Finite Group Actions on the Moduli Space of Self-Dual Connections, II

YONG SEUNG CHO

1. Introduction

Let G be a finite group, and let M be a simply connected, closed, smooth 4-dimensional manifold with a positive definite intersection form and a smooth action of G on it. Let $\Pi: E \to M$ be a quaternion line bundle with instanton number one and with a G-action on E through bundle isomorphism such that Π is a G-map. Let \mathfrak{M} be the set of self-dual connections on E modulo the group G of gauge transformations. If we use a G-invariant metric on M then the moduli space \mathfrak{M} is a G-space, but \mathfrak{M} might not be a manifold because of the nonvanishing second cohomology group of the fundamental elliptic complex or because of reducible self-dual connections.

In [5] Donaldson used a compact perturbation of a Fredholm map to make \mathfrak{M} a manifold. In [7] Freed and Uhlenbeck proved that for generic metric on M the moduli space \mathfrak{M} is a manifold. We cannot use their methods directly to make the G-set \mathfrak{M} into a G-manifold, because the perturbation cannot be made G-invariant and so the method of [7] need not yield a G-invariant metric.

In [4] we defined cohomology classes which are obstructions to perturbing the G-set \mathfrak{M} into a G-manifold. In this paper we shall show that when G is the cyclic group of order 2^n , there are classes of metrics on M for which these obstruction classes vanish.

We will follow the notations in [4]; ^ stands for irreducibility. Let \mathcal{C} be the set of all connections on E and let \mathcal{G} be the group of gauge transformations on E. Consider the map $\Phi \colon \mathcal{C}^{\wedge} \times C^G \to \Omega^{-}_{-}(\mathcal{G}_E)$ given by $\Phi(\nabla, \psi) = P_{-}\psi^{-1*}R^{\nabla}$, where $C^G = C^k(GL(TM))^G$ is the set of G-equivariant C^k -automorphisms of the tangent bundle of M. Here $P_{-} \colon \Omega^2(\mathcal{G}_E) \to \Omega^{-}_{-}(\mathcal{G}_E)$ is the projection to the anti-self-dual part (with respect to a fixed G-invariant metric on M) of the 2-forms of M with values in the adjoint bundle associated to E, and R^{∇} denotes the curvature of the connection ∇ . Our result is that there is an open G-set O of $\mathbb{C}^{\wedge} \times C^G$ such that the restriction map $\Phi \colon O \to \Omega^{-}_{-}(\mathcal{G}_E)$ is smooth and has zero as a regular value. The G-set O contains all $(\nabla, \psi) \in \mathbb{C}^{\wedge} \times C^G$ such that $\Pi(\nabla) \in \mathfrak{M}^G$ with respect to the metric $\psi^*(g)$ on M, where $\Pi \colon \mathbb{C}^{\wedge} \to \mathbb{G}^{\wedge} = \mathbb{C}^{\wedge}/\mathbb{G}$ is the projection. Furthermore, there is an

Received February 13, 1989. Revision received August 2, 1989. Michigan Math. J. 37 (1990).

open dense set in C^G such that the moduli space $\mathfrak{M}^{\hat{}}$ of irreducible self-dual connections is a manifold in a G-neighborhood of $\mathfrak{M}^{\hat{}}$ for each metric in the dense set of C^G . We also have a similar result for the reducible connections.

Combining these results provides a dense set in C^G of the C^∞ , G-invariant metrics on M such that the moduli space \mathfrak{M} is a manifold in a G-neighborhood of the fixed point set \mathfrak{M}^G for each metric in the dense set. Moreover, for these metrics the Petrie obstruction classes vanish. This result is true for the cyclic group G of order 2^n .

By perturbing the free part in \mathfrak{M} we obtain a smooth G-manifold \mathfrak{M} of dimension 5 with a finite number λ of singular points, each of which has a cone neighborhood of $\mathbb{C}P^2$, where $\lambda = \operatorname{rank} H^2(M; \mathbb{Z})$.

ACKNOWLEDGMENT. The author wishes to thank Professor Melvin Rothenberg and Professor Karen Uhlenbeck for their advice, help and encouragement during the course of this work.

