
space JC of the form

ES

where all non-starred entries are 0 and with an orthonal basis {e,, e,,...}.

LEMMA 2.1.
(1) Alg £3,=®2,, Alg £3,11=B3,41, and Alg £, = B,.
(2) Lat B,,=£,,, Lat By, 1= Lops1, and Lat B, = L.

Let i and j be positive integers. Then Ej; is the matrix whose (i, j)-compo-
nent is 1 and all other components are 0.

THEOREM 2.2. Let ®: Alg £,,— Alg £,,, be an isomorphism such that
Q(E;)=E; foralli=1,2,...,2n. Then there exist nonzero complex num-
bers Qi such that (I)(EU) = Ol,'jE,'j for all EU n Alg £2n.

PFOOj: Let (I)(E”) =E,',' for all i. Then @(E,J) = q)(E”EUEJJ) =E“(I)(EU)EJJ
If ®(E;;) =%k m %mExm, then ®(E;;) = oy E;; for some nonzero complex
number o;;. 0

By an argument similar to that of Theorem 2.2, we can obtain the follow-
ing theorem.

THEOREM 2.3. Let ®: Alg £,,,,1—-Alg £,,,; (resp., Alg £, — Alg £,)
be an isomorphism such that ®(E;)=Ej; forall i=1,2,...,n+1 (i=1,2,
...). Then there exist nonzero complex numbers o;; such that ®(E;;) = o, Ej;
Jorall Ejj in Alg £,,41 (Alg £).

THEOREM 2.4. Let ®: Alg £,,, > Alg £,, be an isomorphism such thai
CI)(E,',') =E,',' fOr all i= 1, 2, ceey 211, and let (I)(E,J,) :a,‘jEjj, O(,'j?f 0, fOI’ all
E;;in Alg £,,. Then ®(A)=TAT ~! for all A in Alg £, where T is a 2n x
2n diagonal operator whose

(1) (1, 1)-component is 1,

(2) (2,2)-component is ap',

(3) (21'— 1, 20— 1)-C0mp0n€nt is (H;(_:ll azk._lyzj()_l Hft.(;ll Ok +1,2k> and
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(4) (2i,2i)-component is (T15 =y oo —1,26) " T2 ok, 26
foralli=1,2,...,2n.

Proof. Let A= (a;;) be in Alg £,,,. Then ®(A) = (o;a;5) and «;; =1 for all
i=1,2,...,2n. Consider ®(A4)T and TA for the above 7. Then for all i and j
(i,j=1,2,...,2n), the (i, j)-component of ®(A)T and TA are the same.
Hence ®(A)T =TA. 0O

By an argument similar to that of Theorem 2.4, we can derive the follow-
ing theorem.

THEOREM 2.5. Let ®: Alg £,,,,1— Alg £, (resp., Alg £, — Alg £,)
be an isomorphism such that ®(E;)=E; foralli=1,2,...,2n+1(i=1,2,
...), and let CI)(EU) = a,-jE,-j, Ol,'j?f O,for allE,-j in Alg oezn_H (Alg 0800)- Then
there exists a diagonal operator T such that ®(A) = TAT ! for all A in
Alg £5,4 (Alg £5). ‘

LEMMA 2.6 [5]. Let £, and £, be commutative subspace lattices on Hil-
bert spaces 3C; and 3C,, respectively, and suppose that ®: Alg £, Alg £,
is an algebraic isomorphism. Let I be a maximal abelian self-adjoint sub-
algebra (masa) contained in Alg £,. Then there exists a bounded invertible
operator Y: 3¢, — 3C, and an automorphism p: Alg £,— Alg £, such that

(1) p(M)=M for all M in MM and
(i) ®(A)=Yp(A)Y ! forall A in Alg £,.

THEOREM 2.7. Let ®: Alg £,,— Alg £,, be an isomorphism. Then there
exists an invertible operator T such that ®(A) =TAT ~Lforall Ain Alg £,,.

