Finite Group Actions on the
Moduli Space of Self-Dual Connections, II
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1. Introduction

Let G be a finite group, and let M be a simply connected, closed, smooth 4
dimensional manifold with a positive definite intersection form and a smooth
action of G on it. Let II: E — M be a quaternion line bundle with instanton
number one and with a G-action on E through bundle isomorphism such
that ITis a G-map. Let 9N be the set of self-dual connections on £ modulo
the group G of gauge transformations. If we use a G-invariant metric on M
then the moduli space N is a G-space, but 9N might not be a manifold be-
cause of the nonvanishing second cohomology group of the fundamental el-
liptic complex or because of reducible self-dual connections.

In [5] Donaldson used a compact perturbation of a Fredholm map to
make 9 a manifold. In [7] Freed and Uhlenbeck proved that for generic
metric on M the moduli space M is a manifold. We cannot use their meth-
ods directly to make the G-set I into a G-manifold, because the perturba-
tion cannot be made G-invariant and so the method of [7] need not yield a
G-invariant metric.

In [4] we defined cohomology classes which are obstructions to perturb-
ing the G-set 9 into a G-manifold. In this paper we shall show that when G
is the cyclic group of order 27, there are classes of metrics on M for which
these obstruction classes vanish.

We will follow the notations in [4]; * stands for irreducibility. Let © be
the set of all connections on E and let G be the group of gauge transfor-
mations on E. Consider the map ®: @ x C%— Q2(Gg) given by ®(V, y) =
P_y~*RY, where CC= C*(GL(TM))% s the set of G-equivariant C*-auto-
morphisms of the tangent bundle of M. Here P_: Q%(Qg) —» Q2(Qg) is the
projection to the anti-self-dual part (with respect to a fixed G-invariant met-
ric on M) of the 2-forms of M with values in the adjoint bundle associated
to E, and R denotes the curvature of the connection V. Our result is that
there is an open G-set O of @ X CY such that the restriction map ®: O —
QE(QE) is smooth and has zero as a regular value. The G-set O contains all
(V,¥) € C" x CC such that II(V) € M with respect to the metric ¥*(g) on
M, where I1: @" - ®" = C*/G is the projection. Furthermore, there is an
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open dense set in C% such that the moduli space 910" of irreducible self-dual
connections is a manifold in a G-neighborhood of M " for each metric in
the dense set of CS. We also have a similar result for the reducible con-
nections.

Combining these results provides a dense set in C© of the C*, G-invariant
metrics on M such that the moduli space 9 is a manifold in a G-neighbor-
hood of the fixed point set MC for each metric in the dense set. Moreover,
for these metrics the Petrie obstruction classes vanish. This result is true for
the cyclic group G of order 2”.

By perturbing the free part in MM we obtain a smooth G- mamfold M of
dimension 5 with a finite number N of singular points, each of which has a
cone neighborhood of CP?, where A\=rank H*(M; Z).
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2. Generic Metrics on M for the Irreducible
Self-Dual Connections

As in [4], let C= C*(GL(TM)) be the set of C*-automorphisms of the tan-
gent bundle. Throughout this section we fix G to be the group Z/2 = {1, h}.
Let C€ be the G-fixed point set of C. For a large fixed k, we define a map
®: C;_ X C%— Q2(GE);—, by

B(V,¢)=P_(¢~*R").

Here the (/—i) means (as usual) the Sobolev norm, and 92 is the anti-self-
dual part with respect to a fixed G-invariant metric g on M. Hereafter we
will omit the Sobolev norm notations.

Let IT: G — B" = @°/G be the projection. If the group G acts nontrivially
on M, then the free part M%=M\M ¢ is an open dense subset of M.

LEMMA 2.1. For each x € M° there is an open neighborhood U of x such
that for each o€ T(C) there exists a 7€ T(CC) such that ¢|U=17|U.

Proof. For each x e M°choose a neighborhood U of x such that A((U)NU =
. Note that

ceT(C)=C*End(TM)) and T(C°) = C*End(TM)O).