2. Generic Metrics on M for the Irreducible Self-Dual Connections

As in [4], let $C = C^k(GL(TM))$ be the set of C^k -automorphisms of the tangent bundle. Throughout this section we fix G to be the group $\mathbb{Z}/2 = \{1, h\}$. Let C^G be the G-fixed point set of C. For a large fixed k, we define a map $\Phi: \mathbb{C}_{l-1}^n \times C^G \to \Omega^2_-(\mathbb{G}_E)_{l-2}$ by

$$\Phi(\nabla,\phi) = P_{-}(\phi^{-1}R^{\nabla}).$$

Here the (l-i) means (as usual) the Sobolev norm, and Ω_{-}^{2} is the anti-self-dual part with respect to a fixed G-invariant metric g on M. Hereafter we will omit the Sobolev norm notations.

Let $\Pi: \mathbb{C}^{\hat{}} \to \mathbb{G}^{\hat{}} = \mathbb{C}^{\hat{}}/\mathbb{G}$ be the projection. If the group G acts nontrivially on M, then the free part $M^0 = M \setminus M^G$ is an open dense subset of M.

LEMMA 2.1. For each $x \in M^0$ there is an open neighborhood U of x such that for each $\sigma \in T(C)$ there exists a $\tau \in T(C^G)$ such that $\sigma | U = \tau | U$.

Proof. For each $x \in M^0$ choose a neighborhood U of x such that $h(U) \cap U = \emptyset$. Note that

$$\sigma \in T(C) = C^k(\text{End}(TM))$$
 and $T(C^G) = C^k(\text{End}(TM)^G)$.

Choose a cutoff function $f: M^0 \to [0, 1]$ such that $f \mid U \equiv 1$ and $h(\text{supp } f) \cap (\text{supp } f) = \emptyset$. Let $\overline{\sigma} = f\sigma$; then $h[\text{supp}(\overline{\sigma})] \cap [\text{supp}(\overline{\sigma})] = \emptyset$. Since $f \mid U \equiv 1$, $\sigma = \overline{\sigma}$ on U. By averaging, $\tau \equiv \sum_{h \in G} h^*(\overline{\sigma})$ and $h(\tau) = \tau$. We have $\tau \in T(C^G)$ such that $\tau = \sigma$ on U, because for any $y \in U$

$$\tau(y) = \sum_{h \in G} h^*(\bar{\sigma})(y) = \sum_{h \in G} h \cdot \bar{\sigma}(h^{-1}(y))$$
$$= \bar{\sigma}(y) = \sigma(y).$$

Note that Lemma 2.1 is true for any finite group G. The following theorem is one of our main theorems in this section. To prove this theorem we will follow [7, Thm. 3.4]. However, in our case zero may not be a regular value of Φ because we replace C by C^G . So we must restrict the domain of Φ to a suitably chosen open subset of $\mathbb{C}^{\circ} \times C^G$.

LEMMA 2.2 [7]. Let V be a 4-dimensional oriented Euclidean vector space and W any vector space. Suppose $R \in \Lambda^2_+ V^* \otimes W$ and $\phi \in \Lambda^2_- V^* \otimes W$ satisfies $(r^*R, \phi) = 0$ for all $r \in \text{End}(V)$. Then in $\Lambda^2_+ V^* \otimes \Lambda^2_- V^*$ the images Im(R) and $\text{Im}(\phi)$ are orthogonal.

THEOREM 2.3. There is an open G-set O of $\mathbb{C}^* \times \mathbb{C}^G$ such that:

- (i) the open set O contains all $(\nabla, \psi) \in \mathbb{C}^{\wedge} \times C^{G}$ such that $\Pi(\nabla) \in \mathfrak{M}^{G}$ with respect to the metric $\psi^{*}(g)$ on M, where $\Pi: \mathbb{C}^{\wedge} \to \mathfrak{G}^{\wedge} = \mathbb{C}^{\wedge}/\mathfrak{G}$ is the projection; and
- (ii) the restriction map $\Phi: O \to \Omega^2_-(\mathcal{G}_E)$ is smooth and has zero as a regular value.

