AN EXTENSION OF WIDDER’S THEOREM

Krzysztof Samotij

1. Introduction. In this paper we consider a problem concerning the bound-
ary behavior of solutions of the one-dimensional heat equation on the strip (or
the half-plane) ®.= R X (0, ¢), where 0 < ¢ < +c0. By a solution of the heat equa-
tion on an open set D < R? we understand here a twice continuously differenti-
able real function u(x, ¢), (x, ¢) € D, such that u,, =u, in D.

It is well known that many properties of such functions are similar to those of
harmonic functions (see e.g. [8], [6], [3], [4], and [2]). One of these similarities
is that nonnegative harmonic function on »., and nonnegative solutions of the
heat equation on . both have Poisson-type integral representations. In the “har-
monic” case this fact is attributed to F. Riesz and Herglotz, and in the case of so-
lutions of the heat equation it is a theorem due to Widder [8]. In [5] Hayman and
Korenblum obtained “an extension of the Riesz-Herlotz formula” by showing
that for a continuous positive nonincreasing function k(¢), # > 0, the condition

g; JEOE dt <+

is equivalent to the property that each harmonic function 4 defined on D, with
h(x,t)=<k(), t >0, can be represented in the form

1 g+ 4 . ¥
h(x,t)= p S__oo )t d(Tl_l’I;I)l+ So h(z, 1) dz>+Ct.
The outer integral in the above formula was originally defined by the integration-
by-parts formula, but, as shown later in [7], it can be understood as a Riemann-
Stieltjes integral (with respect to a function which may not necessarily be of
bounded variation). The aim of this paper is to show an analogue of that result
for solutions of the heat equation on D,.

The author would like to express his sincere thanks to Richard O’Neil for val-
uable comments. In particular, the present shape of the integral in the assump-
tions of Theorems 1 and 2 was suggested by him.

2. Main results. Let K(x, ¢) be the Gauss kernel, that is,

1 2
K(x,t)= Wi exp(——%), XeR, t>0.

In the sequel & will always denote a positive nonincreasing unbounded continu-
ous function on (0, +0).
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Q) [ ko \[_log(‘t/’—k”” dt < +co

Jor some € > 0. Let u be a solution of the heat equation on D, (0 <c < +o0) with
u(x,t)<k(@), te(0,c). Then:
(i) the limit

a(x)= lim Sx u(z,t)dz
t—0+ Y0
exists and is finite for each real number x;
(i1) for each tge (0,c) and each M > 0 there is a continuous function
k:[0,1]> R, «(0) =0, such that if u(0, ty) = —M then

a(xz) —alx)) < k(x2—x)(|x1+x2|+1)

whenever 0 < x,—x1<1 («x depends only on k, ty, and M);
(ili) for each real number x we have a(x) =[a(x+)+ a(x—)]/2; and
(iv) for each (x,t) e D, we have

ute,nn={"" K(x—z,1) da(2).

Note that (ii) implies that « is locally bounded and that it has one-sided limits
at each point. Therefore the integral in (iv) can be understood as an improper
Riemann-Stieltjes integral.

Observe that for arbitrary solution u of the heat equation on D, and for arbi-
trary s (s >0), A (4> 0), and B (B € R), the function #(x, ) = Au(s?x, st)+ B
is a solution of the heat equation on »./;. Also, if k satisfies the assumptions of
Theorem 1 then so does &k(¢) = Ak(st)+ B, if B=0. Therefore Theorem 1 is a
consequence of the following theorem.

THEOREM 2. Suppose that

k(t) < 0<r=<1/16

1
2e~/wt’

J= S;ﬂﬁ k(t) \/_log(\t/?k(t)) dt < +oo

Let ¢ >1 and let u be a solution of the heat equation in D, with u(x,t)<k(t),
xeR, 0<t=1/16, and u(0,1)=0. Then:
(i) the limit

and

a(x)= lim Sx u(z,t)dz
t—0+ Y0
exists and is finite for each x € R;

(i) a(xz)—a(x)) = (|xi1+x2|+1) - k(x2—x1), 0<x2—x1 =<1, where k is some
nondecreasing continuous function on [0, 1] that depends only on k and
is such that k(0) =0 and k(1) = C(J+2) log(J+2), where C is some ab-
solute constant,;
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(iii) sgn(x)-a(x)= —D(x2+1) exp(x2/4), with some constant D depending
only on k;
(iv) a(x)=[la(x—)+a(x+)]/2, xeR; and
W) u(t,x)=[T2K(x—z,t)da(z), xeR, 0<t<1.