Choose a cutoff function f: M%— [0, 1] such that f]U=1and A(supp f)N
(supp f) = . Let 6 = fo; then h[supp(a)]N[supp(a)] = D. Since f|U=
o=d on U. By averaging, 7= 3, h*(@) and h(7) = 7. We have 7€ T(C°)
such that 7= ¢ on U, because for any ye U

(=3 @)=Y h-ah~'(»)

heG heG
=d(y)=o(»). O
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Note that Lemma 2.1 is true for any finite group G. The following theorem
is one of our main theorems in this section. To prove this theorem we will
follow [7, Thm. 3.4]. However, in our case zero may not be a regular value
of ® because we replace C by CC. So we must restrict the domain of ® to a
suitably chosen open subset of @*x CC.

LEMMA 2.2 [7]. Let V be a 4-dimensional oriented Euclidean vector space
and W any vector space. Suppose Re A2 V*QW and ¢ € A2 V*Q@W satis-
fies (r*R, ¢)=0 forall re End(V). Then in A2+ V*@ A2 V* the images Im(R)
and Im(¢) are orthogonal.

THEOREM 2.3. There is an open G-set O of C*x C such that:

(i) the open set O contains all (V,y)e C*x CC such that TI(V) e MC
with respect to the metric ¥*(g) on M, where I1: C" > ® = QC"/G is
the projection; and

(ii) the restriction map ®: O— Q%(Qg) is smooth and has zero as a reg-
ular value.

Proof. 1t is sufficient to prove that the differential 6®y, 4 is surjective
whenever ®(V, y) =0, and that the gauge equivalence class [V] € 9" with
respect to the metric Yy*(g) on M. The differential

6Py, 4y 2(Gp) X CHEnd(TM) ) - Q2 (Gp)
splits into two pieces:
8P (v, yy = 61P(v)+ 8,y 21(Gp) X CH(End(TM)®) - Q2(Gp),
where
(8:®(v)) (A)=P_(y1*VA), (6,9,)(r) =P_(y *(r*R"))
for Ae QY(Gg), and r e C¥(End(TM)C. We must show that Coker (6&) =0,
If ¢ € Coker(6®) then ¢ € Coker(6,®), so that

0= (Py7"VA 8= VAV ODpw=] (A7)

for all A€ Q!(Gg), where = y*(¢). Since ¢ is continuous we have the point-
wise equation V*¢ =0. Since ¢ € Coker(4,®),

O=S P_ —1x% *RV , =S *RV, Y
PV TTERY), )= | (FRY, @) yegg
for all re C¥(End(TM)°). Now, since Ve M "%, we have h(V)=g(V) for
some gauge transformation 8. Collsider first the case where g =id. Since
h(V)=V, (r*RY, ) y»() = (r*RY, h$) y+()- SO

0= SM(r*RV, $+hd) g for all re C¥(End(TM)C).

Thus we have (r*RY, ¢+ h) 4oy =0 at each point of M.
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We also clearly have (r*RY, ¢ — hd) y+) = 0, and since 2¢ = (¢ + hd) +
(¢ — hd), we obtain

O - (r*RVs 2(’5)¢‘(g)s SO (r*RV: $)¢*(g) = O

at each point x e M.

Next suppose that $(V, ¢) =0 and A(V) = g(V) for some gauge transfor-
mation ge G. Let o= hg; then o2 is a gauge transformation and ¢(V) =V.
Since V is irreducible this means that ¢2= +1. Again, since ¢ € Coker 6,%,
0={,,(r*RY, ) (), Where ¢ = y*(¢). Now, since 02¢ = ¢ and since ¢+ 7
is o-invariant and A-invariant in M,

(r*RY, @) yrg) = (07*RY, 08) yo(g)= (r*RY, 68) yo()

for all € C*(End(TM))C. Thus we have 0= [,,(r*R", ¢+ 06) s+, and so
(r*RY, ¢+ 60) yr(qy =0. As above, (r*RY, $— 0¢) 4+, =0, and by adding we
have (r*RY, ¢)y+4 =0 at each point xe M°. By Lemmas 2.1 and 2.2, the
images Im(R") and Im(¢) are pointwise orthogonal on M° and so on M.
Thus at each point where RY and ¢ are nonzero, one of RY or ¢ has rank 1.
We shall sketch the rest of the proof, which proceeds exactly as in [7]. Since
RV is self-dual and ¢ is anti-self-dual with respect to the metric y*(g), we
have VRV=V*RV=V¢ = V*$ =0.

Suppose ¢ % 0. Suppose ¢ # 0 and RY has rank 2 in some neighborhood
of a point. Write ¢ =a®u, where a€ Q% and u € Gg with |u|=1.

