Continuity Properties of Selectors
and Michael’s Theorem
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0. Introduction

Recall that if A and B are closed, bounded, convex, nonempty subsets of X
(i.e., A, Be H(X)), then the Hausdorff distance between A and B is defined
by dy (A, B) =sup({d(x,A): xe B}U{d(x, B): xe€ A}). Note that X is always
isometric to a subset of H(X) if we identify a point x with the singleton
set {x}. Since no ambiguity arises, we will usually write d(A, B) rather than
dy (A, B). We let K(X) denote the subfamily of compact sets in H(X), also
equipped with the Hausdorff metric. Of course K(X)=H(X) when X is
finite-dimensional.

Michael’s selection theorem [37, Thm. 3.2"] tells us that there is a contin-
uous map f: H(X)— X such that f(A)e A for all Ae H(X). For a given
Banach space X, can we find a Lipschitz map f: H(X) — X satisfying the
same selection identity? We will refer to selection maps from H(X) to X as
selectors.

Various authors [40; 43; 45] have observed that this is possible if X is
finite-dimensional. Indeed, the Steiner point [46] provides a suitable selector
when X =R". It is noted in [55] that this is not possible if X =C[0,1]. The
arguments used in these papers are reasonably elementary.

In this paper, we concern ourselves with the existence of uniformly con-
tinuous selectors for general Banach spaces. It follows from [32, Cor. 5] that
there is no uniformly continuous selector from H(X) to X whenever X is
an infinite-dimensional Hilbert space. This depends on various results which
may be found in [24; 32; 38]. From Dvoretzky’s theorem it can then be de-
duced that there is no uniformly continuous selector from H(X) (or even
from K(X)) to X, whenever X is an infinite-dimensional Banach space. This
result could have been proved twenty years ago. Although a special case has
already been published [16, p. 245], it does not seem to be very well known.
We feel that this problem deserves a thorough exposition. Two new proofs
will be presented here, in Sections 2 and 3, indicating how this problem in-
teracts with different areas of analysis.

The original proof of [32, Cor. 5] depended upon a result of Lindenstrauss
[32] that if a closed subspace M is the range of a uniformly continuous re-
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tract on the Banach space X, then M9 is complemented in X*; and upon a
result of Isbell [24] that H(X) is the range of a uniformly continuous retract
on any metric space which contains it. Lindenstrauss [32] observed that Is-
bell’s argument actually leads to a Lipschitz continuous retract. (In fact, the
Lipschitz constant can always be chosen to be less than 10.9. However, this
property of H(X) is not needed by us until the end of §5.)

Our technique is based on the existence of invariant means on abelian semi-
groups. This technique has been used by Pelczynski [38, pp. 161-2] to give
a simpler proof of the just-mentioned result of Lindenstrauss. Apart from
this idea, our proofs are independent of the work of Isbell, Lindenstrauss,
and Pelczynski. This should not disguise the fact that all known proofs of
this result depend on Dvoretzky’s theorem, and thus lie fairly deep.

Section 1 contains the necessary background material, as well as the con-
cept of sub-Lipschitz constants for uniformly continuous mappings. A key
technical result exhibits the connection between sub-Lipschitz constants of
different types of selectors. Sections 2 and 3 give different proofs of our first
theorem: There is no uniform selector K(X) — X unless X is finite-dimen-
sional. Both proofs depend on invariant means and Dvoretzky’s theorem.
Also in Section 3, we discuss briefly some well-known (but not Lipschitz)
finite-dimensional selectors.

This result encourages us to confine our attention to finite dimensions,
and to determine the best possible Lipschitz constant, for given Minkowski
spaces. In Section 4, the connection between selectors and appropriate linear
projections is investigated. Section 5 presents some extension theorems for
Lipschitz mappings into finite-dimensional spaces. In Section 6 we examine
some other Lipschitz continuous finite-dimensional selectors that are differ-
ent from the Steiner selector.

Section 7 presents a positive infinite-dimensional result, essentially due to
Skaletskii: If X satisfies a certain geometric condition, and if Q is a bounded
subset of H(X), then there is a uniformly continuous selector 2 — X.

Part of this work was done while the second author was visiting Zielona
Gora. He is indebted to the Higher College of Engineering for its support
during that time.

1. Notation and Preliminaries

Let X and Y be normed spaces, and A4 a convex subset of X. For any map-
ping 7: A — Y, we can define its modulus of continuity wr: Rt — R+ U {0}
as follows: wr(6) =sup{|Tx—Ty|:x,y € A, |[x—y| <46}. From convexity of
A, it follows that w7 is subadditive. Obviously w is monotonic. If thereis a
positive é for which wr(8) is finite, we will call 7" a uniform mapping. This is
equivalent to requiring wr(6) < oo for all 6. When this is the case, the number

Cy = inf ©7(0) _ jim ©70)
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will be called the sub-Lipschitz constant of the mapping 7. Clearly T is Lip-
schitz continuous if and only if Ly=sups ¢(w7(8)/6) is finite.

A mapping T: A - Y is uniformly continuous if and only if w is contin-
uous at 0, in which case wr is continuous everywhere. Clearly, every uni-
formly continuous mapping is uniform. However, a uniform mapping need
not even be continuous, as shown by a step function from R to R. Also, the
example f(x) =sin(x?) shows that a continuous uniform mapping need not
be uniformly continuous.

Now suppose that the set 4 is a wedge in X; that is, suppose that A is
closed under vector addition and multiplication by positive scalars. (We do
not assume that —ANA ={0}.) The mapping 7: 4 — Y is said to be additive
if T(a+b)=T(a)+T(b) for all a, b € A. Standard arguments show thatif 7
is uniform and additive then T'(Aa) =\T'(a) for all a € A, A =0. Such maps
will be called linear. The following simple lemma shows that this is only a
slight abuse of terminology.

