AN EXTENSION OF WIDDER'S THEOREM

Krzysztof Samotij

1. Introduction. In this paper we consider a problem concerning the boundary behavior of solutions of the one-dimensional heat equation on the strip (or the half-plane) $\mathfrak{D}_c = \mathbb{R} \times (0, c)$, where $0 < c \le +\infty$. By a solution of the heat equation on an open set $\mathfrak{D} \subseteq \mathbb{R}^2$ we understand here a twice continuously differentiable real function u(x, t), $(x, t) \in \mathfrak{D}$, such that $u_{xx} = u_t$ in \mathfrak{D} .

It is well known that many properties of such functions are similar to those of harmonic functions (see e.g. [8], [6], [3], [4], and [2]). One of these similarities is that nonnegative harmonic function on \mathfrak{D}_{∞} and nonnegative solutions of the heat equation on \mathfrak{D}_c both have Poisson-type integral representations. In the "harmonic" case this fact is attributed to F. Riesz and Herglotz, and in the case of solutions of the heat equation it is a theorem due to Widder [8]. In [5] Hayman and Korenblum obtained "an extension of the Riesz-Herlotz formula" by showing that for a continuous positive nonincreasing function k(t), t > 0, the condition

$$\int_0^1 \sqrt{k(t)/t} \ dt < +\infty$$

is equivalent to the property that each harmonic function h defined on \mathfrak{D}_{∞} , with $h(x,t) \leq k(t)$, t > 0, can be represented in the form

$$h(x,t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{t}{(x-y)^2 + t^2} d\left(\lim_{\tau \to 0+} \int_{0}^{y} h(z,\tau) dz\right) + Ct.$$

The outer integral in the above formula was originally defined by the integration-by-parts formula, but, as shown later in [7], it can be understood as a Riemann-Stieltjes integral (with respect to a function which may not necessarily be of bounded variation). The aim of this paper is to show an analogue of that result for solutions of the heat equation on \mathfrak{D}_c .

The author would like to express his sincere thanks to Richard O'Neil for valuable comments. In particular, the present shape of the integral in the assumptions of Theorems 1 and 2 was suggested by him.

2. Main results. Let K(x, t) be the Gauss kernel, that is,

$$K(x,t) = \frac{1}{2\sqrt{\pi t}} \exp\left(-\frac{x^2}{4t}\right), \quad x \in \mathbb{R}, \ t > 0.$$

In the sequel k will always denote a positive nonincreasing unbounded continuous function on $(0, +\infty)$.

THEOREM 1. Let $\lim_{t\to 0+} \sqrt{t} k(t) = 0$ and

Received August 21, 1986.

Michigan Math. J. 34 (1987).

(1)
$$\int_0^{\epsilon} k(t) \sqrt{\frac{-\log(\sqrt{t}k(t))}{t}} dt < +\infty$$

for some $\epsilon > 0$. Let u be a solution of the heat equation on \mathfrak{D}_c $(0 < c \le +\infty)$ with $u(x,t) \le k(t)$, $t \in (0,c)$. Then:

(i) the limit

$$\alpha(x) = \lim_{t \to 0+} \int_0^x u(z, t) \, dz$$

exists and is finite for each real number x;

(ii) for each $t_0 \in (0, c)$ and each M > 0 there is a continuous function $\kappa \colon [0, 1] \to \mathbb{R}$, $\kappa(0) = 0$, such that if $u(0, t_0) \ge -M$ then

$$\alpha(x_2) - \alpha(x_1) \le \kappa(x_2 - x_1)(|x_1 + x_2| + 1)$$

whenever $0 < x_2 - x_1 \le 1$ (κ depends only on k, t_0 , and M);

- (iii) for each real number x we have $\alpha(x) = [\alpha(x+) + \alpha(x-)]/2$; and
- (iv) for each $(x, t) \in \mathfrak{D}_c$ we have

$$u(x,t) = \int_{-\infty}^{+\infty} K(x-z,t) \, d\alpha(z).$$

Note that (ii) implies that α is locally bounded and that it has one-sided limits at each point. Therefore the integral in (iv) can be understood as an improper Riemann-Stieltjes integral.

Observe that for arbitrary solution u of the heat equation on \mathfrak{D}_c and for arbitrary s (s > 0), A (A > 0), and B ($B \in \mathbb{R}$), the function $\tilde{u}(x, t) = Au(s^{1/2}x, st) + B$ is a solution of the heat equation on $\mathfrak{D}_{c/s}$. Also, if k satisfies the assumptions of Theorem 1 then so does $\tilde{k}(t) = Ak(st) + B$, if $B \ge 0$. Therefore Theorem 1 is a consequence of the following theorem.