The next theorem states that for k’s from a large family of functions the as-
sumptions of Theorem 1 cannot be relaxed.

THEOREM 3. If k does not satisfy the assumptions of Theorem 1 and there
are positive constants ty and C such that k(t/2) < Ck(t) for0<t =<ty, then there
exists a solution u of the heat equation on D, withu(x,t)<k(t), t >0, such that

X
lim & u(z,t)dz=+oo for each x#0.
t—0+ Y0

Theorem 3 will be derived from the following theorem, which is of some inter-
est on its own.

THEOREM 4. Assume that k satisfies the assumptions of Theorem 3 and that
€e>0, 6>0, and L >0 are arbitrary. Then there exists a nonnegative continuous
Junction f on R vanishing outside [0, ¢] such that:

1) |ux,t)|<e, t=¢;
(ii) u(x,t)=<ek(t), 0<t=1; and

(iii) X2 f(z)dz=L—6;
where u(x,t) =12 K(x—z,t)f(z)dz—LK(x,t), xeR, t>0.

REMARK. If we assume that k(¢) = {¢*(—log ¢) [log(—log ¢)]7}~! for all small
t’s then k satisfies the conditions of Theorem 1 if v > 3/2.

3. Auxiliary facts. In this section k£ will be as specified earlier, with the addi-
tional requirement that

k(t)< 0=r<1/16.

1
2e~fwf’
Let M be a constant greater than or equal to 1. For each such constant and for
each ¢ € (0,1/16] let x,s(¢) be the positive solution of the equation

(2 k(t)=MK(x,1),

that is,

xar(t) =2+/t[log M —log(2~/mtk(t))].

Note that xp,(7) = 2¢Y2, This inequality, together with (2) and the facts that
oK/at >0 if x> (26)Y? and 8K /dx < 0 if x > 0, imply that x,,(¢) is an increasing
function of ¢. Clearly, x,, is continuous on (0, 1/16]. It is also easy to see that
x37(0+) = 0. Let us denote £, =x4;!. The domain of 7, is equal to (0, xar(1/16)]
and, since x,,(1/16) =1/2, it contains the interval (0,1/2]. Let us extend #;; by
putting 7,,(0) = 0. Some properties of 73, which follow from just-derived prop-
erties of x,, are listed in the following lemma.
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LEMMA 1.
(i) tpr is an increasing continuous function with values in the interval
[0,1/161;
(i) k(m(x))=M- -K(x,1r(x)), 0<x=1/2;
(iii) #pr(x) sx2/4, O0=x=<1/2;
(iv) ifk(t)<k(), 0<t=<1/16, then tr(x) <tp(x), 0=x=<1/2, where
fur is constructed for k in the same manner as ty; for k;
V) if1=M=N then tn(xX)<Itpy(x), 0=<x=<1/2.

Let
I(M, s) = S; k(tay(x)) dx, M=1, 0<s=<1/2.

Note that 7(M, s) may be infinite. By a change of a variable,

s M
I(M,s):S;M( )k(t)a'[Z \/tlogm].

LEMMA 2.

(i) For each fixed s, 0<s=<1/2, I(M,s) is a nondecreasing function of M,
(i) I(M,s)=<2(og M)*I(1,s), M=e, 0<5=<1/2;
(iii) the following four conditions are mutually equivalent:

(A) J=S:)/16k(r)\/_1°g(‘t/?k”)) dt <+,
1/16
(B) Ji=\ " k(t) d=Tog(VTk(1) <+eo,

(C) there exists M =1 and s (0,1/2) such that I(M,s) <+,
(D) I(M,s)<+o forall M (M=1) and s (0<s=<1/2);
moreover, J1<J/2+ C, where C is an absolute constant.

Proof. (i) follows from Lemma 1(v).
(ii) Let M =e and let p=log M +1. Then

s P
10,9 =19 = [ ko d|2 J g 5.2y |

trs(S) e?f
SSO k(t)d[z‘\ﬂlog (26\/7?]{(”)[,]st/logMI(l,s).