LEMMA 1.1. For every uniform, additive mapping T from a wedge A into a
Banach space Y, there is a unique bounded linear operator T:linsp A—-Y
which extends T. Furthermore, T is just as continuous as T, in the sense that
w7 (8) =|T |6 for all >0, and thus Ly=Cr=|T]|.

Now fix a Banach space X and consider the metric space K(X). The usual
vector operations are defined on K(X) by A+B={a+b:ae A, be B} and
NA={\a:ae A}, for any A, Be K(X) and A =0. (We can also define mul-
tiplication by negative scalars, but note that then we have A+ (—A) ={0}
only when A is a singleton.)

It is possible to regard K(X) as a wedge in the Banach space C(U), where
U is the unit ball of X* equipped with the weak* topology. Given 4 € K(X),
we define the support function hye C(U) by hy(f) =sup f(A) for feU.
Weak* continuity of /4 follows easily from the norm compactness of A. It
follows from the Hahn-Banach theorem that

d(A’B)=Supf€U|hA(f)_hB(f)|,

and so the map A~ A, is a linear isometric embedding. Moreover, for each
x € X, hy; =X, the evaluation function. Thus this embedding sends X to a
linear subspace of C(U). In the sequel, we will regard X as being a subspace
of C(U).

Of course C(U) is also a Banach lattice. For all A, Be K(X) it is easy to
verify that A,V hp = ho4up). From the identity

(a—=b)V(c—d)=(b+c)V(a+d)—(b+d),

which holds for all a, b, c,d €R, it follows easily that linsp K(X) is a sub-
lattice of C(K).

Let G be an abelian semigroup, and X a normed space. Denote by / (G, X)
the space of all bounded mappings from G into X, equipped with the usual
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supremum norm. For any fe/, (G, X) and g € G, we define the translated
function f, by f,(h) = f(g+h).

PROPOSITION 1.2. For every dual Banach space X = Y* and for every abel-
ian semigroup G, there is a linear operator M : | (G, X) = X such that:

(1) M(f)=M(f) forall fel (G, X), geG;
(ii) M(f) lies in the weak* closed convex hull of f(G), for all
fel (G, X); and
(iii) |M|=1.

Proof. First consider the case X =R. It is well known ([11] or [18]) that there
is an invariant mean N on /. (G, R), having the specified properties.

For any y €7, let € Y** denote the corresponding evaluation functional.
Define a map M: [l (G, Y*)->Y* by M(f)(¥)=NJef), for fel (G, Y*)
and yeY.

It is easy to check that M(f) is a bounded linear functional on Y, so M is
well defined. Because N is translation invariant and linear, so also is M. Fi-
nally, for each yeY,

(Mf)(y) =N(y-f) € co(P(f(G)) = P(co f(G)) = p(co f(G)),

as y is weak* continuous. From the separation theorem we obtain Mfe
co f(G). 0

PROPOSITION 1.3. For every Banach space X and for every abelian semi-
group G, there is a linear operator M: [l (G, X) - X** such that:

(1) M(f,)=M(f) forall fel (G,X), g€ G; and
(ii) M(S) lies in the weak* closed convex hull of f(G), for all
f€l(G, X).

Proof. Proposition 1.2 gives us an invariant mean /. (G, X**) - X**. The
restriction of this operator to /, (G, X) is the mapping we require. ]

The operators given by Propositions 1.2 and 1.3 will be called invariant
means. This refers to the translation invariance condition M(f,) =M(f),
and is consistent with the usual terminology when X = R. It will sometimes
be helpful and suggestive to use the notation M(f) = {; f(g) dg, even though
there is no measure defined on G.

The following technical result underpins most of our work in this paper.

PROPOSITION 1.4. Suppose, for a given Banach space X, that there is a uni-
Jorm retract R: K(X)— X. Then there is a linear map T: K(X) — X** with
T({x})=xfor all xe X, and L=< Chg.

Proof. Under addition, both X and K(X) are abelian semigroups. We de-
fine T by

T(B)=S SR(A+B+x)—R(A+x)ddi,
K(X) X
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where the integrals denote invariant means on / (X, X) and / (K(X), X**).
Since
|IR(A+B+x)—R(A+X)| <wr(d(A+B+x, A+x))

=wr(d(B, {0})),

we see that integrand is bounded, and T is well defined.
For any B, Ce K(X), we have

T(B+C)=S S R(A+B+C+x)—R(A+x) dx dA
K(X) X
=§ § R(A+B+C+x)—R(A+B+x) dxdA
K(X) JX

+S S R(A+B+x)—R(A+x)dxdA
K(X) Jx

=T(C)+T(B),

using translation invariance. Thus T is additive.
Furthermore, given any ye X and A € K(X), we have

XXR(A+y+x)—R(A+x) dx

=y+ SXR(A+y+x)—x-y+x—-R(A+x) dx

=y+ SXR(A+y+x)—R(y+x) dx— SXR(A+x)—R(x) dx
=¥,

again using translation invariance. Thus 7({y}) = { k) YdA=Y, as required.
Easy calculation shows that |7(B)—7(C)| < wg(d(B, C)) for each B,Ce
K(X), and so wr=<wg. Lemma 1.1 completes the proof. O

2. There Is No Uniform Version
of Michael’s Selection Theorem

Michael’s selection theorem [37, Thm. 3.2”] tells us that if S is a metric space
and ¥: S — H(X) a continuous map, then there is a continuous map f: S— X
such that f(x)e ¥(x) for each xe S. In other words, ¥ admits a continu-
ous selection.