Proof. It is sufficient to prove that the differential $\delta\Phi_{(\nabla,\psi)}$ is surjective whenever $\Phi(\nabla,\psi)=0$, and that the gauge equivalence class $[\nabla]\in\mathfrak{M}^{\wedge G}$ with respect to the metric $\psi^*(g)$ on M. The differential

$$\delta\Phi_{(\nabla,\psi)}:\Omega^1(\mathcal{G}_E)\times C^k(\operatorname{End}(TM)^G)\to\Omega^2_-(\mathcal{G}_E)$$

splits into two pieces:

$$\delta\Phi_{(\nabla,\psi)} = \delta_1\Phi_{(\nabla)} + \delta_2\Phi_{(\psi)} : \Omega^1(\mathcal{G}_E) \times C^k(\operatorname{End}(TM)^G) \to \Omega^2_-(\mathcal{G}_E),$$

where

$$(\delta_1 \Phi_{(\nabla)})(A) = P_-(\psi^{-1} \nabla A), \qquad (\delta_2 \Phi_{\psi})(r) = P_-(\psi^{-1} (r R^{\nabla}))$$

for $A \in \Omega^1(\mathcal{G}_E)$, and $r \in C^k(\operatorname{End}(TM)^G)$. We must show that $\operatorname{Coker}(\delta\Phi) = 0$. If $\phi \in \operatorname{Coker}(\delta\Phi)$ then $\phi \in \operatorname{Coker}(\delta_1\Phi)$, so that

$$0 = \int_{M} (P_{-}\psi^{-1} * \nabla A, \phi)_{g} = \int_{M} (\nabla A, \psi^{*}(\phi))_{\psi^{*}(g)} = \int_{M} (A, \nabla^{*}\tilde{\phi})_{\psi^{*}(g)}$$

for all $A \in \Omega^1(\mathcal{G}_E)$, where $\tilde{\phi} = \psi^*(\phi)$. Since ϕ is continuous we have the pointwise equation $\nabla^* \tilde{\phi} = 0$. Since $\phi \in \operatorname{Coker}(\delta_2 \Phi)$,

$$0 = \int_{M} (P_{-}\psi^{-1*}(r^{*}R^{\nabla}), \phi)_{g} = \int_{M} (r^{*}R^{\nabla}, \tilde{\phi})_{\psi^{*}(g)}$$

for all $r \in C^k(\operatorname{End}(TM)^G)$. Now, since $\nabla \in \mathfrak{M}^{\wedge G}$, we have $h(\nabla) = g(\nabla)$ for some gauge transformation g. Consider first the case where $g = \operatorname{id}$. Since $h(\nabla) = \nabla$, $(r^*R^{\nabla}, \tilde{\phi})_{\psi^*(g)} = (r^*R^{\nabla}, h\tilde{\phi})_{\psi^*(g)}$. So

$$0 = \int_{M} (r^* R^{\nabla}, \tilde{\phi} + h\tilde{\phi})_{\psi^*(g)} \quad \text{for all } r \in C^k(\text{End}(TM)^G).$$

Thus we have $(r^*R^{\nabla}, \tilde{\phi} + h\tilde{\phi})_{\psi^*(g)} = 0$ at each point of M^0 .

We also clearly have $(r^*R^{\nabla}, \tilde{\phi} - h\tilde{\phi})_{\psi^*(g)} = 0$, and since $2\tilde{\phi} = (\tilde{\phi} + h\tilde{\phi}) + (\tilde{\phi} - h\tilde{\phi})$, we obtain

$$0 = (r^*R^{\nabla}, 2\tilde{\phi})_{\psi^*(g)}, \text{ so } (r^*R^{\nabla}, \tilde{\phi})_{\psi^*(g)} = 0$$

at each point $x \in M^0$.

Next suppose that $\Phi(\nabla, \phi) = 0$ and $h(\nabla) = g(\nabla)$ for some gauge transformation $g \in G$. Let $\sigma = hg$; then σ^2 is a gauge transformation and $\sigma(\nabla) = \nabla$. Since ∇ is irreducible this means that $\sigma^2 = \pm 1$. Again, since $\phi \in \text{Coker } \delta_2 \Phi$, $0 = \int_M (r^*R^{\nabla}, \tilde{\phi})_{\psi^*(g)}$, where $\tilde{\phi} = \psi^*(\phi)$. Now, since $\sigma^2 \tilde{\phi} = \tilde{\phi}$ and since $\tilde{\phi} + \sigma \tilde{\phi}$ is σ -invariant and h-invariant in M,

$$(r^*R^{\nabla}, \tilde{\phi})_{\psi^*(g)} = (\sigma r^*R^{\nabla}, \sigma \tilde{\phi})_{\psi^*(g)} = (r^*R^{\nabla}, \sigma \tilde{\phi})_{\psi^*(g)}$$