THEOREM 2. Suppose that

$$k(t) \le \frac{1}{2e\sqrt{\pi t}}, \quad 0 < t \le 1/16$$

and

$$J = \int_0^{1/16} k(t) \sqrt{\frac{-\log(\sqrt{t}\,k(t))}{t}} dt < +\infty.$$

Let c > 1 and let u be a solution of the heat equation in \mathfrak{D}_c with $u(x, t) \le k(t)$, $x \in \mathbb{R}$, $0 < t \le 1/16$, and u(0, 1) = 0. Then:

(i) the limit

$$\alpha(x) = \lim_{t \to 0+} \int_0^x u(z, t) dz$$

exists and is finite for each $x \in \mathbb{R}$;

(ii) $\alpha(x_2) - \alpha(x_1) \le (|x_1 + x_2| + 1) \cdot \kappa(x_2 - x_1)$, $0 < x_2 - x_1 \le 1$, where κ is some nondecreasing continuous function on [0,1] that depends only on k and is such that $\kappa(0) = 0$ and $\kappa(1) \le C(J+2) \log(J+2)$, where C is some absolute constant;

- (iii) $\operatorname{sgn}(x) \cdot \alpha(x) \ge -D(x^2+1) \exp(x^2/4)$, with some constant D depending only on k;
- (iv) $\alpha(x) = [\alpha(x-) + \alpha(x+)]/2, x \in \mathbb{R}$; and
- (v) $u(t,x) = \int_{-\infty}^{+\infty} K(x-z,t) d\alpha(z), x \in \mathbb{R}, 0 < t < 1.$

The next theorem states that for k's from a large family of functions the assumptions of Theorem 1 cannot be relaxed.

THEOREM 3. If k does not satisfy the assumptions of Theorem 1 and there are positive constants t_0 and C such that $k(t/2) \le Ck(t)$ for $0 < t \le t_0$, then there exists a solution u of the heat equation on \mathfrak{D}_{∞} with $u(x, t) \le k(t)$, t > 0, such that

$$\lim_{t\to 0+} \int_0^x u(z,t) dz = +\infty \quad \text{for each } x\neq 0.$$

Theorem 3 will be derived from the following theorem, which is of some interest on its own.

THEOREM 4. Assume that k satisfies the assumptions of Theorem 3 and that $\epsilon > 0$, $\delta > 0$, and L > 0 are arbitrary. Then there exists a nonnegative continuous function f on **R** vanishing outside $[0, \epsilon]$ such that:

- (i) $|u(x,t)| \le \epsilon, t \ge \epsilon$;
- (ii) $u(x, t) \le \epsilon k(t)$, $0 < t \le 1$; and
- (iii) $\int_{-\infty}^{+\infty} f(z) dz \ge L \delta$; where $u(x, t) = \int_{-\infty}^{+\infty} K(x z, t) f(z) dz LK(x, t), x \in \mathbf{R}, t > 0$.

REMARK. If we assume that $k(t) = \{t^{1/2}(-\log t)[\log(-\log t)]^{\gamma}\}^{-1}$ for all small t's then k satisfies the conditions of Theorem 1 if $\gamma > 3/2$.

3. Auxiliary facts. In this section k will be as specified earlier, with the additional requirement that

$$k(t) \le \frac{1}{2e\sqrt{\pi t}}, \quad 0 \le t < 1/16.$$

Let M be a constant greater than or equal to 1. For each such constant and for each $t \in (0, 1/16]$ let $x_M(t)$ be the positive solution of the equation

$$(2) k(t) = MK(x, t),$$

that is,

$$x_M(t) = 2\sqrt{t[\log M - \log(2\sqrt{\pi t}k(t))]}.$$

Note that $x_M(t) \ge 2t^{1/2}$. This inequality, together with (2) and the facts that $\partial K/\partial t > 0$ if $x > (2t)^{1/2}$ and $\partial K/\partial x < 0$ if x > 0, imply that $x_M(t)$ is an increasing function of t. Clearly, x_M is continuous on (0, 1/16]. It is also easy to see that $x_M(0+) = 0$. Let us denote $t_M = x_M^{-1}$. The domain of t_M is equal to $(0, x_M(1/16)]$ and, since $x_M(1/16) \ge 1/2$, it contains the interval (0, 1/2]. Let us extend t_M by putting $t_M(0) = 0$. Some properties of t_M which follow from just-derived properties of x_M are listed in the following lemma.

LEMMA 1.

- (i) t_M is an increasing continuous function with values in the interval [0, 1/16];
- (ii) $k(t_M(x)) = M \cdot K(x, t_M(x)), 0 < x \le 1/2;$
- (iii) $t_M(x) \le x^2/4$, $0 \le x \le 1/2$;
- (iv) if $\tilde{k}(t) \le k(t)$, $0 < t \le 1/16$, then $\tilde{t}_M(x) \le t_M(x)$, $0 \le x \le 1/2$, where \tilde{t}_M is constructed for \tilde{k} in the same manner as t_M for k;
- (v) if $1 \le M \le N$ then $t_N(x) \le t_M(x)$, $0 \le x \le 1/2$.

Let

$$I(M,s) = \int_0^s k(t_M(x)) dx$$
, $M \ge 1$, $0 < s \le 1/2$.

