A Fixed-Point Free Ergodic Flow
on the 3-Sphere
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The 3-sphere S3 supports a fixed-point free flow ¢ because the Euler char-
acteristic of S 3 is zero; the same is true for any 3-manifold. However, it is
not known what other properties may be imposed on ¢. For example, the
Seifert problem asks whether there exists a smooth flow on S* with neither
fixed points nor periodic orbits. The problem is open. It is not even known
whether S3 supports a minimal flow — one whose only compact invariant sets
are S? and 9.

Ergodicity is a kind of measure-theoretic minimality —the only measur-
able invariant sets are of full measure or zero measure. In [6], Katok con-
structed examples of ergodic diffeomorphisms of surfaces. Here we point
out how to “Birkhoff-suspend” them and induce flows on S3 (or any lens
space) that are smooth, ergodic respecting Lebesgue measure, and have no
fixed points. Katok [7] has already given an example of such a flow on P3,
but, being the geodesic flow of a semi-Finsler, it is somewhat difficult to pic-
ture. In contrast, the topology of our construction is fairly natural. It was
used earlier by D. Fried (unpublished) to construct a smooth flow on S3 for
which the Lebesgue measure class is ergodic. (The measure which is invari-
ant under Fried’s flow might not be Lebesgue measure— it might not have a
smooth positive density. However, its only measurable invariant sets have
full or zero Lebesgue measure.) In our example, simultaneous smoothness
of the flow and of the invariant ergodic measure requires some care.

It is not known if every 3-manifold supports a fixed-point free ergodic
flow. This question may be related to the fact that Katok’s construction takes
place in the isotopy class of the identity. Whether ergodic diffeomorphisms
exist in every isotopy class is not known.

Another issue is analyticity. It is not known if there is an analytic fixed
point free ergodic flow on S3. However, Gerber [5] has shown that analytic
examples like Katok’s do exist.

Also, if fixed points are permitted, the situation is entirely understood.
Anosov and Katok [1] proved that ergodic flows exist on all manifolds A"
for m =3, and Blohin [2] has constructed them on all surfaces except the
sphere, projective plane, and Klein bottle, where they are impossible.
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The concept of a cross-section X to a flow ¢ is common in dynamics. It is
a co-dimension 1 compact submanifold transverse to ¢, such that every flow-
line leaving X returns to X in finite bounded time. The first return map

fir-X
x=f(x)=¢(x), t=1(x)>0,

is a diffeomorphism. It determines ¢ dynamically and vice-versa. The flow
@ is said to suspend f.

The concept of Birkhoff-section is less widely appreciated than it should
be; work of Fried [4] and Christy [3] are good places to read about it. The
idea is to replace the cross-section X by a compact manifold-with-boundary
V such that

(a) dV is p-invariant,

(b) int(V') is a cross-section for ¢ off dV, and

(c) the angle between ¢(x) and T,V tends to 0 at the same rate that

Xx—av.

It is much more likely that a flow has a Birkhoff-section than it has a cross-
section. For example, no flow on S has a cross-section T, because £ would
separate S3, but many flows on S? have Birkhoff-sections.

A C* function is flat at a point p if f and all its derivatives vanish at p.
It is boundary-flat if it is flat at each point in the boundary of its domain of
definition.

LEMMA 1. If f, and f, are diffeomorphisms of the unit disc D?* such that
Jfo—id and f,—id are boundary-flat at dD?, then there is an isotopy f, from
Jo to fi such that the vector field Y on D?x [0, 1] generating it satisfies

Y—4a/dt is boundary-flat at 3(D*x[0,1]).

Proof. 1t suffices to assume fj is the identity map. Let F extend f; to R?
such that F fixes all points off D2. Then F is a C* diffeomorphism. Let R be
a square of radius r containing D? in its interior. According to [10] there is
a deformation retraction of the space of all diffeomorphisms fixing a neigh-
borhood of dR. This means that there is a universal isotopy F, from the iden-
tity map to F=F;. We may assume F, =identity for ¢ near 0, F,=F for ¢
near 1, and F,(z) =z for |z|=r.