Michael’s theorem has applications to diverse areas of mathematics, such
as differential inclusions [2], control theory [7], mathematical economics [22],
operator theory [39; 41], approximation theory [28; 54], and topology [5;
37]. Naturally, the following problem arises ([23, p. 6511, [28, p. 349], and
[54, p. 265]): If ¥ is Lipschitz continuous, is it possible to choose f to be Lip-
schitz also? This would be nice if it were true. For instance, Rademacher’s
theorem [13, 3.1.6] ensures that Lipschitz maps between finite-dimensional
Banach spaces are differentiable almost everywhere —something not holding
for arbitrary continuous maps. Note that this is equivalent to the problem:
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For a given Banach space X, can we find a Lipschitz map f: H(X) — X sat-
isfying f(A) € A for all Ae H(X)? In this section, we show that this ques-
tion has a negative answer, for every infinite-dimensional Banach space. In
fact, not even a uniform selector can be found.

Recall that a subspace is complemented if it is the range of a continuous
linear projection. A Banach space is said to be injective if it is complemented
in any Banach space which contains it. More precisely, it is said to be \-in-
jective if it is the range of a projection, with norm at most \, from any super-
space. It is easy to show that a complemented subspace of an injective space
is again injective.

We will need the well-known result that if X is a closed sublattice of C(U),
for some compact Hausdorff space U, then X™** is 1-injective. Perhaps the
easiest way to see this is as follows. Recall that X is said to have the k-inter-
section property if, whenever B; (i € I) is a collection of closed balls in X,
with card I <« and B;NB;#0 for all i, j e, then N;¢; B; #0. It is easy to
see that X has the x-intersection property, for every finite «, if X is a sublat-
tice of C(U). A clever duality argument [30, Thm. 2.16] then shows that X™**
has the k-intersection property for all finite x. Hence, using weak* compact-
ness, X** has the binary intersection property—that is, the x-intersection
property for all cardinals x. The usual proof of the Hahn-Banach extension
theorem then shows that X** is 1-injective.

Our next result is a slight improvement of [32, Cor. 5].

PROPOSITION 2.1. If there is a uniform retract from K(X) onto X, then
X** is injective.

Proof. We regard K(X) as a wedge in C(U), where U is the unit ball of
X*. Then Y =linsp K(X) is a closed sublattice of C(U). Proposition 1.4 and
Lemma 1.1 then give us a linear map 7': Y —» X** which fixes X. Passing to
the second adjoint, we find that there is a projection from Y** onto X**.
Since Y** is injective, so is X**. Ol

Proposition 2.1 shows that if X is, for example, one of the Banach spaces
given by [26, Example 1], [31], or [33], then there is no uniform retract from
H(X) to X. These examples are not covered by [32, Cor. 5]. It also shows
that there is no uniform retract H(/,) -/, for 1 < p < . Nonetheless, it was
shown in [32, Thm. 8] that, for fixed r > 0, there is a uniformly continuous
retract from Q@ ={A4 e H(X):diam A <r} onto X, provided X is uniformly
convex.

PROPOSITION 2.2. If X is an infinite-dimensional Hilbert space, then there
is no uniform retract from H(X) onto X.

Proof. Recall that a Banach space Y has the Dunford-Pettis property if,
whenever f,, » 0 weak* in Y* and x,, —» 0 weakly in Y, then f,(x,) —0. It is
well known that any space C(U) has the Dunford-Pettis property [10, p. 113],
but that no infinite-dimensional Hilbert space ha$ (consider an orthonormal



Continuity Properties of Selectors and Michael’s Theorem 119

sequence). Since the Dunford-Pettis property is clearly inherited by com-
plemented subspaces, it follows that an infinite-dimensional Hilbert space
cannot be injective. O

Let us say that (¢, 6) is a common modulus of continuity for a collection of
functions §F if w(6) <e for every fe&.

THEOREM 2.3. Let f,,: H(R") - R" be any sequence of retracts. Then there
is no modulus of uniformity common to every f,.

Proof. Suppose that (e, §) is a common modulus of uniformity. That is, for
all n and all A, Be H(R"), we have || f,,(A) — f,,(B)| < e whenever d(4, B) <.
We identify R” with the subspace {(A;, N5, ..., \,,,0,0,...): \;€R} in/,, and let
P,: I, - R" be the natural projection. Given an invariant mean on / (N, /,),
we define f: H(l,) - I, by f(A) ={\ f,(P,(A)) dn. Routine calculations show
that f is uniform, with modulus of uniformity (e, 6), and that f({x}) =x for
every x € /,. (Note that M7= co{Pyx:k>n} is just {x}.) But this contra-
dicts Proposition 2.2, L]

THEOREM 2.4. Let X be any infinite-dimensional Banach space. Then there
is no uniform selector H(X) - X.

Proof. Suppose that f: H(X)— X is a uniform selector, with modulus of
uniformity (e, 6). If Yis any closed subspace of X, then f| H(Y) is a selector
for Y, also with modulus of uniformity (e, 6). But recall Dvortezky’s theo-
rem ([14] or [17]): Every infinite-dimensional Banach space contains almost
isometric copies of R” for every n. This implies that there is a common mod-
ulus of uniformity for selectors H(R"”) - R”, contrary to Theorem2.3. [

It is natural to ask if Theorem 2.4 holds for retracts as well as selectors. In
fact, it does not. For if X is injective then there is a Lipschitz continuous re-
tract H(X) — X. It is easy to see where the above proof breaks down for re-
tracts. We suspect that the converse of Proposition 2.11is true. Lindenstrauss
[32] showed (amongst other things) that if X = C(K), K any compact metric
space, then there is a Lipschitz retract from H(X) onto X.

3. A Finite-Dimensional Proof

We establish fairly sharp estimates for the Lipschitz constants of selectors
H(R") > R" thereby answering a question raised by Saint-Pierre {43, §7].
This gives us a direct proof of Theorem 2.3, independent of the functional
analytic results in the previous section. In particular, we do not need to know
about injectivity, the Dunford-Pettis property, or intersecting balls. How-
ever, we do need the Stone-Weierstrass theorem.

