THE BOUNDARY BEHAVIOR OF BLOCH FUNCTIONS
AND UNIVALENT FUNCTIONS

J. M. Anderson and L. D. Pitt

1. Introduction. The function f(z) =X ¢ @,z" analytic for ze D ={z:|z|<1},
is called a Bloch function if the norm

|/ =sup{(1—|z|*)|f'(z)|: z € D} +|f(0)]

is finite. The set of such functions forms a Banach space B and the subspace
of B consisting of those fe B for which (1—|z|?)|f'(z)|—0 as |z|—>1— is de-
noted by B,. The Zygmund class A* consists of those (complex-valued) continu-
ous functions F(¢) of period 2= for which

F(t+h)+F(t—h)—2F(t) = O(|h|)

uniformly in ¢. If the above second difference is o(|#]) as |#| — 0 then we say that
JEN
The spaces A* and \* are also Banach spaces with the obvious norm. Moreover,

1) f()=3 azreB o F(t)=3 Leintgp*
n=0 n=1 R
and similarly f e By if and only if Fe \*. Thus the space B is isomorphic under
the operation of integration to that subspace of A* consisting of functions whose
negative Fourier coefficients vanish. In [2] we considered the spaces of real-valued
functions in A* and \*, but in the present paper we study the complex case. This
eventually resolves itself into a consideration of the radial or boundary behavior
of Bloch functions and univalent functions.
As in [1], an important class of examples is given by lacunary series

f@=3 az™,
k=0

where n; . /n,=qg>1 for all k£, and
[(ar)] =supf|ai|: k= 0}
is finite. Such functions belong to B and also to By if a; — 0 as k — oo. If, moreover,
(2) > |ag|?= oo,
k=0
then such functions f(z) have finite radial limits lim, _, ,_ f(re‘%) only for a set E

of values of § of measure zero. Also the corresponding functions F(¢) have finite
derivatives only in such a set E.
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We introduced. in [2] the concept of dyadic A*, denoted by A% for real-valued
functions. Although this can be extended in an obvious way to complex-valued
functions, it seems less natural when viewed in the context of analytic functions
and so we shall here consider only A* and A\*.

For a real-valued function F(¢) € A* we let E, J;, J, denote the sets

E={t: F'(t) exists and is finite},
Jy={t: F'(t) exists and is +0},
Jy={t: F'(t) exists and is —oo}.

If ¢(¢) 1 0 as t —» 0+ we denote by m,(E) the Hausdorff measure of a set E with
respect to the function ¢. Of particular importance in what follows is the function

h(t)=tlog—1—,

and the symbol m,(E) will always refer to Hausdorff measure with respect to
this function.

In §2 we state our results for functions in A* for which |E|=0, that is, for
which E has Lebesgue measure zero. We show in particular (Theorem 1) that,
in this case, m(J;) = m;(J,) = . An application of these results is given in §3,
leading to a proof of a conjecture of McMillan and Pommerenke [16, Problem
3.4] on univalent functions. Sections 4 and 5 are devoted to proofs; §6 presents
various other related problems which we believe to be of interest.

Added in proof (May 6, 1988). In a recent preprint entitled “LIL for smooth
measures” [LOMI preprints E-3-88], N. G. Makarov has shown that for every
univalent function g(z) we have m4(J) >0, where J is the set where g’(z) has a
finite radial limit and ¢(¢) =#(log(1/¢) log log log(1/¢))!/2, and that this result is
essentially best possible. It seems likely, as suggested above, that Theorem 1 re-
mains true with A4(¢) replaced by ¢(z). It is also interesting to determine whether
the standard Weierstrass functions have o-finite ¢-measure for the sets J; and J5.

2. Functions in A* and A* with |E|=0. We first state

THEOREM 1. Lef F(t) be a real-valued function in A* for which |E|=0. Then,
Jor every subinterval I of (0,2w) we have ni;,(JyNI)=m(J,NIT)= oo,

Theorem 1 can be thought of as saying that a function in A* must possess deriv-
atives, finite or infinite, on a set J which is of Hausdorff dimension 1 on each sub-
interval 7. In particular, the well-known example of a nowhere (finitely) differen-
tiable function with lacunary Fourier series

F(t)=Y apni'cos(ngt)
k=1

with |(ax)] . <co and ay / 0 as kK — co must have the derivatives +o0 or —oo on
sets Jy, J, with m,(J;\I) = oo for each interval 1.