Let 3: [—'2—, 1]—-[1,r] be a C*® bump function such that 8(¢) =r for ¢ near
1 and B(¢) =1 for ¢ near 1. Set

| Fyu(rz)/r 0<
Girlz) = {F(B(t)z)/ﬁ(t) L <

Then G is an isotopy from the identity to F fixing all points off D?. Restricted
to D?x [0, 1], G isotopes the identity to f;. Clearly, Y—98/d¢ is boundary-
flat where Y is G’+ 3/9¢, restricted to D% x [0, 1]. ]

t<1,
t=<1.
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LEMMA 2. Suppose U is a neighborhood of the origin in R%, U.,=U \ {0},
and f: U, - R is smooth. If all the derivatives of f respecting polar coordi-
nates (r, ) tend to 0 as r -0, then f extends to a smooth function f: U - R,
flat at the origin.

REMARK. If a function is C* respecting polar coordinates, it need not be
C® at the origin; for example, (r,0)~r.

Proof. f=fon U, and f(0)=0. From the mean value theorem,

(1) each polar derivative of f tends to O faster than any power of r
asr—0.

Since
of _9fx oy
ax orr 40 r?’
it follows from (1) that af[ax extends to a continuous function on U, and
likewise for df/dy; hence f is C!. As a function of (r, 8),
of _aof af sin@
ax = ar cos 0 + %0 .
According to (1) then, all polar partials of df/dx tend to 0 as r — 0. From
the preceding, it follows that af/dx extendsAto a C! function on U and sim-
ilarly for af/dy, so f is C2. By induction, f is smooth. Clearly, it is flat at
the origin. (W]

The 3-sphere is the union of two solid tori, glued along their boundaries so
that “meridians are identified with longitudes.” A slightly different gluing
produces a lens space, and (since our construction works just as well there)
we recall the definition.

Let p, g be relatively prime integers. Under the quotient map

R R?%/2772,

lines of slope p/q become (p, g)-curves on the 2-torus 72 =S'x S'. When
(p, q)=(0,1) or (1,0), we have (respectively) a meridian or longitude of T>.
The lens space L(p, q) is formed by identifying (p, g)-curves of the bound-
ary of one solid torus with meridians of the boundary of a second. Since dif-
ferentiability is the main hurdle below, let us be more precise.

Fix the pair (p, g) and express 1 =mp+nq, where m and n are integers.

Then
[q ]
p n

has determinant 1. If p =0 then g must be +1 for m and » to exist; similarly,
if g =0 then p = +1. Take two open, unbounded, solid tori
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and let (r,0, ¢); denote “toral coordinates” on S;. That is, (r,6) are polar
coordinates on R? and ¢ is the angular coordinate on S'. Call R2 =R?\ {0].
Identify (R%x S'), with (R%2x S!); according to

i=ipq: (r,ei d))ZH(r_ls qa—m¢sp0+n¢)l'

Since A bijects the lattice 27Z? to itself, i is a well-defined diffeomorphism.
The lens space of type (p, q) is

L(p,q)=5U;8S,.

Call T; = (D?*x ShH ;» J=1,2. Under {, meridians of a7, are identified with
(p, g)-curves of 8T;. By [9, p. 234] it is easy to see that L(0,1) = S?x S,
L(l,g)=S3forallgeZ, and L(p,q)=L(p,kp+q) for all keZ.

In what follows, we assume that g # 0. This is no loss of generality, since
if ¢ =0 then p must be +1and L(1, 0) = S3; but S3 can also be expressed as
L(1,1),L(1,2),..

Let K: D? - D? be the diffeomorphism that Katok constructs in [6]. Re-
specting Lebesgue measure A on D?, X is ergodic. Also, K —id is boundary-
flat at D2 By Lemma 1, there is a smooth vector field Y on RZx S! gener-
ating a flow ¢ such that

(2) the first return map of ¥ on D?x0is K, and
(3) Y=0/d¢ off D?x S'.
Under ¢, \ suspends to a smooth y-invariant measure « on R*x S' and
(4) a=rdrdfd¢ off D*x S
Now consider the lens space L = L(p, q). It is the union of the two open

solid tori S; and S, identified by i =i,,. Define a map #: L — L as follows.
Let mqy: (1, ©) — (0, o) be a diffeomorphism such that

_ [ ~(A=r=?) for rnearl,
mo(r) =
r for r large.