Note that I(M, s) may be infinite. By a change of a variable,

$$I(M,s) = \int_0^{t_M(s)} k(t) d\left[2\sqrt{t\log\frac{M}{2\sqrt{\pi t}k(t)}}\right].$$

LEMMA 2.

- (i) For each fixed s, $0 < s \le 1/2$, I(M, s) is a nondecreasing function of M;
- (ii) $I(M,s) \le 2(\log M)^{1/2}I(1,s), M \ge e, 0 < s \le 1/2;$
- (iii) the following four conditions are mutually equivalent:

(A)
$$J = \int_0^{1/16} k(t) \sqrt{\frac{-\log(\sqrt{t}k(t))}{t}} dt < +\infty,$$

(B)
$$J_1 = \int_0^{1/16} k(t) \, d\sqrt{-t \log(\sqrt{t} \, k(t))} < +\infty,$$

- (C) there exists $M \ge 1$ and $s \in (0, 1/2)$ such that $I(M, s) < +\infty$,
- (D) $I(M,s) < +\infty$ for all M $(M \ge 1)$ and s $(0 < s \le 1/2)$; moreover, $J_1 \le J/2 + C$, where C is an absolute constant.

Proof. (i) follows from Lemma 1(v).

(ii) Let $M \ge e$ and let $p = \log M + 1$. Then

$$I(M,s) = I(e^{p-1},s) = \int_0^{t_M(s)} k(t) d\left[2\sqrt{t\log\frac{e^p}{2e\sqrt{\pi t}k(t)}}\right]$$

$$\leq \int_0^{t_M(s)} k(t) d\left[2\sqrt{t\log\frac{e^p}{(2e\sqrt{\pi t}k(t))^p}}\right] \leq 2\sqrt{\log M} I(1,s).$$

(iii) To prove the equivalence of (A) and (B) let us note first that the limits

$$\lim_{\delta \to 0+} \int_{\delta}^{1/16} k(t) d\sqrt{-t \log(\sqrt{t} k(t))}$$

and

$$\lim_{\delta \to 0+} \int_{\delta}^{1/16} k(t) \sqrt{\frac{-\log(\sqrt{t}\,k(t))}{t}} dt$$

always exist, although they may be infinite. Therefore it is enough to prove that

$$2\int_{\delta}^{1/16} k(t) \, d\sqrt{-t \log(\sqrt{t} \, k(t))} - \int_{\delta}^{1/16} k(t) \, \sqrt{\frac{-\log(\sqrt{t} \, k(t))}{t}} \, dt$$

remains bounded as δ approaches 0. But

$$\begin{split} \left| \int_{\delta}^{1/16} k(t) \left[2d\sqrt{-t \log(\sqrt{t} k(t))} \right] - \sqrt{\frac{-\log(\sqrt{t} k(t))}{t}} \, dt \right| \\ & \leq \left| \int_{\delta}^{1/16} 2k(t)\sqrt{t} \, d\sqrt{-\log(\sqrt{t} k(t))} \right| \leq 2 \int_{0}^{1/2e\sqrt{\pi}} u \, d\sqrt{-\log u} < +\infty. \end{split}$$

The equivalence of (B), (C), and (D) follows from (i) and (ii). \Box

4. Proof of Theorem 2. Let us assume that k, c, and u are as in the assumption of Theorem 2. In the beginning of this proof we assume in addition that u is bounded from above and extends continuously to $\{(x, t): 0 \le t < c\}$. This extension will be denoted also by u. By Widder's theorem [8], for each $(x, t) \in \mathfrak{D}_c$ we have

$$u(x,t) = \int_{-\infty}^{+\infty} K(x-z,t) \, d\alpha(z),$$

where

$$\alpha(z) = \int_0^z u(w,0) \, dw.$$

Let

(3)
$$L = \sup_{0 \le z_2 - z_1 \le 1} \frac{\alpha(z_2) - \alpha(z_1)}{|z_1 + z_2| + 1}.$$

This supremum is finite since u is bounded from above. We can assume that L > 0 since otherwise $u \equiv 0$, in which case the theorem is trivial. Note that (3) implies that

(4)
$$\alpha(z_2) - \alpha(z_1) \le L[(|z_1| \lor |z_2|)^2 + 2(|z_1| \lor |z_2|) + 1]$$

whenever $z_1 < z_2$ and $z_1 \cdot z_2 \ge 0$. Here and everywhere $a \lor b$ denotes the larger of the two numbers a and b. By (4), if $0 \le z_1 < z_2 \le +\infty$ then

$$\int_{z_{1}}^{z_{2}} K(z,1) d\alpha(z) = K(z_{2},1) \left[\alpha(z_{2}) - \alpha(z_{1})\right] - \int_{z_{1}}^{z_{2}} \left[\alpha(z) - \alpha(z_{1})\right] dK(z,1)
\leq L \left[K(z_{2},1) \cdot (z_{2}^{2} + 2z_{2} - 1) + \int_{0}^{\infty} (z^{2} + 2z + 1) \left(-\frac{\partial K(z,1)}{\partial z}\right) dz\right]
\leq L \left\{ \sup_{z \geq 0} \left[K(z,1)(z^{2} + 2z + 1)\right]
+ \int_{0}^{\infty} (z^{2} + 2z + 1) \left(-\frac{\partial K(z,1)}{\partial z}\right) dz \right\}
= C_{1}L.$$