Then, following the proof in [7, pp. 66-67], we have Vu = 0. By Lemma
2.2, (RY, u)=0and V2u=[R"Y, u] =0. This cannot happen for nonzero vec-
tors # and RY on R3. So RY has rank of at most 1. Suppose RV = ¢®@u with
|u|=1 on some open set. Then Vu =0, and the complement of {RY=0} is
connected; otherwise, V*V+ VV* has negative eigenvalues on a domain (see
[7]). Then we can extend u on M such that Vi = 0. Since V is irreducible, this
is a contradiction. Also, since k=1, RV # 0. Thus we have shown that ¢ =0
and so ¢ =0. If ®(V, y) =0, then ®(g(V), ¢)=0and ®(#(V), ¥)=0 for all
ge G and for all #€ G, since the metric ¥ is G-invariant and the self-duality
equation is independent of gauge transformations. Thus there exists an open
G-set Oin @~ x C%such that (a) the open set O contains all (V, y) e @ x C°
such that IT(V) € M C with respect to the metric ¥*(g) on M, where

II: " > ® = eC*/G

is the projection; and (b) the restriction map ®,: O —» @~ x C®—- Q2(Gg) of
®: @*x C%— Q2(Q) has zero as a regular value.
We consider the following diagram:

710 o O = €'xC%3 92y

iw l?l' ivaid
(®7(0)/9)¢ — ¢7(0)/G — 0/G — B xC°.
I7 7 ) I

CG — CG — CG — CG
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The set ;!(0) is a manifold in O. For each metric ¥ € C the fixed point set
MPC={(V,¥)e C" X {¥}|®(V, ¥)=0 for some ge G and A(V)=g(V)}/S.
This completes the proof of Theorem 2.3. U

LEMMA 2.4. ®;7YGQC 0O/Q is a manifold.

Proof. First, O/Gis clearly a manifold by the slice theorem. Let ®,: O/G -
Q2 (Gg) be the induced map. For any (V, ¢) € ®;71(0) C O we have a neigh-
borhood Uy XV, C € x CY Because TC"* = 21(Gg) = Im V ®Ker V* and
6191 |1mv =0, the differential 6&,: T(O/Q) - Q2(QE) has the same image as
6%, on O—Q2(Gg). Thus @, has zero as a regular value. This completes
the proof. ]

LEMMA 2.5. The projection ®7(0)/GQ % CC is a Fredholm map.

Proof. We consider the construction of OC @*x CC. The differential 611:
Tv, (@7 (0)/S) = (A, r) € QY(Gp) X TCY|6;@,(A) + 6,%,(r) = 0 and
V*A = 0} —» CKEnd(TM))C. Since Ker 61 = {(A4,r): 6;8,(A) =V*A=r=
0} =H(1V,¢) and

Im 6I1=(8,%)) " '(Im 6, ®; | gerv+) = (8,®1) '(Im 8, P)),

we have Coker éﬁzH(ZV,d,) because 6Py, 4) is onto. Because V is irreduc-
ible self-dual, Ind IT= (index of the fundamental elliptic complex for V) =
H{— H?Z has a numerical index 5.

Now we use the Sard-Smale theorem for the Fredholm map

I1: 71(0)/g - C°,

between paracompact Banach manifolds. The set of regular values of I is
an open dense set in C €, because dim (H2) is an upper semi-continuous inte-
ger valued function on ®;71(0)/G. If ¢ is a regular value then I17!(¢) is a
manifold with dimension 5, which is a neighborhood of SIZ:,,G in My with
respect to the G-invariant metric ¢*(g) on M. O

THEOREM 2.6. There is an open dense set in C° such that the moduli
space M" of irreducible connections is a manifold in a G-neighborhood of
M6 for each metric in the dense set.

3. Generic Metrics on M for the Reducible
Self-Dual Connections

Let V be a reducible self-dual G-invariant connection in 9. The isotropy
group I'Y={ge G| g(V) =V} of Vin the group G of gauge transformations
is isomorphic to the unitary group U(1). There is a nonzero y € Q%(Gg) with
V(¥)=0. The map ¢: E — E has global eigenvalues it, —it for some ¢ € R.