(iii) To prove the equivalence of (A) and (B) let us note first that the limits

lim &:/16 k(t) d~/—t log (VI k(D))

66— 0+
and
1/16 —
lim S/ k(t)\/ log(VTA()) ,,
50+ V8 : 4

always exist, although they may be infinite. Therefore it is enough to prove that
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—log(Vik(t)) dt
t

2 (" k(y an/=rTog TR - | k(1) J

remains bounded as é approaches 0. But
i/16 _1 7
Sa/ k(1) [Zd\f—-tlog(\/}"k(t))]_ \/ Og(\t/_k(t)) dt,

1/16 1/2evT
Sa/ 2k(t)VEid~/—log(VEk(t)) Isz SO/ ¢ ud~/—logu < +oo.

=

The equivalence of (B), (C), and (D) follows from (i) and (ii). ]

4. Proof of Theorem 2. Let us assume that k, ¢, and « are as in the assump-
tion of Theorem 2. In the beginning of this proof we assume in addition that u is
bounded from above and extends continuously to {(x, ¢): 0 <¢ < c]}. This exten-
sion will be denoted also by u. By Widder’s theorem [8], for each (x,7) e D, we
have

utr, )= |"" K(x—z,) da(2),

where

a(z) = S; u(w,0)dw.
Let
) Lo p Q=)

0=<zy—z =<1 |21+ 22| +1

This supremum is finite since u is bounded from above. We can assume that L >0
since otherwise u =0, in which case the theorem is trivial. Note that (3) implies
that

()] a(z2)—a(z) = LI(|z1| V|z2])2+2(|z1| V]z2]) +1]

whenever z; <z, and z,-2,=0. Here and everywhere aV b denotes the larger of
the two numbers ¢ and b. By (4), if 0 =z, <z, <+ then

|7 Kz, 1) da(2) = K (23, Dl(zr) — atzn)) = | [a(@) — ezn)] dK (2, 1)
% 2

sL[K(Zz, 1)-(z§+222—1)+5: (z2+2z+1)<_21%%12>dz]

sL{sup [K(z,1)(z2+2z+1)]

z=0
+S: (z2+2z+1)<—i%’—ll>dz}

=C1L.

The same estimate holds in the case when — <z, <z, <0, so that
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S: K(z,1) da(z) = C, L
whenever —o0 <z, <z, <+ and both z; and z, have the same sign. Since
(™" Kz, 1) da(z) = uc0, 1 =0,
we have
) S: K(z,1)da(z) = —3C,L for any z,22, 21 <Z2.
On the other hand, if 0 < z; <z, then, by the second mean value theorem,

SZZ K(z,1) do(z) =[K(21,1) =K (22, )] - [a(2") — a(21)]
2
+ K (22, 1) [a(z2) —a(z1)],

with some z’'€ (21, 22). By (4), the first summand on the right-hand side of this
equality does not exceed L(z7+2z,+1)/2v#@. Therefore, comparing (5) and (6)
we obtain

(6)

7 — > 2 i
@) o(z2)—a(z)) = 2 K1) (22+22,+14+6C,vT)

Similarly, when z, <z, =0 we have

(8) a(z2) —o(z)) = (z2+2|z1]| +1+6C, vT).

—-L
2 ﬁK(Zl ’ I)
Note that (7) and (8) imply

) sgn(z) - a(z) = (2% 42|z| +1+6C, vT).

2vm K(z,1)

Let us fix arbitrary x;, x,, and x with x; <x <x, and x,—x;<1. Let us assume
that 0 <#=<1/16. By (7) and (8) we have

4x;|+4
S K(x—2z,t)do(z)

X2
(10) . _—LK(x—x3,1)

= 4 4)?+2(4 4)+1+6C
VT K (4]x5|+4,1) [(4]x2] +4)"+2(4|x2| +4)+14+6C, vT]

=—-C,L exp(5x§)K(x—x2, t),

with some absolute constant C,. On the other hand, by (7), we have

Sm K(x—2z,t)do(z)