The same estimate holds in the case when $-\infty \le z_1 < z_2 \le 0$, so that

$$\int_{z_1}^{z_2} K(z,1) \, d\alpha(z) \le C_1 L$$

whenever $-\infty \le z_1 < z_2 \le +\infty$ and both z_1 and z_2 have the same sign. Since

$$\int_{-\infty}^{+\infty} K(z,1) \, d\alpha(z) = u(0,1) = 0,$$

we have

(5)
$$\int_{z_1}^{z_2} K(z,1) \, d\alpha(z) \ge -3C_1 L \quad \text{for any } z_1, z_2, \ z_1 < z_2.$$

On the other hand, if $0 \le z_1 < z_2$ then, by the second mean value theorem,

(6)
$$\int_{z_1}^{z_2} K(z,1) d\alpha(z) = [K(z_1,1) - K(z_2,1)] \cdot [\alpha(z') - \alpha(z_1)] + K(z_2,1)[\alpha(z_2) - \alpha(z_1)],$$

with some $z' \in (z_1, z_2)$. By (4), the first summand on the right-hand side of this equality does not exceed $L(z_2^2 + 2z_2 + 1)/2\sqrt{\pi}$. Therefore, comparing (5) and (6) we obtain

(7)
$$\alpha(z_2) - \alpha(z_1) \ge \frac{-L}{2\sqrt{\pi}K(z_2, 1)} (z_2^2 + 2z_2 + 1 + 6C_1\sqrt{\pi}).$$

Similarly, when $z_1 < z_2 \le 0$ we have

(8)
$$\alpha(z_2) - \alpha(z_1) \ge \frac{-L}{2\sqrt{\pi}K(z_1, 1)} (z_1^2 + 2|z_1| + 1 + 6C_1\sqrt{\pi}).$$

Note that (7) and (8) imply

(9)
$$\operatorname{sgn}(z) \cdot \alpha(z) \ge \frac{-L}{2\sqrt{\pi}K(z,1)} (z^2 + 2|z| + 1 + 6C_1\sqrt{\pi}).$$

Let us fix arbitrary x_1 , x_2 , and x with $x_1 < x < x_2$ and $x_2 - x_1 \le 1$. Let us assume that $0 < t \le 1/16$. By (7) and (8) we have

$$\int_{x_{2}}^{4|x_{2}|+4} K(x-z,t) d\alpha(z)$$

$$\geq \frac{-LK(x-x_{2},t)}{\sqrt{\pi}K(4|x_{2}|+4,1)} [(4|x_{2}|+4)^{2}+2(4|x_{2}|+4)+1+6C_{1}\sqrt{\pi}]$$

$$\geq -C_{2}L \exp(5x_{2}^{2})K(x-x_{2},t),$$

with some absolute constant C_2 . On the other hand, by (7), we have

$$\int_{4|x_2|+4}^{\infty} K(x-z,t) d\alpha(z)$$

$$= -\int_{4|x_2|+4}^{\infty} \left[\alpha(z) - \alpha(4|x_2|+4)\right] \left[\frac{\partial}{\partial z} K(x-z,t)\right] dz \ge$$

$$\geq \frac{L}{2\sqrt{\pi}} \int_{4|x_2|+4}^{\infty} \frac{z^2 + 2z + 1 + 6C_1\sqrt{\pi}}{K(z,1)} \left[\frac{\partial}{\partial z} K(x-z,t) \right] dz$$

$$= \frac{-L}{4\sqrt{\pi} t^{3/2}} \exp\left(\frac{x^2}{4(1-t)} \right) \int_{4|x_2|+4}^{\infty} P(z) \cdot \exp[-\gamma (z-z_0)^2] dz,$$

where $\gamma = (1-t)/4t$, $z_0 = x/(1-t)$, and $P(z) = (z-x)(z^2+2z+1+6C_1\sqrt{\pi})$. Note that there is an absolute constant C_3 such that $P(z) \le C_3(z-z_0)^3$ whenever $z \ge 4|x_2|+4$. Hence

$$\int_{4|x_{2}|+4}^{\infty} K(x-z,t) d\alpha(z)
\geq \frac{-C_{3}L}{4\sqrt{\pi}t^{3/2}} \exp\left(\frac{x^{2}}{4(1-t)}\right) \int_{4|x_{2}|+4}^{\infty} (z-z_{0})^{3} \exp\left[-\gamma(z-z_{0})^{2}\right] dz
(11)
= \frac{-C_{3}L}{4\sqrt{\pi}t^{3/2}} \exp\left(\frac{x^{2}}{4(1-t)}\right) \frac{\left[\gamma(4|x_{2}|+4-z_{0})^{2}+1\right]}{2\gamma^{2}} \exp\left[-\gamma(4|x_{2}|+4-z_{0})^{2}\right]
\geq C_{4}L \exp(5x_{2}^{2})K(x_{2}-x,t)$$

with an absolute constant C_4 , and where the last inequality is justified by the fact that $\exp[-\gamma(4|x_2|+4-x_0)^2] \le 2\sqrt{\pi t}K(x_2-x,t)$. Combining (10) and (11) we obtain

