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Introduction

In [6] it is shown that if a group G acting as a group of isometries on a tree T
has a normal subgroup K with bounded action, then the factor group G/K
acts on a quotient tree 7/K. This paper considers possibilities for K and re-
lationships between the two actions.

A group action gives an associated hyperbolic length function, defined in
[1] and [5], and also for each point of the tree a Lyndon length function,
defined originally in [4]. In Section 1 it is shown that the hyperbolic length
function on G is determined by that on G/K, and in Section 2 it is shown
that the Lyndon length functions on G are determined up to equivalence by
those on G/K. In Theorem 2.2 it is established that the normal subgroups X
with bounded action are contained in subgroups of G defined by Lyndon
length functions, and that there is a maximal K. In Section 3, under the as-
sumption that not every element of G has a fixed point, it is shown that (with
K maximal) G/K is isomorphic to a subgroup of the additive reals or has a
trivial centre.

1. Bounded Actions and Hyperbolic Lengths

Let a group G act as a group of isometries on a metric tree (or R-tree) 7,
equipped with a metric d. The following notation and properties are recalled
from [6], where more detail may be found.

A metric tree 7" has the property that, for any two points #, v € T, thereis a
unique isometry «: [0, r] — T with «(0) =« and «(r) = v, where r =d(u,v).
The image ([0, r]) is denoted by [u, v] and is called a segiment of 7.

For each u € T, a Lyndon length function ¢,,: G — R is defined by ¢,(x) =
d(u,xu). The set N of non-Archimedean elements of G consists of elements
x such that ¢, (x?) < ¢,(x) for some (and hence all) u € T. It is shown in [6,
Prop. 2.2] that x e N if and only if it fixes some point of 7.

A subgroup K of G has bounded action on T if, for some (and hence each)
u € T, the set of lengths {f,(x); x € K} is bounded. Theorem 3.2 of [6] states
that K has bounded action if and only if it fixes some point of 7' If a normal
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subgroup K of G has bounded action on 7 then the factor group G/K acts
on the quotient tree 7/K, as described in Section 4 of [6].

LEMMA 1.1. If a normal subgroup K of G fixes a point u of T, then K fixes
xu for each x € G. |

Proof. 1If a € K then (since K is a normal subgroup) ax = xa’ for some a’e
K. The point u is fixed by K and so a’u = u. Thus axu = xa’u = xu, showing
that xu is fixed by each a e X. ]

Each element x ¢ N has a unique axis in 7—that is, an isometric image of R
such that if «: R — T is the isometry then « “!x« is a translation of R.

LEMMA 1.2. If a normal subgroup K of G has bounded action on T, then
K fixes each axis of T pointwise.

Proof. Each x ¢ N has an axis in 7. The existence of axes is established in
[1, Thm. 6.6] and [5, Thm. II.2.3], where it is shown that for any u € T the
axis for x is contained in the union of segments U,z [x"u, x"*'u]. (In fact,
in [5, proof of Lemma II.2.4] it is shown that the axis = U,z [x"v, x"*lv],
where [u, xulN[u,x 'ul={u,v].)

If K has bounded action then it fixes some point # of T by Theorem 3.2
of [6]. By Lemma 1.1, the points x"u are fixed by K for each n € Z. Since the
points of a segment are uniquely determined by the end points, it follows
that each of the points of [x"u, x"*!u] is fixed by K. The axis for x is there-
fore fixed pointwise by K. O

The hyperbolic length function L: G — R of an action of G on T is defined by

L(x)=min {,(x) = min d(u, xu).
ueT ueT
If x e N, then x has a fixed point in 7 and so L(x) =0. If x ¢ N, then by {1,
Thm. 6.6] and [5, Thm. 11.2.3] L(x) is the translation length on the axis for
x. In either case, it is also shown in [1, Cor. 6.13] that, foranyu e T, L(x)=
max (0, £,(x2) —€,(x)).