for all $r \in C^k(\operatorname{End}(TM))^G$. Thus we have $0 = \int_M (r^*R^\nabla, \tilde{\phi} + \sigma \tilde{\phi})_{\psi^*(g)}$, and so $(r^*R^\nabla, \tilde{\phi} + \sigma \tilde{\phi})_{\psi^*(g)} = 0$. As above, $(r^*R^\nabla, \tilde{\phi} - \sigma \tilde{\phi})_{\psi^*(g)} = 0$, and by adding we have $(r^*R^\nabla, \tilde{\phi})_{\psi^*(g)} = 0$ at each point $x \in M^0$. By Lemmas 2.1 and 2.2, the images $\operatorname{Im}(R^\nabla)$ and $\operatorname{Im}(\tilde{\phi})$ are pointwise orthogonal on M^0 and so on M. Thus at each point where R^∇ and $\tilde{\phi}$ are nonzero, one of R^∇ or $\tilde{\phi}$ has rank 1. We shall sketch the rest of the proof, which proceeds exactly as in [7]. Since R^∇ is self-dual and $\tilde{\phi}$ is anti-self-dual with respect to the metric $\psi^*(g)$, we have $\nabla R^\nabla = \nabla^* R^\nabla = \nabla \tilde{\phi} = \nabla^* \tilde{\phi} = 0$.

Suppose $\tilde{\phi} \neq 0$. Suppose $\tilde{\phi} \neq 0$ and R^{∇} has rank 2 in some neighborhood of a point. Write $\tilde{\phi} = a \otimes u$, where $a \in \Omega^2$ and $u \in \mathcal{G}_E$ with |u| = 1.

Then, following the proof in [7, pp. 66–67], we have $\nabla u = 0$. By Lemma 2.2, $(R^{\nabla}, u) = 0$ and $\nabla^2 u = [R^{\nabla}, u] = 0$. This cannot happen for nonzero vectors u and R^{∇} on R^3 . So R^{∇} has rank of at most 1. Suppose $R^{\nabla} = \sigma \otimes u$ with |u| = 1 on some open set. Then $\nabla u = 0$, and the complement of $\{R^{\nabla} = 0\}$ is connected; otherwise, $\nabla^*\nabla + \nabla\nabla^*$ has negative eigenvalues on a domain (see [7]). Then we can extend u on M such that $\nabla u = 0$. Since ∇ is irreducible, this is a contradiction. Also, since k = 1, $R^{\nabla} \not\equiv 0$. Thus we have shown that $\tilde{\phi} \equiv 0$ and so $\phi \equiv 0$. If $\Phi(\nabla, \psi) = 0$, then $\Phi(g(\nabla), \psi) = 0$ and $\Phi(h(\nabla), \psi) = 0$ for all $g \in \mathcal{G}$ and for all $h \in G$, since the metric ψ is G-invariant and the self-duality equation is independent of gauge transformations. Thus there exists an open G-set O in $\mathbb{C}^{\wedge} \times C^G$ such that (a) the open set O contains all $(\nabla, \psi) \in \mathbb{C}^{\wedge} \times C^G$ such that $\Pi(\nabla) \in \mathfrak{M}^G$ with respect to the metric $\psi^*(g)$ on M, where

$$\Pi: \mathbb{C}^{\wedge} \to \mathbb{C}^{\wedge} = \mathbb{C}^{\wedge}/\mathbb{C}$$

is the projection; and (b) the restriction map $\Phi_1: O \to \mathbb{C}^* \times C^G \to \Omega^2_-(\mathcal{G}_E)$ of $\Phi: \mathbb{C}^* \times C^G \to \Omega^2_-(\mathcal{G}_E)$ has zero as a regular value.

We consider the following diagram:

$$\Phi_{1}^{-1}(0) \hookrightarrow O \hookrightarrow \mathbb{C}^{\wedge} \times C^{G} \xrightarrow{\Phi} \Omega_{-}^{2}(\mathbb{G}_{E})$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi X \text{id}}$$

$$(\Phi_{1}^{-1}(0)/\mathbb{G})^{G} \to \Phi_{1}^{-1}(0)/\mathbb{G} \to O/\mathbb{G} \to \mathbb{G}^{\wedge} \times C^{G}.$$

$$\downarrow^{\overline{\pi}} \qquad \downarrow^{\overline{\pi}} \qquad \downarrow \qquad \downarrow$$

$$C^{G} = C^{G} = C^{G} = C^{G}$$

The set $\Phi_1^{-1}(0)$ is a manifold in O. For each metric $\Psi \in C^G$ the fixed point set $\mathfrak{M}_{\Psi}^{G} = \{(\nabla, \Psi) \in \mathfrak{C}^{\wedge} \times \{\Psi\} \mid \Phi(\nabla, \Psi) = 0 \text{ for some } g \in \mathcal{G} \text{ and } h(\nabla) = g(\nabla)\}/\mathcal{G}$. This completes the proof of Theorem 2.3.