4IX21+4

« 0
= s @ = (@ ]xa +4)] [Eg(x_z, ,)] dz=
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L (= 2242z +14+6C,vT [ d
=5 = —K(x—z,t)|d
2T §4|x2|+4 Kz 1) [az (x—z )] z
_L x2 - X
 4ymt? eXp(4(l—t))S4|x2[+4 P(z)-expl—v(z—z0)"1dz,

where v = (1—1t¢)/4t, zo=x/(1—1t), and P(z)=(z —x)(z22+2z2+1+6CyvT).
Note that there is an absolute constant C; such that P(z) < C3(z—zo)° when-
ever Z = 4|x,|+4. Hence

Sw - K(x—2z,t)da(z)

4].X'2l+4

—GC;L x? 0 3 2
= —— — —v(z— d
an 4y t3/? exp(4(1—t))§4lx2|+4(z Z0)” expl—7(2—=20)"]dz
ey x? [v(4|x2]| +4—20)> +1] )
=" —v(4 4-—
4wt e""(4(1—0) 272 exp[—7(4]x2|+4-20)"]

= C4L exp(5x3)K(x2—x, t)
with an absolute constant C,4, and where the last inequality is justified by the fact
that exp[—v(4|x2| + 4 —x¢)?] < 2/7wfK(x; — x, t). Combining (10) and (11) we
obtain
(12) r’ K(x—2,t) da(z) = —(Cz+ Ca)L exp(5x3) K (x—x, 1).
X2
We can prove similarly that

(13) Si‘w K(x—2,1) doa(z) = —(Cy+ Cs)L exp(5x2) K (x;—x, t).

For x;, x> as before and for M =1 let

Xp—X X1+ x
TM(x)=fM( 2 1_|x_1_2

2 2
Note that T),(x) =1/16, x € [x;,x,]. Let

), x €[xy,x2].

uy(x, t) = S;‘Z K(x—z,1)da(z), t>0, xeR
1

and let ur=u—u,. If we set M =eV2L(Cy+ Cy) exp[5(|x;+x2|+1)?] then, by
(12), (13), and Lemma 1(ii), we have —uy(x, Tps(x)) = k(T (X)), X € (x1,X2).
Hence

14) uy(x, Tpr(x)) = 2k(Tp(x)), xe€(x,Xx2).

Let us introduce an auxiliary function,

war(x, £) =2/27e sz K(x—z, 1) k(Tyy(2)) dz,
X1
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where the integral is convergent in virtue of Lemma 2. If x e [(x;+x3)/2, x,) then
by Lemma 1(iii) we have

[TV K (emg, T 00) k(T (2)) dz

Wwar(x, Tas(x)) =2+/2me g
= 2+/2me k(T () K(N2Tw (XY, Tar () N2Taa (x) = 2k(Tha(x)).

The same estimation holds for x € (x;, (x;+x3)]. Hence

(15) war(x, Tar (X)) = 2k(Th (X)), Xxe€(xy,Xx2).

The function u;—wy is a solution of the heat equation on D, . It is bounded
from above and extends continuously to D, \{(x;,0), (x2,0)}. It vanishes on
f(x,0): x ¢ [x1,x2]} and, by (14) and (15), it is nonpositive on {(x, T (x):x€
(x1,x2)}. Hence, by the maximum principle it is nonpositive on {(x, #): £ >0 if
X ¢ (x1,x2); t>Tr(x) if x e (x;,x2)}. Therefore

sz [11(x, 0) — was (x, 0)] dx <O.
X1

Thus
a(Xs) —a(x)) < 2+/27e S:z k(Ty(2)) dz
(16) ‘

—4/Zne S;xz_x"/z k(ta(2)) dz = 4~2me I(M, (x2—x1)/2).
Since x; and x, were arbitrary (with 0 <x, —x; <1), (16) implies, by Lemma 2(i)
and by (3), that
L(|x1+x2]+1) =8+/2melogl{eV2L(Cy+ Cy) exp[5(|x;+x2| +1)21} I(1,1/2).
This implies that there is a constant Cs such that
a7 L=<Cs[I(1,1/2)+2]log[I(1,1/2)+2].

By (16) and Lemma 2(ii), it is easy to see that there exists a continuous func-
tion « depending only on 7(1,s/2) (as a function of s) such that a(x;) —a(x;) <
(|x1+x2| +1)k(x2—x;) whenever 0 <x,—x;=<1. The estimation of «(1) follows
by (3), (17) and Lemma 2(ii).