(12)
$$\int_{x_2}^{\infty} K(x-z,t) \, d\alpha(z) \ge -(C_2+C_4)L \exp(5x_2^2) K(x_2-x,t).$$

We can prove similarly that

(13)
$$\int_{-\infty}^{x_1} K(x-z,t) \, d\alpha(z) \ge -(C_2 + C_4) L \exp(5x_1^2) K(x_1 - x,t).$$

For x_1, x_2 as before and for $M \ge 1$ let

$$T_M(x) = t_M\left(\frac{x_2 - x_1}{2} - \left| x - \frac{x_1 + x_2}{2} \right| \right), \quad x \in [x_1, x_2].$$

Note that $T_M(x) \le 1/16$, $x \in [x_1, x_2]$. Let

$$u_1(x,t) = \int_{x_1}^{x_2} K(x-z,t) d\alpha(z), \quad t > 0, \ x \in \mathbf{R}$$

and let $u_2 = u - u_1$. If we set $M = e \vee 2L(C_2 + C_4) \exp[5(|x_1 + x_2| + 1)^2]$ then, by (12), (13), and Lemma 1(ii), we have $-u_2(x, T_M(x)) \leq k(T_M(x))$, $x \in (x_1, x_2)$. Hence

(14)
$$u_1(x, T_M(x)) \le 2k(T_M(x)), \quad x \in (x_1, x_2).$$

Let us introduce an auxiliary function,

$$w_M(x,t) = 2\sqrt{2\pi e} \int_{x_1}^{x_2} K(x-z,t) k(T_M(z)) dz,$$

where the integral is convergent in virtue of Lemma 2. If $x \in [(x_1+x_2)/2, x_2)$ then by Lemma 1(iii) we have

$$w_{M}(x, T_{M}(x)) \ge 2\sqrt{2\pi e} \int_{x}^{x+\sqrt{2T_{M}(x)}} K(x-z, T_{M}(x)) k(T_{M}(z)) dz$$
$$\ge 2\sqrt{2\pi e} k(T_{M}(x)) K(\sqrt{2T_{M}(x)}, T_{M}(x)) \sqrt{2T_{M}(x)} \ge 2k(T_{M}(x)).$$

The same estimation holds for $x \in (x_1, (x_1+x_2)]$. Hence

(15)
$$w_M(x, T_M(x)) \ge 2k(T_M(x)), x \in (x_1, x_2).$$

The function u_1-w_M is a solution of the heat equation on \mathfrak{D}_{∞} . It is bounded from above and extends continuously to $\bar{\mathfrak{D}}_{\infty}\setminus\{(x_1,0),(x_2,0)\}$. It vanishes on $\{(x,0):x\notin[x_1,x_2]\}$ and, by (14) and (15), it is nonpositive on $\{(x,T_M(x):x\in(x_1,x_2)\}$. Hence, by the maximum principle it is nonpositive on $\{(x,t):t>0\}$ if $x\notin(x_1,x_2)$ if $x\in(x_1,x_2)$. Therefore

$$\int_{x_1}^{x_2} \left[u_1(x,0) - w_M(x,0) \right] dx \le 0.$$

Thus

$$\alpha(x_2) - \alpha(x_1) \le 2\sqrt{2\pi e} \int_{x_1}^{x_2} k(T_M(z)) dz$$

$$(16)$$

$$= 4\sqrt{2\pi e} \int_{0}^{(x_2 - x_1)/2} k(t_M(z)) dz = 4\sqrt{2\pi e} I(M, (x_2 - x_1)/2).$$

Since x_1 and x_2 were arbitrary (with $0 < x_2 - x_1 \le 1$), (16) implies, by Lemma 2(i) and by (3), that

$$L(|x_1+x_2|+1) \le 8\sqrt{2\pi e \log\{e \vee 2L(C_2+C_4)\exp[5(|x_1+x_2|+1)^2]\}}I(1,1/2).$$

This implies that there is a constant C_5 such that

(17)
$$L \le C_5[I(1,1/2)+2]\log[I(1,1/2)+2].$$

By (16) and Lemma 2(ii), it is easy to see that there exists a continuous function κ depending only on I(1, s/2) (as a function of s) such that $\alpha(x_2) - \alpha(x_1) \le (|x_1+x_2|+1)\kappa(x_2-x_1)$ whenever $0 < x_2-x_1 \le 1$. The estimation of $\kappa(1)$ follows by (3), (17) and Lemma 2(ii).

Part (iii) of the theorem follows by (9) and (17). Parts (i) and (iv) are trivial, and (v) is a consequence of Widder's theorem.