So let X be a Minkowski space —that is, a finite-dimensional Banach space.
Let dU be the boundary of the unit ball of X™*. Clearly dU is a compact
metric space. For A € K(X) = H(X), the restriction of s, to dU will also be
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denoted by A4. This should not lead to any ambiguity. As before, the map-
ping K(X)— C(aU), A~ hy, is a linear isometric embedding. It is obvious
that K(X) (in fact, the subset {A,,: x € X}) separates points of dU. Further-
more, the constant function equal to 1 is the support function of the unit
ball of X. Thus the sublattice linsp K (X) is dense in C(3aU). The following
result then follows immediately from Proposition 1.4 and Lemma 1.1.

PROPOSITION 3.1. If X is finite-dimensional and R: K(X) — X is a uniform
retract, then there is a linear projection P: C(3U) — X with |P| < Cg.

Now let S7—! denote, as usual, the unit sphere in the Euclidean space R".
We recall a result proved independently by Rutovitz [42] and Daugavet [9].

PROPOSITION 3.2. The minimum norm, ranging over all projections from
C(S"~1) onto R", is 2I'(n/2 4+ 1) /YyaI'((n+1)/2).

This immediately gives us a lower bound for the sub-Lipschitz constants of
selectors from H(R") — R". Since this lower bound is asymptotic to v/2n/x,
we have a somewhat simpler proof of Theorem 2.3. Theorem 2.4 follows as
before, using Dvoretzky’s theorem. It would be nice to have a proof that did
not depend on Dvoretzky’s theorem, but we have been unable to find one.

The projection of minimal norm from C(S”-1) onto R” is not unique,
as we shall see in Section 5. One such projection can be written as P(f) =
n§ f(x)x do(x), where o is the normalized Lebesgue measure on S”~1, Let
O(n) denote the group of orthogonal transformations of R”. The measure ¢
is invariant under the action of O(n). This fact implies that P is orthogo-
nally invariant in the following sense: if we define f, by f,(x) = f(u*x) for
feC(S"* 1) and u € O(n), then P(f,) =uP(f). Averaging over O(n), we
can see that, for any projection from C(S”-1) onto R”, there is an orthog-
onally invariant projection whose norm is no greater. The crucial point in
Daugavet’s proof of the minimality of |P] is that P is the unique orthogo-
nally invariant projection from C(S"~!) onto R”.

Naturally connected with P is the mapping s: H(R") = R”, defined by

s(A)=n S By (x)x do(x).

In the notation of Lemma 1.1, we have § = P. The point s(A4) is known as
the Steiner point of the convex body A. The Steiner point has been widely
studied [20; 21; 35; 43; 44; 46]. As noticed by Shephard [45], s is a selector.
We will refer to s as the Steiner selector in the sequel. Daugavet [9] gave
a simple calculation to evaluate L;, which was later rediscovered by Vitale
[50]. Vitale also showed, in a certain sense, that there is no continuous ex-
tension of the Steiner point to infinite-dimensional Hilbert space.

We have just seen that there are no Lipschitz selectors H(X) — X, when
X is infinite-dimensional. The existence of the Steiner point ensures that
there are Lipschitz selectors H(X)— X when X is finite-dimensional. It is
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appropriate now to consider some other well-known finite-dimensional se-
lectors, and note that they are not Lipschitz continuous.

For Ae H(X), the Chebyshev radius of A4 (denoted rad A) is the infimum
of those real numbers r for which A is contained in some ball, with centre
in A and radius r. Clearly rad A <diam A. If ae€ A< B(a,rad A), then a
is said to be a Chebyshev centre of A. If Ais weakly compact, the existence
of at least one Chebyshev centre is assured; if X is strictly convex, each set
can have at most one Chebyshev centre. Thus if X is finite-dimensional and
strictly convex then each A e H(X) has a unique centre, which we will de-
note by ¢{(A). It is routine to show that the map A~ {(A) is continuous.
However, even when X is a two-dimensional Hilbert space, simple examples
[54, Lemma 3] show that this map is not uniformly continuous.

Provided that 4 € H(X) has nonempty interior, we may define its bary-
centre by b(A) = (1/m(A)) § , x dm(x). Here m is the Lebesgue measure, cal-
culated with respect to some basis of X. If we restrict our attention to sets
with nonempty interior, this map can be shown to be continuous, but not uni-
formly continuous [47]. For sets with empty interior, we could define b(A)
with respect to Lebesgue measure on the subspace spanned by A. However,
b, so extended to all of H(X), is not continuous. (Consider the sequences of
triangles in the Euclidean plane with vertices at (0, 0), (1,0), and (0,1/n).)
Another approach to this problem is taken in [2], where a selector b, is de-
fined by b,(A) =b(A+ B(0,1)). This selector is well defined and Lipschitz
continuous on bounded subsets of H(X), but not Lipschitz continuous on
all of H(X).

The minimal selector is the map which, for each 4 H(X), chooses the
unique element of A closest to the origin. This is well defined whenever A
is weakly compact and X is strictly convex. Even in the finite-dimensional
case, the minimal selector is not Lipschitz continuous [2, §1.7].

4. Selection Constants

We have seen, from Proposition 1.4 and its consequences, that there is a
close relationship between linear and uniform selectors on K(X), and their
Lipschitz constants. This leads us to consider selection constants in a wider
context.

We say that the mapping s: K(X) — X is a valuation if, for every A,Be
K(X) such that AUB € K(X), the identity s(AUB)+s(ANB)=s(A)+s(B)
is satisfied. For a comprehensive survey of the topic of valuations, we refer
to [35]. The next theorem is due to Spiegel [49].

THEOREM 4.1. Let us suppose that s: K(X) — X is a continuous valuation
which satisfies the following two conditions:

(1) s(A+x)=s(A)+x for every Aec K(X), xe X; and

(ii) s(2A)=2s(A) for every Ae K(X).
Then s is linear.
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In the other direction, it is easy to see that every linear mapping on K(X)
is a valuation. It is not hard to show that AUB+ ANB=A+ B whenever
A, B, AUB e K(X) (consider the corresponding identity for support map-
pings).