LEMMA 2.4. $\Phi_1^{-1}/\mathcal{G} \subset O/\mathcal{G}$ is a manifold.

Proof. First, O/G is clearly a manifold by the slice theorem. Let $\Phi_1 \colon O/G \to \Omega^2_-(G_E)$ be the induced map. For any $(\nabla, \phi) \in \Phi_1^{-1}(0) \subset O$ we have a neighborhood $U_{\nabla} \times V_{\phi} \subset \mathbb{C}^{\circ} \times \mathbb{C}^{G}$. Because $T\mathbb{C}^{\circ} = \Omega^1(G_E) = \operatorname{Im} \nabla \oplus \operatorname{Ker} \nabla^*$ and $\delta_1 \Phi_1|_{\operatorname{Im} \nabla} = 0$, the differential $\delta \overline{\Phi}_1 \colon T(O/G) \to \Omega^2(G_E)$ has the same image as $\delta \Phi_1$ on $O \to \Omega^2_-(G_E)$. Thus $\overline{\Phi}_1$ has zero as a regular value. This completes the proof.

LEMMA 2.5. The projection $\Phi_1^{-1}(0)/\mathcal{G} \xrightarrow{\bar{\pi}} C^G$ is a Fredholm map.

Proof. We consider the construction of $O \subset \mathbb{C}^* \times C^G$. The differential $\delta \bar{\Pi}$: $T_{(\nabla, \phi)}(\Phi_1^{-1}(0)/\mathcal{G}) = \{(A, r) \in \Omega^1(\mathcal{G}_E) \times TC^G \mid \delta_1 \Phi_1(A) + \delta_2 \Phi_1(r) = 0 \text{ and } \nabla^* A = 0\} \to C^k(\operatorname{End}(TM))^G$. Since $\operatorname{Ker} \delta \bar{\Pi} = \{(A, r) : \delta_1 \Phi_1(A) = \nabla^* A = r = 0\} = H^1_{(\nabla, \phi)}$ and

Im
$$\delta \bar{\Pi} = (\delta_2 \Phi_1)^{-1} (\text{Im } \delta_1 \Phi_1 |_{\text{Ker } \nabla^*}) = (\delta_2 \Phi_1)^{-1} (\text{Im } \delta_1 \Phi_1),$$

we have Coker $\delta \bar{\Pi} \simeq H^2_{(\nabla,\phi)}$ because $\delta \Phi_{1(\nabla,\phi)}$ is onto. Because ∇ is irreducible self-dual, Ind $\bar{\Pi}$ = (index of the fundamental elliptic complex for ∇) = $H^1_{\nabla} - H^2_{\nabla}$ has a numerical index 5.

Now we use the Sard-Smale theorem for the Fredholm map

$$\bar{\Pi}: \Phi_1^{-1}(0)/\mathcal{G} \to C^G$$

between paracompact Banach manifolds. The set of regular values of $\bar{\Pi}$ is an open dense set in C^G , because $\dim(H^2_{\nabla})$ is an upper semi-continuous integer valued function on $\Phi_1^{-1}(0)/\mathcal{G}$. If ϕ is a regular value then $\bar{\Pi}^{-1}(\phi)$ is a manifold with dimension 5, which is a neighborhood of \mathfrak{M}^G_{ϕ} in \mathfrak{M}^G_{ϕ} with respect to the G-invariant metric $\phi^*(g)$ on M.

THEOREM 2.6. There is an open dense set in C^G such that the moduli space $\mathfrak{M}^{\hat{}}$ of irreducible connections is a manifold in a G-neighborhood of $\mathfrak{M}^{\hat{}}$ for each metric in the dense set.