Let us come back to the general case; that is, let u be as in the assumption of Theorem 2. For $\theta \in (0,1)$ let

$$u_{\theta}(x, t) = u(\sqrt{\theta}x, (t-1)\theta + 1), \quad (x, t) \in \mathfrak{D}_{c}.$$

The function u_{θ} satisfies the assumptions of the first part of the proof. Hence, if we denote

$$\alpha_{\theta}(x) = \int_0^x u_{\theta}(z,0) dz$$

then

(18)
$$\alpha(x_2) - \alpha(x_1) \le (|x_1 + x_2| + 1) \kappa(x_2 - x_1)$$

if $0 < x_2 - x_1 \le 1$, and

(19)
$$\operatorname{sgn}(x) \alpha_{\theta}(x) \ge -D(x^2+1) \exp(x^2/4).$$

Note that κ and D depend only on k. But

$$\alpha_{\theta}(x) = \frac{1}{\sqrt{\theta}} \int_{0}^{\sqrt{\theta}x} u(z, 1-\theta) dz.$$

By (18) and (19), similarly as in the Helly selection theorem, we can find an increasing sequence (θ_n) converging to 1, as well as a function α on **R** such that α satisfies (ii), (iii), and (iv) of the theorem (hence its discontinuities are of the first kind only) and such that

$$\lim_{n\to\infty}\alpha_{\theta_n}(x)=\alpha(x)$$

if x is a point of continuity of α . By (18), (19), and the Lebesgue dominated convergence theorem, for each $(x, t) \in \mathfrak{D}_1$ we have

$$\int_{-\infty}^{+\infty} K(x-z,t) \, d\alpha(z) = -\int_{-\infty}^{+\infty} \alpha(z) \left(\frac{\partial}{\partial z} K(x-z,t) \right) dz$$

$$= \lim_{n \to \infty} \left[-\int_{-\infty}^{+\infty} \alpha_{\theta_n}(z) \left(\frac{\partial}{\partial z} K(x-z,t) \right) dz \right]$$

$$= \lim_{n \to \infty} u_{\theta_n}(x,t) = u(x,t),$$

which proves (v).

For arbitrary x_1 and x_2 we have

$$\lim_{t \to 0+} \int_{x_1}^{x_2} u(x, t) \, dx = \lim_{t \to 0+} \int_{x_1}^{x_2} \left(\int_{-\infty}^{+\infty} K(x - z, t) \, d\alpha(z) \right) dx$$

$$= -\lim_{t \to 0+} \int_{-\infty}^{+\infty} \left[\int_{x_1}^{x_2} \alpha(z) \left(\frac{\partial}{\partial z} K(x - z, t) \right) dx \right] dz$$

$$= \lim_{t \to 0+} \int_{-\infty}^{+\infty} \alpha(z) \left[K(x_2 - z, t) - K(x_1 - z, t) \right] dz$$

$$= \frac{\alpha(x_2 - x_1) + \alpha(x_2 + x_2)}{2} - \frac{\alpha(x_1 - x_1) + \alpha(x_1 + x_2)}{2} \cdot \frac{\alpha(x_1 - x_2) + \alpha(x_2 - x_2)}{2} \cdot \frac{\alpha(x_1 - x_$$

This, together with the preceding remarks, completes the proof of Theorem 2.

5. Proofs of Theorems 3 and 4.

LEMMA 3. If k does not satisfy the assumptions of Theorem 1 and $k_1(t) = \min\{k(t), (2e\sqrt{\pi t})^{-1}\}$ then

$$\int_0^{1/16} k_1(t) d\left[2\sqrt{t\log\frac{M}{2\sqrt{\pi t}k_1(t)}}\right] = +\infty, \quad M \ge 1.$$

Proof. In virtue of Lemma 2(iii) it is enough to show that

(20)
$$\int_0^{1/16} k_1(t) d\left[\sqrt{-t \log(t^{1/2} k_1(t))}\right] = +\infty.$$

If $\lim_{t\to 0+} t^{1/2}k(t) = 0$, then $k_1(t) = k(t)$ for all sufficiently small t's and therefore (20) follows in this case. If $\limsup_{t\to 0+} t^{1/2}k(t) > 0$ then there is a $\theta \in (0,1]$ and a decreasing sequence (t_n) converging to 0, with $t_1 \le 1/16$ and such that $k(t_n) \ge \theta(2e\sqrt{\pi t_n})^{-1}$, $n \ge 1$. Let $k_2(t) = \min\{k(t), \theta(2e\sqrt{\pi t})^{-1}\}$. Then

$$\int_{0}^{1/16} k_{2}(t) d\left[\sqrt{-t \log(\sqrt{t} k_{2}(t))}\right]$$

$$\geq \sum_{n=1}^{\infty} k_{2}(t_{n}) \left[\sqrt{-t_{n} \log(\sqrt{t_{n}} k_{2}(t_{n}))} - \sqrt{t_{n+1} \log(\sqrt{t_{n+1}} k_{2}(t_{n+1}))}\right]$$

$$= \frac{\theta}{2e\sqrt{\pi}} \sqrt{\log \frac{2e\sqrt{\pi}}{\theta}} \sum_{n=1}^{\infty} \left(1 - \sqrt{\frac{t_{n+1}}{t_{n}}}\right) = +\infty,$$

where the last series is divergent because $\lim_{n\to\infty} (t_n)^{1/2} = 0$. But, since $k_2 \le k_1$, (20) follows by Lemma 1(iv) and (ii).