THEOREM 1.3. Let G act as a group of isometries on a tree T, with K a
proper normal subgroup of G having bounded action. If L: G—->R and L':
G/K — R are the hyperbolic length functions associated (respectively) with
the actions of G on T and of G/K on T/K, then L(x)=L"(xK).

Proof. If x e N then x has a fixed point u € T, by Proposition 2.2 of [6]. The
element xK then fixes [¢#] in 7/K, and so L(x)=L'(xK)=0.

If x ¢ N then, by Lemma 1.2, X fixes the axis for x pointwise. So in 7/K
the element xK has an identical axis on which it acts in the same way as x.
Hence L(x) =L’(xK), the translation length on the axis. O
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2. Bounded Actions and Lyndon Lengths

In this section, possible normal subgroups of G with bounded action are de-
termined in relation to subgroups of G defined by Lyndon length functions.
For £: G— R a Lyndon length function on G, define

A={aeG; {(a)=0}, H={aeG;l(ax)=1{(x) for all x ¢ N}.

It is an easy consequence of the axioms for a length function that A is a sub-

group of G contained in H. It is shown in Theorem 1.4 of [2] (where H is de-

noted by 7') that H is a subgroup of G contained in N. Thus AS HCN.
Let 2¢(x,y) =0(x)+£(y)—L(xy "), and let

b =inf{2c(x,y), {(z); for all x,y,ze€ G\H with xy ~'e G\ H}.

It is shown in Proposition 1.3 and Theorem 1.4 of [2] that b is a bound for
the lengths of the elements of H, and that a length function £’ on G may
be formed by replacing the lengths of elements of H by any length function
on H bounded by b. The length function ¢’ is said to be equivalent to f.
Thus ¢ and ¢’ are equivalent if the subgroups H for ¢ and ¢’ are identical and
P(x)=1'(x) for x¢ H. For N# G the bound b exists (if N=G then H=
N = G). We note that if b =0 then the elements of H have zero lengths, so
that A=H and {=¢".

Suppose that G acts as a group of isometries on a tree 7. For each ue T
the subgroups A4,, and H, are defined as above, associated with the Lyndon
length function ¢,,: G —» R. Thus A, € H, S N.

PROPOSITION 2.1. If the point v lies on an axis in T then A,=H,,.

Proof. Suppose that v lies on the axis for x. Then, since x acts as a transla-
tion on the axis,

0,(x?) =dv,x*v)=2d(v, xv) =20,(x).

Thus 2c(x, x 1) =2¢,(x)—¥,(x?)=0, and (since x, x !, x? ¢ N) the bound
b on the lengths for H, is zero. Hence A, =H,,. ]

THEOREM 2.2. Let G act as a group of isometries on a tree T, with K a
normal subgroup of G and N # G.

(i) If K€ H, for some ueT, then K has bounded action.
(ii) If K has bounded action, then K € H, for each ueT.

Proof. The lengths of the elements of H,, are bounded by b. Thus, if K S
H,,, the lengths of the elements of K are bounded by 4 and so K has bounded
action, proving (i).

Let K have bounded action with ¢ € K and x ¢ N. Then, to show K €H,,
and establish (ii), we need to prove that ¢, (ax)=1¢,(x) for any ueT. In
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the proofs of Theorem 6.6 of [I] and Lemma I1.2.4 of [5] it is shown that
the segment [u,xu] intersects the axis for x in the segment [v, xv], where
[u, xu]N[u,x ul=[u,v]. By Lemma 1.2, X fixes v and xv; thus the isome-
try a sends the segment [a@ ~'u, v] to [u,v] and hence d(a ~'u,v)=d(u,v)
(see Figure 1). Thus

P, (ax) =d(u,axu) =d(a " u,xu)
=d(a 'u,v)+dv,xv)+d(xv,xu)
=d(u,v)+d,xv)+d(xv,xu)
=d(u,xu)=10,(x). O

COROLLARY 2.3. Let G act as a group of isometries on a tree T, with K a
proper normal subgroup of G. If K has bounded action then G/K acts on a
tree T/K such that, for each u € T, the Lyndon length function {,, is equiva-
lent to an extension of a length function £, on K by {,; on G/K.