3. Generic Metrics on M for the Reducible Self-Dual Connections

Let ∇ be a reducible self-dual G-invariant connection in \mathfrak{M} . The isotropy group $\Gamma^{\nabla} = \{g \in \mathcal{G} \mid g(\nabla) = \nabla\}$ of ∇ in the group \mathcal{G} of gauge transformations is isomorphic to the unitary group U(1). There is a nonzero $\psi \in \Omega^0(\mathcal{G}_E)$ with $\nabla(\psi) = 0$. The map $\psi \colon E \to E$ has global eigenvalues it, -it for some $t \in R$. Then

$$\rho = \begin{pmatrix} it & 0 \\ 0 & -it \end{pmatrix} \in \Omega^0(\mathcal{G}_E)$$

is covariant constant with corresponding gauge transformation

$$g = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}.$$

We then get a splitting of $E = l \oplus \overline{l}$ and of the associated Lie algebra bundle $\mathfrak{G}_E = R \oplus l$, where the gauge group acts trivially on **R** and with weight 2 on *l*. Also, we can split the fundamental elliptic complex

$$0 \to \Omega^{0}(\mathcal{G}_{E}) \xrightarrow{\nabla} \Omega^{1}(\mathcal{G}_{E}) \xrightarrow{d\nabla} \Omega^{2}_{-}(\mathcal{G}_{E}) \to 0 \equiv (0 \to \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{d_{-}} \Omega^{2}_{-} \to 0)$$

$$(*) \qquad \qquad \oplus (0 \to \Omega^{0}(l) \xrightarrow{D} \Omega^{1}(l) \xrightarrow{D_{-}} \Omega^{2}_{-}(l) \to 0).$$

where d is the usual exterior derivative and the reducible connection $\nabla = D \oplus D$ on $E = l \oplus \overline{l}$.

As Theorem 2.3 shows, the main differences between [7] and our case is that if $h(\nabla) = g(\nabla)$ then (*) is $\sigma = hg$ -invariant, where $\sigma = hg$.

To prove that the map

$$Q: [\Omega^1(l) \setminus 0] \times C^G \rightarrow \Omega^0(l) \oplus \Omega^2_-(l)$$

given by $(A, \phi) \mapsto (D^*\phi^{-1}A, P_-\phi^{-1}DA)$ is a submersion throughout $Q^{-1}(0)$, we should use the condition of Theorem 2.3, because we restrict to the G-invariant metrics C^G . Then $Q^{-1}(0)$ is a manifold. The projection $\Pi: Q^{-1}(0) \to C^G$ has index 6 by considering the split complex. Again using the Sard-Smale theorem and the upper continuity of dim H_D^2 , we have the following.

THEOREM 3.1. There is an open dense set in C^G such that the second cohomology group $H^2_{\nabla} = 0$ in the fundamental elliptic complex of each Ginvariant reducible self-dual connection ∇ .

Proof. See Theorem 2.3 and [7].

4. Extensions and Conclusion

If G is $\mathbb{Z}/2$, then there is an open dense set in the G-invariant metrics C^G on M such that the space of G-invariant self-dual connections \mathfrak{M}^G has a G-invariant manifold neighborhood in \mathfrak{M} . In [4] we have shown that if we have a G-fixed point set $F = \{P_i\}_{i=1}^{n_1} \cup \{T^{\lambda_i}\}_{i=1}^{n_2}$ on M, where P_i is an isolated fixed point and T^{λ_i} is a surface with genus λ_i , then there are cohomology obstruction classes. By Theorems 2.6 and 3.1, we have the following.

THEOREM 4.1. There is a dense set in the set C^G of G-invariant metrics on M such that the moduli space \mathfrak{M} is a manifold in a G-neighborhood of the fixed point set \mathfrak{M}^G for each metric in the dense set. Moreover, for these metrics, the Petrie obstruction classes vanish.

In Theorem 2.3, if we do not restrict the map $\Phi: \mathbb{C}^{\wedge} \times C^G \to \Omega^2_{-}(\mathcal{G}_E)$, then zero may not be a regular value. In Theorem 3.1, if we do not choose a G-

invariant reducible connection, then the map Q may not be a submersion. So we need a G-equivariant compact perturbation at the free part to get a G-manifold \mathfrak{M} . More generally, if G is a finite cyclic group of order 2^n , then we can extend Theorem 2.3.

THEOREM 4.2. If G is a finite cyclic group of order 2^n and M has a Gaction, then there is a dense set in the set C^G of G-invariant metrics on M such that the moduli space \mathfrak{M} is a manifold in a G-neighborhood of the fixed point set \mathfrak{M}^G for each metric in the dense set.