LEMMA 4. Suppose that $k(t/2) \le Ck(t)$ and $k(t) \le (2e\sqrt{\pi t})^{-1}$ for $t \in (0, t_0]$ with some positive constants C and t_0 . Then, for each $M \ge 1$ and each $x \in (0, x_M(t_0)]$, we have

- (i) $k(t_M(x/2)) \le C^4 k(t_M(x))$ and
- (ii) $k(t_M(\theta x)) \le C^4 \theta^{-\alpha} k(t_M(x)), \ 0 < \theta < 1,$ where $\alpha = 4 \log_2 C$.

Proof. We will prove first that

(21)
$$t_M(x/2) \ge 2^{-4} t_M(x), \quad 0 < x \le x_M(t_0).$$

Suppose that this is not the case for some $x \in (0, x_M(t_0)]$. Since $t_M(x/2) \le t_M(x)$, we have $k(t_M(x/2)) \ge k(t_M(x))$. By Lemma 1(ii), this implies that

$$\sqrt{\frac{t_M(x)}{t_M(x/2)}} \ge \exp\left[\frac{x^2}{4t_M(x)} \left(\frac{t_M(x)}{4t_M(x/2)} - 1\right)\right].$$

Since $x^2/(4t_M(x)) \ge 1$ by Lemma 1(iii) and since $t_M(x)/(4t_M(x/2)) > 1$ by our supposition, we have

$$\sqrt{\frac{t_M(x)}{t_M(x/2)}} \ge \exp\left(\frac{t_M(x)}{4t_M(x/2)} - 1\right),$$

which is false for $t_M(x/2) \le 2^{-4} t_M(x)$.

(i) is a consequence of (21) and of the assumption of the lemma; (ii) follows easily by (i). \Box

Proof of Theorem 4. Without any loss of generality we can and do assume that $\epsilon \le 1/2$. Let k satisfy the assumptions of Theorem 3. Note that if k does

not satisfy the assumptions of Theorem 1 then neither does ϵk . Let then $\tilde{k} =$ $\min\{(2e\sqrt{\pi t})^{-1}, \epsilon k(t)\}, t > 0.$ By Lemma 3,

$$\int_0^{1/16} \tilde{k}(t) d \left[2 \sqrt{t \log \frac{M}{2\sqrt{\pi t} \tilde{k}(t)}} \right] = \int_0^{\tilde{x}_M(1/16)} \tilde{k}(\tilde{t}_M(x)) dx = +\infty, \quad M \ge 1,$$

where \tilde{x}_M and \tilde{t}_M correspond to \tilde{k} via the construction from Section 3. Since $C \ge$ $\sqrt{2}$, we have $\tilde{k}(t/2) \leq C\tilde{k}(t)$, $0 < t \leq t_0$.

Let σ , $\sigma \in (0, \epsilon)$, be such that

$$|K(x,t)-K(x-z,t)| \le \frac{1}{2L} \min(\epsilon, \tilde{k}(1)), \quad 0 < z \le \sigma,$$

if either $t \ge \epsilon$ or $|x| \ge 1/2$. Let η , $0 < \eta \le \delta$, be such that

$$\eta K(x, t) \le (1/2) \min\{\epsilon, \tilde{K}(1)\}$$
 if either $t \ge \epsilon$ or $|x| \ge 1/2$.

Let $M \ge L \lor 1$ be so large that $\tilde{t}_M(1/2) \le t_0$ and $x^{-2}\tilde{t}_M(x) \le (8\alpha)^{-1}$, $0 < x \le 1/2$, where $\alpha = 4 \log_2 C$. Note that then $x^{-2} \tilde{t}_M(x) \le 1/8$, since $\alpha \ge 2$.

Let us choose two decreasing sequences (z_n) and (z'_n) of positive real numbers so that

- (a) $z_1 = \sigma$;
- (b) $z'_n < z_n$ and

$$\int_{z_n'}^{z_n} \tilde{k}(t_M(z)) dz > MC^4 e^{-2\alpha} 2^{\alpha};$$

- (c) $z_{n+1} < z'_n/2$; and
- (d) $(L-\eta)K(x-z_{n+1}, \tilde{t}_M(z)) \le [(L-\eta)+\eta/4]K(x, \tilde{t}_M(x))$ whenever $z_n \leq x \leq 1/2$.