Then 0
_ it 0
p—(o —it)EQ (Sr)
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is covariant constant with corresponding gauge transformation

e’ 0
&= ( 0 e"")’

We then get a splitting of E = /@7 and of the associated Lie algebra bundle
Ge= R®/, where the gauge group acts trivially on R and with weight 2 on /.
Also, we can split the fundamental elliptic complex

0—2%Gp) B 01(Gp) L 02(Gp) - 0= (0 005 01 9= 02 - )
() @0 %)) D a1()) 2= Q2 (1) > 0),

where d is the usual exterior derivative and the reducible connection V=
D®Don E=I®I.

As Theorem 2.3 shows, the main differences between [7] and our case is
that if #(V)=g(V) then (%) is o= hg-invariant, where o = hg.

To prove that the map

Q: [2'(H\01x CO- QU ®QL())

given by (A4, ¢) — (D*¢ *4, P_¢ *DA) is a submersion throughout
Q ~1(0), we should use the condition of Theorem 2.3, because we restrict
to the G-invariant metrics C®. Then Q ~1(0) is a manifold. The projection
IT: Q ~1(0) —» C© has index 6 by considering the split complex. Again using
the Sard-Smale theorem and the upper continuity of dim H3, we have the
following.

THEOREM 3.1. There is an open dense set in CC such that the second co-
homology group HZ=0 in the fundamental elliptic complex of each G-
invariant reducible self-dual connection V.

Proof. See Theorem 2.3 and [7]. O

4. Extensions and Conclusion

If G is Z/2, then there is an open dense set in the G-invariant metrics C€
on M such that the space of G-invariant self-dual connections 9 has a G-
invariant manifold neighborhood in 9. In [4] we have shown that if we
have a G-fixed point set F={P;}?L U {T}72, on M, where P; is an isolated
fixed point and T is a surface with genus \;, then there are cohomology
obstruction classes. By Theorems 2.6 and 3.1, we have the following.

THEOREM 4.1. There is a dense set in the set CC of G-invariant metrics
on M such that the moduli space M is a manifold in a G-neighborhood of
the fixed point set M€ for each metric in the dense set. Moreover, for these
metrics, the Petrie obstruction classes vanish.

In Theorem 2.3, if we do not restrict the map ®: @*x C9— Q2(Gg), then
zero may not be a regular value. In Theorem 3.1, if we do not choose a G-
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invariant reducible connection, then the map Q may not be a submersion.
So we need a G-equivariant compact perturbation at the free part to get a
G-manifold 91T. More generally, if G is a finite cyclic group of order 2”, then
we can extend Theorem 2.3.

THEOREM 4.2. If G is a finite cyclic group of order 2" and M has a G-
action, then there is a dense set in the set C® of G-invariant metrics on M
such that the moduli space I is a manifold in a G-neighborhood of the
fixed point set MC for each metric in the dense set.

Sketch of Proof. As in Theorem 2.3, we can easily have that

(F*RY, ¢+ hg+ -+ h*"7'§) yo(g) =0
and L _ 3
(r*RY, ¢—hdp+h>G— - —h*"71§) yug) = 0.

Adding and dividing by 2,
(r*RY, ¢+ 1@+ +h*""2}) g4y = 0.
Continuing this process, we have
(r*RY, §+h>""' @) gy = 0;
(r*R%, $—h>""'$) go(q) = 0.

So we have (r*RY, ¢) g+ =0. If A(V)=g(V), g+ £1, and V is irreducible,
then (hg)2"(V) =V, (hg)?"= hgh?"-1. h2gh2"-2...g= +1. If (V) = g(V),
g&¢I'y, and V is reducible, then hg =g h; for some g,eI'y and for some
h, e G.

There is a G-invariant metric on M such that the moduli space 9N is a
manifold in a G-neighborhood of the set 9MC of the G-invariant self-dual
connections. Under the G-invariant metric the cross section @ = /G %
CXg Q2 (Qg) given by ¥(V) = (V, RY) is transversal throughout the G-neigh-
borhood; this was proved in [4].

THEOREM 4.3. There is a compact G-equivariant perturbation ¥,=V¥ +¢
of ¥ such that the perturbed moduli space WM ,={Ve C/G|¥;(V)=0}isa
smooth 5-dimensional G-manifold with a finite number \ of singularities,
each of which has a neighborhood which is diffeomorphic to a cone on CP?,
where \=rank H>(M: Z).
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