Part (iii) of the theorem follows by (9) and (17). Parts (i) and (iv) are trivial,
and (v) is a consequence of Widder’s theorem.

Let us come back to the general case; that is, let # be as in the assumption of
Theorem 2. For 8§ € (0,1) let

ug(x,t) =u(Vox, (1 —1)0+1), (x,t)e D..

The function u, satisfies the assumptions of the first part of the proof. Hence, if
we denote

ap(x) = So ug(z,0) dz
then
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(18) a(xz) —a(x)) < (|x;+x2] +1) k(x2—Xy)
if0<x;—x;=<1, and

(19) sgn(x)ag(x) = —D(x2+1) exp(x¥/4).
Note that « and D depend only on k. But

1 Vox
o (x) = SO u(z, 1—0) dz.

By (18) and (19), similarly as in the Helly selection theorem, we can find an in-
creasing sequence (8,) converging to 1, as well as a function « on R such that «
satisfies (ii), (iii), and (iv) of the theorem (hence its discontinuities are of the first
kind only) and such that

lim ap, (x) = a(x)

H— o0

if x is a point of continuity of «. By (18), (19), and the Lebesgue dominated con-
vergence theorem, for each (x, ) € D; we have

+ + d
S_w K(x—2z,t)du(z) = —S_w a(z) (aK(x—z, l‘)) dz

= lim [—Si: agn(z)(:—zl((x—z,t))dz]

= lim ug, (x,ty=u(x,1t),

n— oo

which proves (v).
For arbitrary x; and x, we have

lim szu(x,t)dxz lim rz (SHOK(x—z,t)da(z))dx
xl -0

t—0+ YX) t—- 0+
. +oo ad
= — lim S sz oz(z)(——K(x——z,t)) dx] dz
t>04 Y= | Jx) 9z

= lim E: a(2) [K(xa—2z, 1) — K (x1—2z, 1)] dz

t—0+
_ alx—)talnt)  alhn—-)+alat)
2 2 )
This, together with the preceding remarks, completes the proof of Theorem 2.

1
5. Proofs of Theorems 3 and 4.

LEMMA 3. If k does not satisfy the assumptions of Theorem 1 and k,(t) =
min{k(¢), (2Qe~/xt)" '} then

l/lﬁk 0dl2 [l M o, M=1
—_— | = >
So 1(7) [ o8 2\/_7rtk1(t):| oo, ="
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Proof. In virtue of Lemma 2(iii) it is enough to show that

(20) [ ko) (N =1Togt PRr(1) ) = +-o0.

If lim,_, 04 2%k () =0, then k,(¢) = k(¢) for all sufficiently small #’s and there-
fore (20) follows in this case. If lim sup,_, o+ ¢/%k(¢) > O then there is a 6 € (0, 1]
and a decreasing sequence (f,) converging to 0, with #;,=1/16 and such that
k(ty)=0QR2e~Tt,)" !, n=1. Let k5(¢t) =min{k(¢),0(2e~xf)"1}. Then

1/16
jo ka(t) dIN—t log(Vika (1)) ]

= § kZ(tn)[\/'—tn 108(\/5 kZ(tn)) - \/tn+l log(‘\; tn+1 kZ(tn+l))]

n=1

0 2evym® X th+i
= 1 — =
2evw °8 9 n§l (l \/ tn ) +eo,

where the last series is divergent because limn_,.x,(tn)l/ 2 =0. But, since k) <k,
(20) follows by Lemma 1(iv) and (ii). (|

LEMMA 4. Suppose that k(t/2) < Ck(t) and k(t) < (Re~/wf)"! for t € (0, to]
with some positive constants C and tg. Then, for each M =1 and each x €
(0, xar(20)], we have

(i) k(tm(x/2)) = C*k(1p1(x)) and

(i) k(tp(0x)) < C*0 k(1 (x)), 0<O<]1,
where a =4 log, C.

Proof. We will prove first that
(21) i (x/2) =21 (x), O0<x=xp(20).