The family of all uniform selectors on K (X) will be denoted by $(X). The
subfamily of 8 (X) consisting of uniformly continuous valuations (resp., lin-
ear selectors) will be denoted by 8, (X) (resp., 8;(X)). We obviously have
8 (X) C8py(X)C8(X).

By the selection constant S(X) of a Minkowski space X, we mean the in-
fimum of the sub-Lipschitz constants of the elements of $(X). Similarly, we
define the valuation selection constant S; (X) and the linear selection con-
stant S; (X).

Recall that the projection constant A(X) of a Banach space X is the infi-
mum of all numbers A\ such that, whenever X is a subspace of another Ba-
nach space Z, then there is a projection of norm at most A from Z onto X.
By the upper projection constant (X)), we mean sup{\(Y): Y is a subspace
of X}. By virtue of Dvoretzky’s theorem and Proposition 3.2, X\(X) is finite
only when X is finite-dimensional.

The principal purpose of this section is to show that, for any Minkowski
space X, MX) <S(X) <Sy(X)=S8;(X). These relations are also true, but
of little consequence, for infinite-dimensional Banach spaces.

LEMMA 4.2. If the selector s: K(X) — X is a uniformly continuous valua-
tion, then there is a linear selector §: K(X) —» X with L; < C;.

Proof. For fixed x € X and n € N, let us define a selector f(n,x): K(X) > X
by f(n,x)(A)=n"1(s(nA+x)—x). From the identities

y+BUC)=(y+B)U(y+C) and y+(BNC)=(y+B)N(y+C),

it follows that f(n,x) is a valuation.

Let us regard N as a semigroup under multiplication. Given invariant means
on /,(X, X) and I, (N, X), we define 5§ by 5(A4) = [ | x f(n,x)(A) dx dn. One
can easily check that § is both a selector and a valuation, and that 5(A+x) =
5(A)+x. From the N-translation invariance, we see that 5§(kA) = k5(A) for
all k e N. Straightforward calculations show that d(54,5B) <d(sA, sB) for
all A, Be K(X). It follows from Spiegel’s theorem that 5 is linear and that
L;=<C;. (]

LEMMA 4.3. If Y is a subspace of X, then \(Y) <S(X).

Proof. Let se 8(X). We show that A\(Y) =C;,.

Clearly the restriction of s to K(Y) is a selector K(Y) — Y. Proposition 3.1
then gives us a linear projection P: C(dU) — Y (where U denotes the unit
ball of Y*), with |P| < Cs. It is known [8, Thm. 9] that any such projection
satisfies |P| =\(Y). O

Combining Lemmas 4.2 and 4.3 yields the result we claimed earlier.



Continuity Properties of Selectors and Michael’s Theorem 123

THEOREM 4.4. For any Minkowski space X,
MX) =S(X) = Sp(X)=S.(X).

From Section 3, we have
2I'(n/2+1)
Val'((n+1)/2)

This gives us sharp lower bounds for the sub-Lipschitz constants of selectors
on R”. Taking Proposition 3.1 into account, we obtain even more.

sL(R")=MR")=\R") = < A/(2/m)(n+1).

PROPOSITION 4.5. For any retract R: K(R") - R", we have Cr= \(R"),
and this estimate is sharp.

We do not know, amongst all Lipschitz continuous selectors K(R”") — R”,
whether only the Steiner selector has its Lipschitz constant equal to A\(R”).
The answer to this question is negative for retracts, as we shall see in Sec-
tion 5.

For a general Minkowski space X, such simple estimates are not available.
Let us define k(X) to be the maximum of those m e N for which there is an
m-dimensional subspace Y in X with d(Y,R"™) <2. Here d(Y, Z) denotes,
as usual, inf|7]-|7 -1, where T ranges over the isomorphisms between Y
and Z.

PROPOSITION 4.6. There is an absolute constant K such that, for every n-
dimensional normed space X,

K flog n < S(X) < S;(X) = S, (X) <min{n, \/(2/7) (n+1)}.

Proof. From Dvoretzky’s theorem [14, Thm. 4.4], there is an absolute con-
stant ¢ such that £(X) = clog(dim X) for all finite-dimensional X. Given X,
let Y be a subspace with d(Y, R¥(X)) <2, Routine calculations show that, for

K=/c/2T,

2K /log n < A/2k(X)/m < NMRKX)) = S(R¥X)) < S(Y)d(Y, RkX)
=<28(Y) =28(X).
This gives us the left inequality.

For the right inequality, recall John’s theorem [25]: Given any n-dimen-
sional X, we have d(X, R”) <+n. Thus

S (X)) =S, (RNYA(X,R") = AR")Yyn <n. U

We feel that the left inequality is not at all sharp. Probably S;(X) and S(X)
are of the order of 1/dim X . However, the right inequality seems to be rea-
sonably sharp.

For a concrete example, let us recall the well-known result that the n-di-
mensional /, space satisfies d(/}, 1) =nl/2=1/Pl. Thus there are constants
a, b > 0 such that, for all n,

an™in/P. V) < S(Imy < §; (17) < bp™>/p. V),
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We finish this section with a generalization of our main result.

PROPOSITION 4.7. For a normed space X, let U(X) denote the family of
finite-dimensional polytopes in X (i.e., the convex hulls of all finite sub-
sets of X). Suppose that there is a uniform retract R: Q(X) — X such that
R(A) elinsp A for every Ae U X). Then X is finite-dimensional.

We leave the proof of this result to the reader.

S. Extensions of Lipschitz Maps

There is a natural connection between extension and selection problems. In-
deed, it is easy to see that every extension problem can be formulated as a
selection problem [37]. We will now use some ideas from previous sections
to consider various cases of the general extension problem: Given metric
spaces S C T and a Banach space X, does every Lipschitz function f: S— X
admit a Lipschitz extension g: 7T— X?