Proof. Since (Alg £,,)N(Alg £,,)* is a masa of Alg £,, and since E; is in
(Alg £,,)N(Alg £,,)* for all i=1,2,...,2n, by Lemma 2.6 there exist an
invertible operator Y in ®&(JC) and an isomorphism p: Alg £,,— Alg £,,
such that p(E;) = E;; and ®(A4) =Yp(A)Y ~'foralli=1,2,...,2n. By Theo-
rem 2.4, p(A) = SAS ! for some invertible operator S. Hence

d(A)=Yp(A)Y '=YSAS 'Y L.
Let T=YS. Then ®(A)=TAT ~! for all Ain Alg £,,. O

With the same proof as Theorem 2.7, we have the following theorem.

THEOREM 2.8. Let ®: Alg £,,.,—~ Alg £,,,, (resp., Alg £, — Alg £)
be an isomorphism. Then there exists an invertible operator T from 3C onto
3C such that ®(A)=TAT ~' for all A in Alg £,,, (Alg £,).

THEOREM 2.9. Let &: Alg £,, - Alg £,, be an isomorphism. Then there
exists an invertible operator T in Alg £,,, all of whose diagonal compo-
nents are nonzgero, such that ®(A)=TAT ~! for all A in Alg £,,,.



Isomorphisms of Alg £, and Alg £, 309

Proof. Let ®: Alg £,, — Alg £,, be an isomorphism. By Theorem 2.7, there
exists an invertible operator T such that ®(A4) =TAT ~! for all Ain Alg £,,,.
Let A=(a;;) and ®(A)=(b;;) be in Alg £,,, and let 7= (¢;;). Then

(*) ®(A)T =TA.

From equation (*) we have the following.
(2-1) t2i,2j-—l =0 forall i andj= 1, 2, A (B
(2-2) If 123’ 2j¢0’ then
(1) azj2j= b2i,2i for all i/ and _]: 1,2, (R
(2) #3; ,,=0 for all m such that m#2j, and
(3) #5k,2;=0 for all k such that k= .
(2-3) If t2i—1,2j—l ¢0, then
(1) azj—1,2j-1 =b2,‘_1,2,’_1 for all i andj= 1, 2, ceey A1,
(2) t,,,2j—1=0 for all m such that m = 2i—1, and
(3) t2i—1,2k——1 =0 for all £ such that k#].
We will show that
(2-4) if Ly # 0, then 7' is in Alg £2n'
It is easy to check that if 7;; #0then 75, #0forall k=1,2,...,2n. Let £;; #0
for all i=1,2,...,2n. Then ¢, ,;=0 for j=2,3,...,n, lr_y12,=0 for k=
2,3,...,n—1,and ty;_y ;=0for k#iand k#i+1(k=2,3,...,n;i=1,2,
...,n—1). Thus T belongs to Alg £,,,.
Finally, we show that ¢, # 0. It is easily verified that
(2-5) (1) #3;_,,y and ¢,;_, > cannot both be nonzero, and
(2) t3;-,; and #5; , cannot both be nonzero.
Now suppose that ¢y, =0. Then ¢,;_ | #0 for some i (i=2,3,...,n). Sup-
pose that #5;_, ;=0 and ¢,; , =0. Comparing the (2i—1, 2)-component of
(I)(A)T with that of TA, we have tz,'_l,z(all—azz) =t2i_1’1(012) which is a
contradiction. Thus either #5;_, , # 0 or #; , # 0. But this contradicts (2-5),
and therefore ¢, # 0. [

THEOREM 2.10. Let ®: Alg £,,,,,— Alg £,,4+1 be an isomorphism. Then
there exists an invertible operator S in Alg £,,,, whose diagonal compo-
nents are all nonzero and such that either

®(A)=8SAS~! or &(A)=SUAUS,

where U is a (2n+1) X (2n+1) matrix whose (k,2n—k +2)-component is 1
fork=1,2,...,2n+1, and all other entries are 0.