Suppose that this is not the case for some x € (0, x3/(#0)]. Since #3,(x/2) <
ty(x), we have k(fr(x/2)) = k(£p(x)). By Lemma 1(ii), this implies that

[ ta(x) >exp[ x? ( tr(x) _1)]
ta(x/2) T [ Atar (x) \ 4tar(x/2) ‘

Since x2%/(413;(x)) =1 by Lemma 1(iii) and since #y;(x)/(4£r(x/2)) >1 by our
supposition, we have

’IM(x) >exp( [r(X) _1>
Im(x/2) 4ipr(x/2) ’

which is false for #,,(x/2) =2 *tp(x).
(i) is a consequence of (21) and of the assumption of the lemma; (ii) follows
easily by (i). (|

Proof of Theorem 4. Without any loss of generality we can and do assume
that e < 1/2. Let k satisfy the assumptions of Theorem 3. Note that if & does
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not satisfy the assumptions of Theorem 1 then neither does ek. Let then £ =
min{(2e/77)" ", ek(#)}, ¢t >0. By Lemma 3,

1/16 _ M Fag(1/16) _
— |= = =1,
SO E(t) d[z \/t log 5= ] SO E(fp(x)) dx =+, M
where %5, and 7, correspond to X via the construction from Section 3. Since C =
V2, we have k(¢/2) < Ck(t), 0<t=<1t,.
Let 0, 0 € (0, ¢), be such that

1 -
|K(x,t) —K(x—2,1)| =< 5L min(e, £(1)), 0<z=<o,

if either #=¢ or |x|=1/2. Let 5, 0 <% <24, be such that
nK(x, t) < (1/2) min{e, kK(1)} if either £=¢€ or |x|=1/2.

Let M= LV1 be so large that 7,;(1/2) <t and x 27y (x) < (8a)”!, 0<x=<1/2,
where oo =4 log, C. Note that then x“zi"M(x) =1/8, since o = 2.

Let us choose two decreasing sequences (z,) and (z;) of positive real numbers
so that

(@ z1=o0;

(b) z,<z, and

Zn 4 -2
| Etae(2)) dz > MCHe™ 2%
Zn

(© zn+1<zn/2; and
(d) (L=m)K(X~2Zns1, 0(2)) = [(L—7)+1/4]1K(x, f57(x)) whenever
Zn=x=<1/2.
Let f be a nonnegative continuous function on R which vanishes outside
Ui<n=<~ (2}, 2,) for some finite N and is such that
@) f)=927*2CT*M T k(fm(2)), 0<z=<1/2;

: Zn n_,
(b’) Sz; fRydz= s
and
-+ oo
©) | " r@dz=r-n.

Suppose that £ =€ or |x|=1/2. Then
ute, 0] = || 1K(x—2, )= K(x, 0| f(2) dz+nK (%, 1)

minf{e, £(1)} minfe, £(1)}
== & 2

which, in particular, gives (i).
Now, let 0<x=<1/2 and 0 <t < 7,;(x). Let n be the least positive integer with
zZn=<x. Then

< minf{e, K(1)},
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§j: K(x—z,0)f(z)dz= (S;"“ + SW/X + Sx/z + S+w>K(x—z, 1)f(z)dz

Zn+1 dat/x x/2
=A1 +A2 +A3 +A4.
In estimations of A;, A,, A; we will use the fact that, since x ~27,(x) < 1/8, the

function K(x —z, t) is increasing in ¢, 0 < # < f;(x), for each z € (0, x/2). By this
fact and by (c’), we have

A= SZ"“ K(x—2z, pq(x)) f(z) dz
= K(x=2ns1, i G |7 £(2) dz = (L= m) KX =21, Prr ().

Applying (d) we obtain that
(23) Ar=[(L—n)+n/4]1K(x, [pr(x)).

If z,+1=4«at/x then A, <0. If 2,1 <4at/x then, since 2af/x < x/2 and by (b’),
we have
4at/x -
A2_<_§ K(x—2z,tp (X)) f(z2)dz

Zn+1
datp(x)

(24) =< f: f(z)dz K(x — , T (x))

.
exp (Za— éa—)—?j—(ﬁ)K(x, (x) < -}K(x, I (x)).

<
T 42

Next, by (a’) and Lemma 4(ii) applied to k, we have

A< Sx/z K(x—z,1)- T E(Fh(2)) dz

4atp(x)/x 2°'+ZC4M
nC4x®
<
- 2cx+2C4M
Since (3/0z)(z°K(x—2z,t))>0on (4at/x,x —4at/x), we have

- x/2
R0 |, 27 K(x—z,0) d.