Then, using the S, toral coordinates, set

X lf X$SlnSZ,
7{'()()= (7['0(”),0,(]5)2 ifx=(r,6,¢)268'2 and1<r<°°’
0,0, ¢), if x=(r,0,¢),€S8,and 0<sr=1.

Under #, the meridian discs of 7 are crushed to their centers on the core
circle C, = (0x S'),, and the rest of L is sent diffeomorphically onto L\ C,.

On the first open solid torus S;, put the vector field Y, the flow ¥, and the
invariant measure o considered above. We claim that ¢ = w,.{ is a smooth
flow on L which is ergodic respecting the smooth measure 3 = 7, o, the den-
sity of B being everywhere positive, Then, by Moser’s theorem [8], there is a
diffeomorphism 4: L — L carrying 3 onto a constant multiple of Lebesgue
measure A on L. The A-conjugate of ¢ is smooth (if ¢ is), is A-ergodic, and
has no fixed points (if ¢ doesn’t). In effect, ¢ Birkhoff-suspends K where the
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set w((D?x0),) is the Birkhoff-section. Since g 0, it is clear that ¢ has no
fixed points. It is also clear that ¢ is ergodic with respect to 8. Except at C,,
smoothness of ¢ and 3 is immediate.
It remains to verify that ¢ and 8 are smooth at C,, and that 8 has every-
where positive density.
Express « in the S; coordinates as
o =a dr1 d01 dd)l.
By (4) we know that a; —r; =0 for r; = 1. Re-express « in the S, coordinates as
a=da, dr2 d02 d(,‘bz.
Since ry=r;1, 0,=q0,—mé¢,, and ¢, = pd,+ne,, we see that

a(rl! 01’ ¢l)
a(rZ: 02’ ¢2)

— -2

a, =a, =a\ry, -,

Then,
(5) ay=r;3 forr,<1.
Express 3 = 7.« in the S, coordinates as
B =b drz dezdd)z.

Then
b= (ayew Y Jac(r ) =a,(R,0, ¢)rR>,

where R =g '(r) =1//(1—r?) for r small. By (5) and the fact that (even at
r =0) R is a smooth nonvanishing function of r, it follows that all the polar
derivatives of

b—r=(ayR,0,6)—R’)(rR%)
tend to 0 as r - 0. By Lemma 2, b((r, 0, ¢),) —r, extends to a smooth func-

tion on 73, flat at C,. By flatness, (b —r,)/r, is also smooth at C,. Express-
ing 3 as

b—r
5:[ - 2 +1]r2dr2d02d¢2=6)\2,
2
where \, is Lebesgue measure on 75, shows that 8 is a smooth measure with
everywhere positive density 6.
The vector field Y generating ¢ is expressed in the S; coordinates as
) d ad
Y1I=Rj— +9;,— + b, —.
! 16r1+ 1601+ 16(}51
Off T, we know that Ry =06,=0 and ®,=1. The vector field X =x,Y gen-
erating ¢ = 7,y is expressed in the S, coordinates as
| 3 3 d
X=Ry— +60,— +&,—,
257, T 9254, T ®234)
where
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R, R,
6, |=|D@x-i™MH|| 61,
P, ¢,

and all functions on the right-hand side are evaluated at

['07{'—1((]', 03 ¢)2) = (\/(1"1"2), qa —m¢s pB +n¢)1
with r small. Thus,

_ —Ja-r?)

R
2 r

R, ©;=n9+m®, P,=-p6,+q%,

for small r. All the polar derivatives of iow ~! exist and are continuous for r
small and nonnegative. Since R; is boundary-flat at 77, all the polar deriva-
tives of the composition R;eiew ~! tend to 0 as r —» 0. By the mean value the-
orem and Leibniz’ rule, the same is true of R,. Similarly, all the polar deriv-
atives of ©; and ®;—1 tend to 0 as r —» 0. From Lemma 2, we conclude that
R,, ©,, and ®, extend smoothly to C,. The fields a/dr,, 3/30,, and 3/3¢,
are smooth, even at r =0, so it follows that X and ¢ are smooth.
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