Proof. Let ®: Alg £,,,— Alg £,,, be an isomorphism. By Theorem 2.8,
there exists an invertible operator 7 such that ®(A4)=7TAT ~! for all 4 in
Alg £,,,. Let A= (a;;) and ®(A4) = (b;;) be in Alg £,,,;,, and let T=(¢;;).
Then ®(A)T = TA. From this equation we have the following:
(2-1)" ty;2j—1=0foralli=1,2,...,nand j=1,2,...,n+1.
(2—2)’ If fz," 2j # 0, then
(1) azj’2j=b2,',2,' for all / and J= ,2,...,n,
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(2) t3;,,»=0 for all m such that m=2j, and
(3) t2,2;=0 for all k such that &k #i.
(2-3)’ If tZi—l,Zj—] #0, then

(1) azj—1,2;j-1= b2i_2’2j_1 for all i and _] = 1, 2, ciey n+1,

(2) t,2;—1=0 for all m such that m #2i—1, and

(3) 12,'_1,2/{_1 =0 for all k such that k#]
If ¢;; # 0, then with the same proof as (2-4) T belongs to Alg £,,,;. In
this case, we can take S =T. Let U be a (2n + 1) X (2n + 1) matrix whose
(k,2n—k+2)-component is 1 for k=1, 2,...,2rn+1, and all other entries
are 0. Then the mapping ®,: Alg £,,,,— Alg £,,,, defined by &,(4)=
UAU ~!is an isomorphism. So &,°®(A4) = (UT)A(UT)™" and t,,,, , is the
(1, I)-component of UT. If ¢,, . ; #0, then with the same proof as (2-4) UT
belongs to Alg £,,,;. In this case, we can take S=TU. Since U*=1, S=
U(UT)U and so S belongs to Alg £,,,.; and T=SU. Hence ®(A4) = TAT ~!=
SUAUS ! for all Ain Alg £,,,.;.

Finally, we show that ¢y, and ¢,,,,, cannot both be zero. Suppose that
ty=~0and #5,,,,,=0.Then ¢5;_; ; #0forsomei (i=2,3,...,n). Thus, either
f2,‘_2,2 # 0 or 121',2 #0. By (2-5)(1), t2i—l,] and t2i——2,2 cannot be nonzero at
the same time. If £,;,_; ; #0and #5; ,#0, then #5;, , my2#0forall m=1,2,
..., 2n—2i+1. Comparing the (2n+1, 2n —2i + 4)-component of ®(A)T
with that of 74, we have

Lans1,2n-2i+4(@2n—2i+3,2n—2i 43— A2n—2i +4,2n—2i +4)
=ln41,2n=2i+3920n—2i+3,2n—2i +4>
which contradicts. Thus either ;%0 or 75,1 #0. [l

Let £, and £, be commutative subspace lattices. An isomorphism ¢ from
Alg £, onto Alg £, is said to be quasi-spatial if there exists a one-to-one
operator 7 with a dense domain 3, which is an invariant linear manifold for
Alg £, such that ¢(A)7x =TAx for all Ain Alg £, and x in D. Isomorph-
isms ®: Alg £, — Alg £, need not be spatially implemented.

EXAMPLE 2.11. Consider the mapping ®: Alg £, — Alg £, defined by
®(A)=TAT ~! for all A in Alg £, where T is the infinite diagonal matrix
whose (k, k)-component is £ for all positive integers k. It is straightforward
to show that & is an isomorphism and that no bounded operator can imple-
ment &.

THEOREM 2.12. Let ®: Alg £, — Alg £, be an isomorphism. Then there
exists an invertible matrix T all of whose entries are 0 except for the (i, i)-
component, the (2i —1, 2i)-component, and the (2i +1, 2i)-component, for
all positive integers i such that ®(A)=TAT ~ for all A in Alg £...

Proof. Let ®: Alg £, — Alg £, be an isomorphism. By Theorem 2.8 there
exists an invertible operator T from JC onto JC such that ®(A4) = TAT ~! for
all Ain Alg £,. Let T= (¢;;) and let A= (a;;) and #(A) = (b;;) bein Alg £,,.
Then ®(A)T =TA. From this equation we have the following:



Isomorphisms of Alg £, and Alg £ 311

(2-1)" t5; ;-1 =0 for all positive integers i and ;.