This is so whenever X has the binary intersection property, and we actu-
ally have L,= L/ [1]. When T\ S is a singleton, this is easy to see; the general
case then follows from a routine application of Zorn’s lemma. The Kirsz-
braun-Valentine theorem asserts that the same conclusion holds when X and
T are both Hilbert spaces [51], but the proof is more difficult.

No general extension theorem is possible, because A(R”) — c with n. How-
ever, further extension results are available, with an increase of Lipschitz
constant, if some “finiteness” assumptions are made.

For example, such results are obtained in [27] under the assumption either
that S is finite, or that 7 is a finite-dimensional normed space. The magni-
tude of the increase in the Lipschitz constant depends on card S, or dim 7,
respectively.

Here we observe that similar results hold under the assumption that X is
injective. This follows from the known result for the case X=1/_(I"). How-
ever, we are able to give sharp estimates of the increase in the Lipschitz con-
stant, with a constructive proof, in the special case X=R”. When n =1 this
result is well known [4; 36; 52], and the idea of our proof can be traced back
to these early works.

PROPOSITION 5.1. Let T be a metric space, S a subset of T, and X an injec-
tive (in particular, finite-dimensional) Banach space. Then every Lipschitz
map f: S— X admits a Lipschitz extension g: T— X, with Ly < N(X) L. Fur-
thermore, this estimate is the best possible.

Proof. We may embed X isometrically into /. (I'), where I' is a sufficiently
large set. Since /(I") has the binary intersection property, f admits an ex-
tension f’: T— [ (I"), with the same Lipschitz constant. Now let P: [/, —» X
be a projection with |P|=\(X). We take g=P-f’ and the proof is com-
plete. O
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Proposition 5.1 also holds (suitably reformulated) for uniform mappings.
This proof is, of course, nonconstructive. In the special case X =R", a con-
structive proof is available. Given f, S, T as above, we define g by

g=[,, , supl((s), )~ Lyd(s, Olx do(),
S€E
where o is as in Section 3. It is routine to verify that g is well defined, and
has the required properties.
Proposition 5.1 enables us to verify the claims made earlier, that Steiner
projection (retract) is not the only projection (retract) from C(S”-!) (from
K(R"™)) onto R” with norm (Lipschitz constant) equal to \,,.

PROPOSITION 5.2. Let X be a finite-dimensional Banach space. For each
ye X with |y| <1, there is a projection P: C(3U) - X with |P| =NX) and
P(l)=y.

Proof. Let B(X) denote the collection of closed balls in X. Clearly B(X) is
a subsemigroup of K(X). Defining S: B(X) » X by S(B(x,r))=x+ry, itis
easy to check that S is nonexpansive. By Proposition 5.1, we may extend S
to all of K(X), so that Lg<\,,. Now define 7T: K(X) —» X by

T(C)=S S(A+B+C)—S(A+B)dBdA,

K(X) S ®(X)
where, as usual, the integral signs denote suitable invariant means. As in the
proof of Proposition 1.4, T is linear, T(B(x, r)) =x+ry for all x and r, and
Ly=<M\,. Lemma 1.1 completes the proof. [

The proof of the next result should be clear by now, using the result of Isbell
mentioned in the introduction.

COROLLARY 5.3. Let SCT be any metric spaces, X any Banach spaces.
Then every Lipschitz continuous map f:S— H(X) can be extended to a
map g:T— H(X) with L,<11L;. In the case when X is one-dimensional,
we may obtain L= L.

For the special case when T is a Hilbert space and X = R", a version of Cor-
ollary 5.4 was given by Bressan and Cortesi [6]. Their proof is quite differ-
ent, using the Kirszbraun-Valentine theorem.

6. Some Generalized Selectors

Let us review the basic properties of the Steiner point. For any A € K(R"),
its support function 24 € C(S”—1) is easily shown to be Lipschitz continuous
and hence, by Rademacher’s theorem, differentiable almost everywhere. As
in [46], the Gauss—-Green formula [13, 4.5.6] gives us
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1 1
V(B,) V(B;)

where B,, denotes the unit ball of R”, n(x) denotes the unit outward nor-
mal to B, at x, and V(-) =V,,(-) denotes the volume function in R”. The left
equality shows that s(A) is a Lipschitz continuous function of A. Elemen-
tary convex analysis shows that Va4 (x) € A. Hence the right equality shows
that s(A4) € A. Thus, the properties of the Steiner point in which we are most
interested follow solely from the identity above. A moment’s thought shows
that this formula can be generalized to obtain other Lipschitz selectors. Such
selectors will be the subject of this section.

Let X be any Minkowski space, not necessarily Euclidean. In what follows,
B* is the unit ball of X*, and the volumes, surface measures and outward nor-
mals are calculated with respect to an arbitrary predetermined Euclidean
basis for X*. For any A € K(X) we have, by the same reasoning as before,

1 1
(&) V(B*) V(B*)

Hence (A\) defines a Lipschitz continuous selector K(X) — X, which we shall
denote by sy(A). Our first task will be to investigate the Lipschitz constant
for this selector. Of course, this will be equal to the norm of the projection
P: C(3B*) — X defined by P(f)=(1/V(B*)) {,5. f(x)n(x) do(x).

We recall from [53, Ch. 9] that a base norm space is a Banach space whose
unit ball is the (closed) convex hull of two opposite faces. An order unit
space is a Banach space equipped with a vector ordering, such that the unit
ball is an order interval. For finite-dimensional spaces, these concepts are in
complete duality: A finite-dimensional space is an order unit space if and
only if its dual is a base norm space.

s(A)=

Saa,, Ry (x)n(x) do(x) = SB,, Vhy(x) dx,

[, raoon(x) dox) = | vma(x) ax.