BOUNDARY BEHAVIOR OF BLOCH AND UNIVALENT FUNCTIONS 315

As in [2], however, the main thrust of our work is that the class of functions
F(t) € A* to which our methods naturally apply consists of those F'e A* which are
nondifferentiable almost everywhere, and that (2) is of importance only insofar
as it ensures this. We remark that, for lacunary series, Theorem 1 has the follow-
ing corollary.

COROLLARY 1. If {n;} is a lacunary sequence and if
F(t)y=Y apni'cos ni(t+1;)
k=1

is in A* with |E|=0, then the partial sums of F’'(t),

N
SN(t) = — E ai sin I’!k(t+fk)
k=1

tend to —oo on J; and + on J,, where (as before) my,(JiNI)=my(J,NI)=c0
Jor every subinterval I.

The corollary follows from the fact, observed by Freud ([6], see also [10]), that

. N
F(t+hI: F@) _ S agsin n,(t+1,)+O0(1)
k=1

as N — oo, where N=log(1/|h|).

Theorem 1 will follow from more general theorems, for which we need some
further notation. A real-valued function F is said to satisfy the Banach T5-condi-
tion on an interval 7 if almost every value in its range is assumed at most count-
ably often in 1. For a discussion of this see [4] or, more importantly, [17, p. 277].
It has been shown in [2, §7] that if F'e A* then F satisfies the T,-condition. This
result is implicit in the work of Mauldin and Williams [13], whose methods of
proof were used in [2]. We do not know of any precise determination of those
functions satisfying the 7,-condition, but point out that it follows from the con-
sideration of [11, Thm. 5, p. 274] that if 0 <« <1 then there are functions Fe
Lip « which do not have the 7T,-property.

The modulus of continuity «w(8) and the modulus of smoothness w,(é) of a
continuous function F(¢#) on an interval I are defined by

w(6) =w(6, F)=sup{|F(t+h)—F(f)|:0<h=<é,tel} and
w2(8) = wy(6, F) =sup{|F(¢t+h)+F(t—h)—2F(t)|:0<h=<é,tel],
respectively. We also define, in analogy to J; and J,,
E,={t:0<F'(t) <}, E,={t: —o<F'(t)=<0]}.

Theorem 1 follows from the following more general theorem.

THEOREM 2. Let F(t) be a continuous real-valued function satisfying the T,-
condition and suppose that » (98, ) = O(¢$(6)) as 6 — 0 for some function ¢(t). Let
1 be an interval on which F has unbounded variation and suppose that |E,NI|=0.
Then my(J;NI) = co. Similarly, if |[E;NI|=0 then my(J,NI)= 0.
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To deduce Theorem 1 we note that if |[E|=0 then |E||=|E,|=0and F(¢) is of
unbounded variation in every interval. Moreover, it is an exercise to show (see [12,
p- 53, Problem 5]) that

3) w(6)=0<6 S:t—zwz(t)dz>+0(a)

as 6 = 0. Thus, in particular, it follows that for F e A* we have w(6) = O(h(9)),
and for f e N\* we have w(6) = O(¢(6)) for some suitable function ¢ with ¢(#)=
o(tlog(1/t)) as t — 0+.

Theorem 2 is itself a consequence of the following theorem.

THEOREM 3. Let F(t) be a real-valued continuous function satisfying the T»-
condition, and suppose that »(8, F) = O(¢(6)) as 6 — 0+ for some function ¢(t).
Let I be an interval on which F has unbounded variation and suppose that

@) SEIHIF (1) dt < oo;
then my(JiNI) = oco. Similarly, if
(5) jEzm F/(t)dt>—o0

then my(J,NI)= oo,
Clearly (4) or (5) will hold if |E;|=0 or |E,|=0, and we note that if
El()\)={t:t€El,Fl(t)Z>\} and Ez()\)={f:tEE2,F1(l‘)S—A}

then (4) and (5) can, respectively, be written as

S: N E;(N)] dA < oo, E: NE>(N)| dN< oo.

3. Bloch functions and univalent functions. The connection between Theorem
1 and the radial behavior of Bloch functions is provided by the following two re-
sults. The first of these is elementary (see e.g. [9, p. 34]). Let f(z) e Band F(¢)e
A* be related by (1) and write

J@)=u(z)+iv(z), F)=U@)+iv(e),
where U(¢) and V(¢) are real-valued and in A*. We set
E={t:1lim,_,_ f(re') exists and is finite}
(6) E, ={t:1lim,_,,_ u(re') exists and is finite}
E,={t:1im,_,,_ v(re') exists and is finite}.