(2-2)” If fz,', 2j #0, then
(1) ayj,2j= by »; for all positive integers i/ and j,
(2) 13, =0 for all positive integers m such that m2j, and
(3) 24,25 =0 for all positive integers k such that k # .

(2-3)” If t2,'_1,2j_1 # O, then
(1) arj_1,2j-1= bZi—l,Zi——l for all pOSitive integers i and j,
(2) ;1,241 =0 for all positive integers k such that k # /, and
(3) t,,2;—1=0 for all positive integers m such that m #2i—1.

If ¢,, #0, then with the same proof as that of (2.4) we have:

(2-6) T'=(t;;) is an infinite matrix all of whose entries are 0 except for the
(i, i)-component, the (2i —1, 2i)-component, and the(2/+ 1, 2i{)-component,
for all positive integers /.

For the proof of this theorem, it is sufficient to show that #;; # 0. Suppose
that ¢y, =0; then #,;_; ; #0 for some i/ (i=2,3,...). So either #5;_, ,#0 or
t5i »# 0. However, by (2-5)(1), #5;_» ; and #5; _, , cannot become nonzero at
the same time. If #,;_; ;# 0 and #,; , #0, then ¢5; 1, ,u4 # 0 for all positive
integers m. Hence ¢, ,; =0 for all positive integers j by (2-2)". As t; 5;_1=0
for all positive integers j by (2-1)”, we have ¢, ,, = 0 for all positive integers
m. Thus T is not invertible, and therefore ¢;; # 0. O

THEOREM 2.13. Let T'=(t;;) be an invertible operator of the form (2-6).
Then TAT ~'is in Alg £, for all A in Alg £, if and only if

SUP{ |32 ok tok 1,2k —1]s 1428 2k Fak 1, 2k 115 [ E3R 2k E 2 =1, 2k )
|t sk tak sk b =1,2, ...} <o,

Proof. Suppose that T is an invertible operator of the form (2-6). Let A4, be
an invertible matrix whose (2k —1, 2k)-component is 1 for all positive inte-
gers k and all other entries are 0. Then A, is in Alg £, and so 74,7 ~! be-
longs to Alg £.,. Since 74,7 ~!is a matrix whose (2k —1, 2k)-component is
tz’kf 262k —1,26—1 for all positive integers & and all other entries are 0, we have

SUP”tZ—kl,ZktZk—l,Zk——ll:kzl’ 2, ...] < 00,

Let A, be an infinite matrix whose (2k +1, 2k)-component is 1 for all pos-
itive integers k£ and all other entries are 0. Then A4, is in Alg £, and so
TA,T ! belongs to Alg £.. Since 74,7 ~!is a matrix whose (2k +1, 2k)-
component is tz‘kl, 2k t2k+1,26+1 for all positive integers & and all other entries
are 0, we have

supf |t 2zl ok bok v, k+1l: K =1,2, ...} <oo.

Let A; be a diagonal operator whose (2k—1, 2k —1)-component is 1 and
(2k, 2k)-component is 2 for all positive integers k. Then A5 is in Alg £
and so TA;7T ~! belongs to Alg £. Since 7457 ~! is the matrix whose

(1) (2k,2k)-component is 2,
(2) (2k—1,2k—1)-component is 1,
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(3) (2k—1,2k)-component is tz—lgl’zktzk_],Zk,
(4) (2k+1,2k)-component is ¢3! 5, t54 1y 2, and
(5) all other entries are 0 for all positive integers k.

We have

_1 ~1 .
sup{|tax. 2k t2n—1, 26> |2k, 26 2k 1, 26| K =1, 2, ...} < 00,
Thus,

sup{|£32} axfar—1,2k—1)s | E3% 26 bak s 1,20 11) | E20 2k L2k —1, 26|
[tk aktanrr, 2] K =1,2, ...} <oo.