THEOREM 6.1. For an n-dimensional Minkowski space X, the selector sy
Just defined has Lipschitz constant Lg, < n. Furthermore, equality holds if
and only if X is a base norm space.

Proof. Let us denote by p the Euclidean norm on X*, and by d(0, face(x))
the Euclidean distance from the origin to the largest face of B* containing x.

We note that |x|= hg(x) whenever x € X*, and so
n(x) = (p(Vhp(x)))~1Vhp(x)

whenever it exists. Thus

V(B*)|P] = sup
Ifl1=1

| seon(x) dotx)
aB*

= sup Ssup
|l =1 ueext B*

| soutneo) da(x)}
aB*

= Ssup sup
ueext B* |f| =<1

| reounee) doto
aB*
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= sup | |u(n(x)}do(x)

u € ext B*

1
= Vh — _d
up e [#CT G o do(3)

1
= SaB* Pty )

Now if X is a polyhedral space, and x is a relative interior point of some
(n—1)-dimensional face of dB*, then it is easy to see that d(0, face(x))=
1/p(Vhg(x)). The set of points in dB* which belong to two or more maximal
faces has measure zero, and can be ignored. Thus

1
Sazr m do(x)= SaB* d(0, face(x)) da(x)

=3 S d(0, face(x)) do(x)

faces F

= 2 Vua(F)d(0,F)

faces F

= X nV,(co(FU{0}))

faces F .
=nV,(B*).

A standard approximation argument then shows that
[, . d(0, face(x)) do(x) = n, (B,

even when X is not polyhedral. It now follows that V(B*)|P| < nV,(B*),
as required.

Equality occurs precisely when there exists a u € X* with |u(Vhg(x))|=1
for almost all x. (For, it is enough to observe that the supremum over ext B*
dealt with above is actually a maximum.) This means that, for each face F
of B*, either ue F or —u e F. In other words, X* must be an order unit
space. Ol

Using a similar argument, we see that
[, lu(nxe) | do(x) =2p @)V, 1(Qu(B*),

where Q,, denotes the projection onto the subspace orthogonal to u. This
leads to the result that

~ 20(U)Vy_1(Qu(B*))
IP]= sup Vo(B*) ’

which makes the calculation of |P| simpler in some special cases.
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It is natural to investigate Ly, for the common finite-dimensional spaces.
When X =1/{ or X =15, we have L, = n, as we do for every other base norm
space. For X =[5, we obviously have L;, =A(R"). Next we investigate the
case of two-dimensional spaces, whose unit balls are regular polygons.

PROPOSITION 6.2. Suppose that X is two-dimensional, and that its unit ball
is a regular m-gon. If m is divisible by 4, then Lg, =8/(m sin(2w/m)). If m
is not divisible by 4, then Ly, =4/(m sin(w/m)).

Proof. This follows easily from the remarks above. O]

Let X be two-dimensional, with a regular hexagon for its unit ball. Then,
taking note of [19], we have AM(X) =s.(X) = %.

This new selector we have defined on finite-dimensional spaces suggests a
method for defining a selector on the finite-dimensional sets in K(X), even
when X is infinite-dimensional. We could simply define s(A) to be sy (A),
where X is the finite-dimensional subspace spanned by A. (It can be shown
that the right side of (A), and hence also the left side, is independent of the
choice of scalar product on X. Thus the selector sy depends only on the af-
fine structure of the unit ball of X.) Unfortunately, this is not a consistent
definition, as the following example shows.

Let X =/}, let A be the convex hull of (0, 0,0), (1,1,0) and (0, 0,1), and
let Y be the linear span of A. Straightforward computations now show that
sy(A)=1:(7,7,5), whereas sx(A4) = %£(19,19,17).

Of course, for Euclidean spaces, the Steiner point is consistent. That is,
when X =R”, s(4) may be calculated with respect to any subspace of X con-
taining A.

We finish this section by introducing another Lipschitz selector in two di-
mensions. It does not seem to generalize well to higher dimensions. Given
A e H(R?), we denote by sy(A) the centre of the smallest rectangle contain-
ing A which has its sides parallel to the coordinate axes. Elementary geome-
try shows that 5¢(A4) € A. In fact s satisfies the formula

5o(A) = 3(hale) —ha(—ey))er+ 5 (ha(er) — ha(—ey))es,

and so s is a Lipschitz continuous selector. For 12, s, is a selector with the
least possible Lipschitz constant: \(/2) =s; (/%) =1. Similarly, one can ob-
tain a selector corresponding to any nondegenerate parallelogram.

PROPOSITION 6.3. Given linearly independent, norm-one elements x,y €
R2, let us put k(x,y)=(1—<{x,y»2)"Yx—<{x,y)y). Then the identity
Sy, y(A) = 5 (ha(X) = ha(=X)k(x, ¥) + 5 (Ba(¥) — g (=YK (P, X)

defines a Lipschitz continuous selector from H(R?) to R2. Geometrically,
Sx,y(A) is the centre of the smallest parallelogram with sides perpendicular
lo x and y.
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7. A Positive Result

We have seen that the most simple-minded uniform version of Michael’s the-
orem fails to hold. This represents not the end but rather the beginning of
this field of research. Another interesting question is: Given a reasonable
subset Q of H(X), is there a uniformly continuous selector @ —» X?

Frolik et al. [15] gave some results about uniformly continuous selections,
within the general context of uniform spaces. When their results are special-
ized to Banach spaces, they are not very interesting.

As remarked in Section 2, Lindenstrauss [32, Thm. 8] showed that thereis
a uniformly continuous retract, when X is uniformly convex, and that Q=
{Ae H(X): diam A <r} for some r > 0. Skaletskii [48] improved this by es-
tablishing the existence of a selector, whilst also weakening the first assump-
tion to “X has uniformly normal structure”. In fact, Skaletskii gave a more
technical result concerning Fréchet spaces. Rather than deal with that level
of generality, we present a variation of Skaletskii’s argument for the case of
Banach spaces.