LEMMA 1. If U'(t) =a for —oo <a < oo, then lim,_ _ u(re!)y=a. Similarly,
if V'(t)=b for —oo <b =< o, then lim,_,,_ v(re’)=b.

The second result is less elementary.

THEOREM 4. Suppose that f(z) € B and that |E|=0. Then |E,|=|E,|=0.
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This theorem is not true in general —that is, if the condition that f(z)e B is
omitted. An example showing this is readily constructed from [3, Thm. 6, p. 195].
It may be, however, that Theorem 4 remains true for a substantially wider class
of functions than B. The following theorem for Bloch functions is now an im-
mediate consequence of Theorem 1 and Theorem 4.

THEOREM 5. Suppose that f(z)=u(z)+iv(z) belongs to B and that |E|=0,
where E is defined by (6). Then there are four sets J,(u), Jo(u), J{(v), Jo(v) de-
fined by

Ji(u)={t:lim,_,,_ u(re) = +oo},

Jo(u)={t:lim,_ ;_ u(rei’y= —oo},
Ji(v)={t:lim, _, _ v(rei’) = + oo},
Jry()={t:lim,_,_ v(rei’) = —oo},

such that, for each interval I C (0, 2w), my(JNI) = for J = Ji(u), Jo(u),
J1(v), J2(v).

If the function g(z) is univalent in D and we set f(z) =log g’(z), then f(z) is
a Bloch function [15]. If we apply Theorem 5 to the function f(z) and consider
only the set J,(u) we obtain

THEOREM 6. Let g(z) be univalent in D and suppose that |E(g’)|=0. Then
there is a set J, with lim, _,_ g’(re'")=0 for t € J, and my(J,NI) = o for every
interval I C (0, 27).

This theorem gives a strong affirmative answer to the following question
of McMillan and Pommerenke [16, Problem 3.4]: Is the logarithmic capacity
Cap(E(g’)) >0 for each univalent function g? The much stronger statement
my(E(g’)) = +oo is true since J, S E(g’) and either |[E(g’)|> 0 or m;,(J,) = +.
A similar theorem, whose proof we omit, follows from Theorem 3 by consider-
ing the set E,(\) defined after that theorem. For 0 <\ < o we set

E(g’,N)={¢t:lim,__ g'(rei’) =l exists and |/| < exp(—\)}.
THEOREM 7. Suppose that g(z) is univalent in D and that, for some interval I,
|E(g)NI|<|I|. If further,
%) Sm)\|E~(g’, NNI|d\< oo,

then my(J,NI)=co.

Theorem 7 states, in other words, that if the set where the derivative of a uni-
valent function g(z) has a finite radial limit is of less than full measure in some
interval I and if (7) is satisfied, then g’(z) possesses the radial limit zero on a set
J> with my(J,NI) = co. It is possible that Theorem 7 remains valid without con-
dition (7), but we are unable to show this.

4. Proof of Theorem 3. We prove the first part of Theorem 3. The proof of the
second part is similar and, as indicated previously, Theorems 1 and 2 then follow.
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What is important for the proof is that F satisfies the 75-condition of Banach so
that we may apply Theorem 6.6 of [17, p. 280]. We pick a, be I with b>a and
F(b)> F(a). It then follows from (6.7) of [17] that

|F(la, bIN(J,UE})|= F(b)—F(a)
and hence
|F([a, b1NJy)| = F(b)—F(a)—|F(la, bINEy)|.
But, by Denjoy’s theorem (see, e.g., the remark on p. 272 or Theorem 6.5 on
p. 227 of [17]),
|F(la, b]NEY)| sj

Since F’(t) =0 on E; we have

|F’(¢)| dt.
[a,b]NE,;

|F([a,b]ﬂJ1)|>_>F(b)—F(a)—S[ o, Ot
a, 1

Thus, for any covering {/,};° of [a, b]NJ, by intervals,
S [F(,)|=F(b)—F(@)-| F(t) dt.
n=1 [a,bINE,
But F(¢) has modulus of continuity O(¢(6)) and so, since 7, is an interval, there
exists a constant K > 0 such that
|F(I,)|=Ko(|L,]), n=1,2,....