25 Ay= L &G, A g e—z, ) dz = - R(F
@5) 2= g R | K=z, 1) dz < 1 R (x).

Finally, by Lemma 4(i) and by (a’),

]

F“TZO‘—ME(EM(Z)) dz

1/2
Ay < S K(x—2z,1)-
x/2
(26)

- 7 -
= Wk(fzw(x/z)) = mk(l‘M(x))-

By (23), (24), (25), and (26), we have

en [T ra-z0s@) dz=< (L— —})K(x, Fag () + 5= R(Epa (D),

0<x=<1/2, 0<t=<Ip(x).
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By Lemma 1(ii), this implies that
(28) u(x, ) <k(fy(x))<k(@t)<ek(t), 0<x=<1/2, 0<t=<ip(x).

The inequality (27) implies also that u(x, f4s(x)) <0, 0 <x =<1/2. Since by (¢’)
u(0,1)<0 (£<0) and by (22) u(1/2,t)<k(1) (t=17,(1/2)), an application of
the maximum principle gives that u(x, ) <4k(1) if 0=<x=<1/2 and ¢ = f3;(x). In
particular,

(29) ux,)<k(l)<sk(t)<ek(t) if 0=sx=<1/2 and fy(x)<¢t=<l.
If x=1/2 then, by (22),

(30) ux,tysk(l)y<ek(t), 0<t=l.

Finally, if x =0 then, by (¢’),

u(x,t)= S: K(x—2z,t)f(z)dz—LK(x,t)

(31) . .
= g: (K(x—2z,1)—K(x, )] f(z) dz—nK(x,t) <0< ek(t), t>0.

Combining (28), (29), (30), and (31), we obtain (ii). L

Proof of Theorem 3. Let us construct sequences (€;) of real positive numbers
and(f;) of nonnegative functions on R inductively as follows.

Let €, =1/2 and let f; be the function from Theorem 4 corresponding to L =6
and 6 =1. If €, €z,...,¢; and fy, f>, ..., f; are already chosen then let €;,, be a
positive number less than or equal to ¢;/2, and such that for0<7<e;;;and1 <
I =j we have

0

(32) S ui(z,t)dz=<—1, x<O0
X

and

S" (z,t)d >-Sxf'( dz—3 i<
0u,z, z_5 0,z)z , € <X,
where

+ o0
e, =" fix)K(x—2,1) dz—LK(x,1).
Also, let fj; be the function from Theorem 4 corresponding to e =¢;41, L =6,
and 6 = 1. This step is possible by Theorem 4 and by the fact that whenever g is a
finite measure on R and w(x, ) =12 K(x—z, t) du(z) then

p(la, b)) +p((a, b))
2

b
lim S w(z,t)dz=
t—0+ V2
uniformly in ¢ and b, a <b.

Let d(x,t) =272 ui(x,t). If x>0 and jo=min{j: ¢; <x} then for arbitrary j
(/>jo) and ¢ (€41 =<t <g¢;) we have
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X Jo—=1 ny J=1 oy
|fa@nd="3 |w@nd+3 | w0 d

i=1 i=jo

X e X
+§0 ui@0dz+ Y SO ui(z, t) dz

. .. (4 1 . :
2—3Jo+(J—Jo)(—5--5—3)—3— 2 57 =J—40o+1).

i=j+1 2

Hence lim, _, o4 §§ #(z, #) dz =+00 if x> 0. If x <0 and 0 < f <¢; then, by (32),
X
SO i(z,t)dz=j.

Hence lim, _, o {3 @(z, t) dz = +o0, x > 0. On the other hand,
0

de, )= 3 —Zl—l.k(t)=k(t), 0<t=l.

1=
Hence u =i — k(1) satisfies the assertion of Theorem 3. ]

REMARK. The above proof can be easily modified to give (under assumptions
of Theorem 3) a solution u# of the heat equation on D, with u(x, ) <k(t), t >0,
and such that for each x #0:

X
limsupg u(z,t)dz =+ and liminfo u(z,t)dz =—oo.
t-0+ 90 t—0+ YO
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