Conversely, let A=(a;;) be in Alg £. TAT ~'is the matrix whose

(1) (k, k)-component is a;y,
(2) (2k—1,2k)-component is

-1 —1
Lok, 2k tak—1,26(Qoge, ok — Qo —1, 26—1) F Lok, 2k b2k —1, 26— 1924 1, 2k
(3) (2k+1, 2k)-component is

-1 —1
Lok, 2k 2k 1,26 ( @k, 20 — Q21,200 +1) F L2k, 26 L2k 41, 2k 4192k +1, 2k
and
(4) all other components are 0 for all positive integers k.

Let B, be the diagonal operator whose (k, k)-component is a,, for all posi-
tive integers k. Let B, be the matrix whose (2k—1, 2k)-component is

Lot 2kt ok —1, 2k @2k, 26— Ao =1, 26—1)
for all positive integers k& and all other entries are 0. Let B; be the matrix
whose (2k—1, 2k)-component is

Uok 2k bk —1,2k—1@2k—1, 2k
for all positive integers k and all other entries are 0. Let B, be the matrix
whose (2k +1, 2k)-component is

Lot 2k tak+1, 26 (@ok, 20— A2k 1, 2k +1)
for all positive integers £ and all other entries are 0. Let Bs be the matrix
whose (2k+1, 2k)-component is

Lokt ok 41,2k +192k +1, 2k
for all positive integers k and all other entries are 0. Then TAT ~'= B+
B>+ B3+ B4+ Bs.
By the hypothesis,

—1 —1 —1
sup{|tax, 2k Lok —1, 26~ 1]s |12k, 20 L2k 1, 2k +1)5 | E20, 2 E2k—1, 2K )5
~1 L —
|12k, 2k t2k 1,261 K =1,2, ...} < o0,
Because

supf{|@a, 2k — Gak—1, 26115 | @2k, 26 — Dok 41,2611 K =1,2, ...} <00,

we have that B, B,, B3, B,, and B; belong to Alg £.,. Thus 74T ~! belongs
to Alg £. O
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THEOREM 2.14. A map ®: Alg £, — Alg £, is an isomorphism if and
only if there exists an invertible operator (not necessarily bounded) T = (1)
of the form (2-6) satisfying

sup{ |t li—j1 =1, |j—k|=<1, |k—i]| =<1
for all positive integers i, j, and k} < o

such that ®(A) =TAT ~ for all A in Alg £.,.

Proof. Let ®: Alg £, — Alg £, be an isomorphism. Then, by Theorem
2.12, there exists an invertible operator 7= (¢;;) of the form (2-6) such that
®(A)=TAT ~! for all Ain Alg £.. By Theorem 2.13,

supf| sz ok 2k —1, 261 |f27c1,2kf2k+1,2k+1|’ Itz_kl,ZktZk—l,Zkl’
658 ok ton 1 x| kK =1,2, ...} <oo.

Since ® is surjective, T ~'AT is in Alg £, for all Ain Alg £. Since 7! is
the matrix whose

(1) (k, k)-component is ¢!,

(2) (2k—1,2k)-component is —(f2x—1,2k/t26 -1, 26182k, 24) 5

(3) (2k+1,2k)-component is — ({2441, 26/ {26 +1, 2k +18 2k, 24 ) » AN

(4) all other components are O for all positive integers £,

by Theorem 2.13 we have

SUP{ | £3k+ 1, 26+ 1020+ 2, 26+ 2] [E 2k 41, 2k 1 F 2k 41, 26+ 2
|38 1, 2k 1 B ok, 2kl [E 2k 1, 2k 1 Fo 2k K =1, 2, 0} < oo,
Conversely, suppose that 7= (¢;;) has the form (2-6) and that
sup{|t; 'l |i—jl=1,|j—k|<1land [k—i|<1
for all positive integers i, j, and k} < .

Define ®: Alg £, — Alg £, by ®(A)=TAT ~! for all Ain Alg £. Then ¢
is well defined and 7 ~'AT is in Alg £, for all A in Alg £, by Theorem
2.13. It is clear that & is an isomorphism. ]
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