Thus, passing to a suitable covering of [a, b]NJ; and taking the infimum we have

Km¢([a,b]ﬂJl)ZF(b)—F(a)—§ F'(t)dt.

a, b]ﬂEl

Since F(t) is of unbounded variation in 7, given any N > 0 we may choose dis-
Jjoint subintervals [a,, b, ] C I with F(b,) > F(a,) and such that

i
zl [F(b,)—F(a,)]=N.
Hence, "=

{
Kmy(INJ) =K Y my(la,, b,1NJy)
n=1

]

l
=3 [F(b)—Flan]l- 3 | F/(ty

n=1 n=1" lag by1NE,
]

= ¥ [Fb)—Fla)-{  Fnad,
n=1 INE,

since the intervals [a,, b,,] are disjoint. The last term above is bounded by hy-
pothesis and the first is at least V. Since K is fixed and N is arbitrary we obtain
my(INJ;) = oo as required. [

5. Proof of Theorem 4. Theorem 4 follows readily from known results. The
classical theorem of Plessner [5, Thm. 8.2, p. 147] can be sharpened, in the case
of Bloch functions (see e.g. [1, Prop. 2.2]), to yield that for almost every ¢ either
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lim, _,_ f(re') exists (finite or infinite) or the radial cluster set { f(re?): 0 <r <1}
is dense in C. The set £ has |E£| =0 by hypothesis; the set where lim, _, |_ f(ref’)=
has measure zero by Privalov’s theorem (see [5, Cor. 1, p. 146]). We are using here
the fact that f(z) is a Bloch function to infer that a radial limit of co will, in fact,
be an angular limit of oo.

We conclude that the set of values of ¢ for which { f(rei’): 0 <r <1} is dense in
C is of measure 2x. Since £, and E, are clearly both contained in the comple-
ment of this set we have |E,|=|E,| as required. O

6. Concluding remarks. It is interesting to compare the results of Hawkes [8]
on lacunary series to Theorem 5. For example, Hawkes has shown [8, Thm. 6]
that if f(z)=X;_1z%" and M(r, f)=2X7_,r?", then the set

(8) G(f)=1{t: f(re!ty~AM(r, f) as r —» 1— for some A > 0}

has Hausdorff dimension 1. For related results see also [7]. Although it deals with
more general series, Theorem 5 makes no assertion about the rate at which f(re)
tends to infinity. On the other hand, if F(¢) =X ;_,a,\;'e*n!, where a,=0(1)
asn—oand N\, /N,= g >1for all n, then it follows from [6, Satz IV, Formula

23] that for a.e. ¢,
|F(¢t+h)—F(2)]

[im su >0,
oot |AIS(R)
where 5
S(h)=( »: |a,,|2) ,
Ny=1/]h|

and we assume that S(h#) >0 as h—0+.

It therefore seems that points ¢ in G(f) defined by (8) might reasonably be
called “fast points” of the function f(z) (cf. [10, p. 55]). An interesting question
would thus be to give a suitable definition of fast points for general functions in
A* and to show that if |E| =0 then the set of fast points is large. Of particular in-
terest here would be find analogies with the results of [14] for the Wiener function
of standard Brownian motion in one dimension.

We are unable to determine whether or not Theorem 1 is sharp with regard to
the function A(¢) = ¢ log(1/¢). This function A(¢) arises from the global estimate
for w(d, F') for Fe A* and sometimes a better function ¢(7) is immediately avail-
able. For example, the function

&) Fi(t)= Y 2-"n—12¢cos(2"t)
n=1

belongs to N\*, and so has the 7T,-property and, moreover, |E|= 0. Also w, (6, F}) =
O(58(log(1/6))~1/2) as 6 — 0+. Thus, from (3), w(d, F;) = O(5(log(1/6))?) as
6 — 0+. Hence my(J)) = my(J,) = o for ¢(t) =t(log(1/¢))/2

A natural candidate for discussion in this context is the standard Weierstrass
function G(¢) =%, 2" cos(27t). However, using other considerations (to which
we hope to return at a later date) we can show that all such lacunary functions in A*
must have m,(J;) = my(J,) = o for the function ¢(#) = ¢(log(1/¢t) log log(1/t))"/2.
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Indeed, for the function F;(¢) of (9) we may take ¢(¢) = t(loglog(1/¢)). The
methods of proof depend strongly in the lacunarity. Nevertheless, a reasonable
first guess would be that such functions G(#) are extremal in the context of Theo-
rem 1, and thus it is possible that Theorem 1is susceptible to improvement regard-
ing the size of the sets J; and J,. However, we have not been able to prove this,
and it is possible that there is a non-lacunary function F(#) in A* satisfying the
hypothesis of Theorem 1 for which J; and J, have o-finite A-measure.
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