Recall from Section 3 the definition of rad 4. Then X is said to have uni-
formly normal structure if sup{rad 4/diam 4: A € H(X), A infinite} is strict-
ly less than 1. It is well known that every uniformly convex space has uni-
formly normal structure. Following Skaletskii, we will say that a subset Q
of H(X) has uniformly normal structure if sup{rad A/diam A: A€ Q, A in-
finite} < 1.

If @ does have uniformly normal structure, we can find « > 0 such that

ga(t)=AN N B(x, (1—at)diam A4)
xeA
is nonempty for all A €, ¢ <1. Note that, for each A4, g4: (—, 1] > H(X)
is a monotonic function. Before proving anything, we shall need to recall
the integration theory for such functions. This was developed first by Isbell
[24], who used it to show that H(X) is the range of a uniformly continuous
retract on any metric space which contains it.

Note that H(X) is a complete metric space, and is equipped with a partial
order —namely, that given by inclusion. The metric, order, and wedge struc-
tures are related by an order unit: an element e € H(X) such that d(a, b) <r
if and only if a<b+re and b <a+re. (This is consistent with the defini-
tion of order units given in §6.) In this case, the order unit is just the unit
ball, e =B(0,1). These properties of H(X) are just what one needs to set
up a rudimentary integration theory. Let f: [0, 1] -» H(X) be an increas-
ing function. For any partition a: 0=¢(,<t;<--- <t,=1 of [0,1], we may
define the upper sum U, =¥"_(#;—t;_1) f(¢;) and also the lower sum L, =

T=1(ti—t;_1)f(t;—1), as well as the mesh of «, |a|=max;|t;—¢_;|. One
may easily check that L, <U, <L, +|a|(f(1)—f(0)), and so d(U,,L,) <
la|d(f(1), £(0)). If B is any partition refining «, then L, <Lg<Uz=<L,.
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It follows that (U,) and (L,) are Cauchy nets, with a common limit, which
we denote by (} f or j}, f(¢) dt. Standard arguments show that this elemen-
tary Riemann integral has all the properties expected of it. One could inves-
tigate the integrability of nonmonotonic functions, but this is not necessary
for our purposes.

LEMMA 7.1. In the notation just established,

1 1 3
d(SO e ) gc) < (1 ¥ E) d(4, C)
whenever A, CeQ and d(A, C) <(a/3) min(diam A, diam C).

Proof. By symmetry, it suffices to show that

e ecra(5(i+2))

where 6 =d(A, C). We put §=36/(adiam C), so 0 <6< 1. Note that, for
any subset S of X and any k>0,
M B(x,k)N[C+B(0,8)]1< N [B(x, k+8)NC]+ B(0, 6).

xXeS XeS

Thus
g4(t)=AN N B(x, (1—«at) diam A)

XeA

c[C+B(0,8)IN N B(x, (1—at)(diam C+6)+9)

xeC

c N [B(x, (1—at)(diam C+48)+26)NC]+B(0, §)

xeC

c N [B(x, (1—a(t—0)) diam C)NC]+ B(0, 6)

xeC

=gc(t—0)+B(0,0).

For any a < b < c, theidentity { f={% f+{¢ fleads to the inclusion {2 f<
¢ f—15 f. Then
1-6
S 8aS) | g&c+B(0, )
1

g+ | gc+| (—e+B(0,9)
0 —6°C " g °€ ’

0

—

gc+06(C—C)+B(0, 8)

(=

; gc+B(0, 8diam C)+ B(0, 6) =

I
5
cf gct+| c+| o+B0,5)
)
=)
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1
[ ern(o.(1+2)).
0 o
as required. O

THEOREM 7.2. Let 2 be a convex subset of H(X), with uniformly normal
structure. Suppose also that Ae H(X), Be},and ACB= Ae). Then there
is a selector F:Q— X with the property that, for each r >0, the restriction
of Fto {AeQ:diam A <r} is uniformly continuous.

Proof. We define f: Q— Qby f(A) = 5}, g4- Note that f(A) € A. From Lem-
ma 7.1 and the convexity of ©, it follows that f is Lipschitz continuous. Fur-
thermore,

diam f(A) < S; diam g, < S; (1— at) diam A dt = (1 - %) diam A.
Then diam f"(A) <(1—a/2)"diam A— 0, and so F(A)=Ny-; f"(A) isa

singleton set. We may regard F as a selector from 2 to X. Now
d(F(A), f"(A)) =diam f"(A)<(1—«/2)"diam A,

and so f*(A) —» F(A) uniformly on {A € Q: diam A < r}. Since each f"is Lip-
schitz continuous, F must be uniformly continuous on {4 € Q:diam A <r}.

O
We remark that convexity of Q is not needed in the last theorem, but the
proof is more difficult in the general case. As an example, Skaletskii showed
that for fixed n, Q,={Ae H(X):dim A < n} has uniformly normal struc-
ture. In fact, it follows easily from Helly’s theorem [29] that rad 4/diam A=<
1—1/n for each A€ Q,,.

COROLLARY 7.3. If X is isomorphic to a Banach space with uniformly nor-
mal structure, then there is a selector H(X) — X which is uniformly contin-
uous on each of the sets {Ae H(X):diam A<r}.

Proof. If X has uniformly normal structure, then this is a special case of
Theorem 7.2. But the conclusion here is unaffected if we put an equivalent
norm on X. ]

Bae [3] and Maluta [34] independently observed that uniform normal struc-
ture implies reflexivity. It has been conjectured that uniform normal struc-
ture implies superreflexivity. It is worth noting that every superreflexive space
has an equivalent uniformly convex norm [12]. Thus far, no example is known
of a Banach space which satisfies the hypotheses of Corollary 7.3 but which
is not already uniformly convex.
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