Proof. Define £’: G — R by £’(x) =£[,1(xK). The length function ¢’ is then
an extension of ¢; =0 on K by {},,; on G/K. By Theorem 2.2, K € H,; by [2,
Thm. 1.4], ¢, (ax)=1{,(x) for each a € H, and x ¢ H,,. Thus {,(ax)=1{,(x)
for each ae K and x ¢ H,, so d(u,axu)=d(u,xu). Thus, in the notation
of [6],

P'(x) = (xK) =d'([u), xK[u]) = d’(lu], [xu])

=inf d(u,axu) =d(u,xu) =1{,(x).
aek

Since ¢, and ¢’ agree outside H,,, they are equivalent. (I

COROLLARY 2.4. If G acts as a group of isometries on a tree T with N # G,
then there is a maximal normal subgroup of G having bounded action on T,
namely K = core H,, for any u € T. Moreover, under the action on T/K the
group G/K has no nontrivial normal subgroup with bounded action.

Proof. By Theorem 2.2, the normal subgroups of G with bounded action
are those normal subgroups contained in A,,. The maximal normal subgroup
with this property is the core H,,, which is N cg x " H,x.
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Suppose that K fixes v € T. Then, in the notation of [6],

) (xK) =d'([v], xK[v]) =d'([v], [xv])

=d'([xv], [v]) = inf d(xv,av) =d(xv,v) ={,(Xx)
aekK
for any x € G. Thus, if a normal subgroup of G/K has bounded action on
T/K with the lengths of its elements under {,; bounded by M, then its pre-
image in G will have bounded action on 7 with the lengths of its elements
under f, also bounded by M. The maximal property for K ensures that no
such nontrivial normal subgroup of G/K can exist. L]

The results of this section are illustrated by the following simple example.
Let G=<a, b, c;a*=b?=c?=acac = bcbc =1); that is, G is the direct prod-
uct of the free product of two groups of order 2 with another group of order
2. Let G act on the tree 7shown in Figure 2. The isometries ¢ and b are given
by reflections in vertical lines through w and v, respectively. The isometry ¢

cu 4 acu |

=baw = .
bw=b v W av=abv _ __ axis

u=bu au=abu

Figure 2

is given by reflection in the horizontal line, which is the axis for all Archi-
medean elements of G. Here A,,=H,,={a,c), A,=H,=(b,c), and H,=
(b, c). The maximal normal subgroup K with bounded action is the group
of order 2 generated by c. The quotient tree 7/K is given by identifying the
upper and lower projections from the axis. The Lyndon lengths functions
¢,, and ¢, are extensions as they stand. However, ¢,(c)#0 with £,,(b)=0,
and /,, is equivalent to an extension given by reducing the length of ¢ to zero.

3. Centres of Group Actions

Theorem 2.2 and Corollary 2.3, relating the maximal normal subgroup of G
with bounded action K to equivalence of length functions, allow the results
of [2, Thm. 2.1] to be translated to results for group actions on trees.
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If for an action of G on a tree T the subset N has bounded action, then
N=K=H, for each u € T, and we have the situation described in [6, Thm.
4.4]. In parts (i) and (ii) of [2, Thm. 2.1] there is the case of an Archimedean
length function on G/N which is an abelian group. It is shown in [3, §3] that
here G/N is isomorphic to a subgroup of the additive reals. We thus have
the following.

THEOREM 3.1. Let G act as a group of isometries on a tree T, with N # G.
Let K be the maximal normal subgroup of G having bounded action, and let
Z be the centre of G.

() If Z&N, then K=N and G/N (which is isomorphic to a sub-
group of the additive reals) acts on the tree T/N without fixed
points.

(ii) If Z < N, which has bounded action on T, then K =N and G/N
(which is isomorphic to a subgroup of the additive reals or has
trivial centre) acts on the tree T/N without fixed points.

(iii) If Z <N, which does not have bounded action on T, then G/K
has trivial centre.
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