Sketch of Proof. As in Theorem 2.3, we can easily have that

$$(r^*R^{\nabla}, \tilde{\phi} + h\tilde{\phi} + \dots + h^{2^n-1}\tilde{\phi})_{\Psi^*(g)} = 0$$

and

$$(r^*R^{\nabla}, \tilde{\phi} - h\tilde{\phi} + h^2\tilde{\phi} - \dots - h^{2^{n-1}}\tilde{\phi})_{\Psi^*(g)} = 0.$$

Adding and dividing by 2,

$$(r^*R^{\nabla}, \tilde{\phi} + h^2\tilde{\phi} + \dots + h^{2^{n-2}}\tilde{\phi})_{\Psi^*(g)} = 0.$$

Continuing this process, we have

$$(r^*R^{\nabla}, \tilde{\phi} + h^{2^{n-1}}\tilde{\phi})_{\Psi^*(g)} = 0;$$

 $(r^*R^{\nabla}, \tilde{\phi} - h^{2^{n-1}}\tilde{\phi})_{\Psi^*(g)} = 0.$

So we have $(r^*R^{\nabla}, \tilde{\phi})_{\Psi^*(g)} = 0$. If $h(\nabla) = g(\nabla)$, $g \neq \pm 1$, and ∇ is irreducible, then $(hg)^{2^n}(\nabla) = \nabla$, $(hg)^{2^n} = hgh^{2^{n-1}} \cdot h^2gh^{2^{n-2}} \cdots g = \pm 1$. If $h(\nabla) = g(\nabla)$, $g \notin \Gamma_{\nabla}$, and ∇ is reducible, then $hg = g_1h_1$ for some $g_1 \in \Gamma_{\nabla}$ and for some $h_1 \in G$.

There is a G-invariant metric on M such that the moduli space \mathfrak{M} is a manifold in a G-neighborhood of the set \mathfrak{M}^G of the G-invariant self-dual connections. Under the G-invariant metric the cross section $\mathfrak{G} = \mathfrak{C}/\mathfrak{G} \xrightarrow{\Psi} \mathfrak{C} \times_{\mathfrak{G}} \Omega^2_{-}(\mathfrak{G}_E)$ given by $\Psi(\nabla) = (\nabla, R^{\nabla}_{-})$ is transversal throughout the G-neighborhood; this was proved in [4].

THEOREM 4.3. There is a compact G-equivariant perturbation $\Psi_1 = \Psi + \sigma$ of Ψ such that the perturbed moduli space $\mathfrak{M}_1 = \{ \nabla \in \mathbb{C}/\mathcal{G} \mid \Psi_1(\nabla) = 0 \}$ is a smooth 5-dimensional G-manifold with a finite number λ of singularities, each of which has a neighborhood which is diffeomorphic to a cone on $\mathbb{C}P^2$, where $\lambda = \operatorname{rank} H^2(M: \mathbb{Z})$.

References

- 1. M. F. Atiyah, N. Hitchin, and I. Singer, Self duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
- 2. M. F. Atiyah and I. Singer, *The index of elliptic operators III*, Ann. of Math. (2) 87 (1968), 546-604.
- 3. G. Bredon, *Introduction to compact transformation groups*, Pure Appl. Math., 46, Academic Press, New York, 1972.

- 4. Y. S. Cho, Finite group actions on the moduli space of self-dual connections (I), Trans. Amer. Math. Soc., to appear.
- 5. S. Donaldson, An application of gauge theory to four-manifold theory, J. Differential Geom. 18 (1983), 279–315.
- 6. R. Fintushel and R. Stern, *Pseudofree orbifolds*, Ann. of Math. (2) 122 (1985), 335–364.
- 7. D. Freed and K. Uhlenbeck, *Instantons and four-manifolds*, Math. Sci. Res. Inst. Publ., 1, Springer, New York, 1984.
- 8. M. Freedman, *The topology of four dimensional manifolds*, J. Differential Geom. 17 (1983), 357-454.
- 9. S. Smale, *An infinite dimensional version of Sard's theorem*, Amer. J. Math. 87 (1968), 861–866.
- 10. C. Taubes, *Self-dual connections on non-self-dual 4-manifolds*, J. Differential Geom. 17 (1982), 139–170.

Department of Mathematics Brandeis University Waltham, MA 02154

Current address:

Department of Mathematics College of Natural Sciences Ewha Womans University Seoul, 120-750 Korea