Let f be a nonnegative continuous function on \mathbf{R} which vanishes outside $\bigcup_{1 \le n \le N} (z'_n, z_n) \text{ for some finite } N \text{ and is such that}$ (a') $f(z) \le \eta 2^{-\alpha - 2} C^{-4} M^{-1} \tilde{k}(\tilde{t}_M(z)), 0 < z \le 1/2;$

(a')
$$f(z) \le \eta 2^{-\alpha - 2} C^{-4} M^{-1} \tilde{k}(\tilde{t}_M(z)), \ 0 < z \le 1/2;$$

(b')
$$\int_{z'_n}^{z_n} f(z) dz \le \frac{\eta}{4e^{2\alpha}};$$

and

(c')
$$\int_{-\infty}^{+\infty} f(z) dz = L - \eta.$$

Suppose that $t \ge \epsilon$ or $|x| \ge 1/2$. Then

$$\begin{aligned} |u(x,t)| &\leq \int_0^{\sigma} |K(x-z,t) - K(x,t)| f(z) \, dz + \eta K(x,t) \\ &\leq \frac{\min\{\epsilon, \tilde{K}(1)\}}{2L} \cdot (L-\eta) + \frac{\min\{\epsilon, \tilde{K}(1)\}}{2} < \min\{\epsilon, \tilde{K}(1)\}, \end{aligned}$$

which, in particular, gives (i).

Now, let $0 < x \le 1/2$ and $0 < t \le \tilde{t}_M(x)$. Let n be the least positive integer with $z'_n \leq x$. Then

$$\int_{-\infty}^{+\infty} K(x-z,t)f(z) dz = \left(\int_{0}^{z_{n+1}} + \int_{z_{n+1}}^{4\alpha t/x} + \int_{x/2}^{x/2} + \int_{x/2}^{+\infty} \right) K(x-z,t)f(z) dz$$
$$= A_1 + A_2 + A_3 + A_4.$$

In estimations of A_1, A_2, A_3 we will use the fact that, since $x^{-2}\tilde{t}_M(x) \le 1/8$, the function K(x-z,t) is increasing in t, $0 < t \le \tilde{t}_M(x)$, for each $z \in (0, x/2)$. By this fact and by (c'), we have

$$A_{1} \leq \int_{0}^{z_{n+1}} K(x-z, \tilde{t}_{M}(x)) f(z) dz$$

$$\leq K(x-z_{n+1}, \tilde{t}_{M}(x)) \int_{0}^{z_{n+1}} f(z) dz \leq (L-\eta) K(x-z_{n+1}, \tilde{t}_{M}(x)).$$

Applying (d) we obtain that

(23)
$$A_1 \le [(L - \eta) + \eta/4] K(x, \tilde{t}_M(x)).$$

If $z_{n+1} \ge 4\alpha t/x$ then $A_2 \le 0$. If $z_{n+1} < 4\alpha t/x$ then, since $2\alpha t/x < x/2$ and by (b'), we have

$$A_{2} \leq \int_{z_{n+1}}^{4\alpha t/x} K(x-z, \tilde{t}_{M}(x)) f(z) dz$$

$$\leq \int_{z_{n}'}^{z_{n}} f(z) dz K\left(x - \frac{4\alpha \tilde{t}_{M}(x)}{x}, \tilde{t}_{M}(x)\right)$$

$$\leq \frac{\eta}{4e^{2\alpha}} \exp\left(2\alpha - \frac{4\alpha^{2} \tilde{t}_{M}(x)}{x^{2}}\right) K(x, \tilde{t}_{M}(x)) \leq \frac{\eta}{4} K(x, \tilde{t}_{M}(x)).$$

Next, by (a') and Lemma 4(ii) applied to \tilde{k} , we have

$$A_{3} \leq \int_{4\alpha t_{M}(x)/x}^{x/2} K(x-z,t) \cdot \frac{\eta}{2^{\alpha+2}C^{4}M} \tilde{K}(\tilde{t}_{M}(z)) dz$$

$$\leq \frac{\eta C^{4}x^{\alpha}}{2^{\alpha+2}C^{4}M} \tilde{K}(\tilde{t}_{M}(x)) \int_{4\alpha t/x}^{x/2} z^{-\alpha} K(x-z,t) dz.$$

Since $(\partial/\partial z)(z^{\alpha}K(x-z,t)) > 0$ on $(4\alpha t/x, x-4\alpha t/x)$, we have

(25)
$$A_3 \leq \frac{\eta}{4M} \tilde{K}(\tilde{t}_M(x)) \int_{x/2}^{x-4\alpha t/x} K(x-z,t) dz \leq \frac{\eta}{4M} \tilde{K}(\tilde{t}_M(x)).$$

Finally, by Lemma 4(i) and by (a'),

(26)
$$A_4 \leq \int_{x/2}^{1/2} K(x-z,t) \cdot \frac{\eta}{4^{\alpha+2}C^4M} \tilde{K}(\tilde{t}_M(z)) dz$$
$$\leq \frac{\eta}{4C^4M} \tilde{K}(\tilde{t}_M(x/2)) \leq \frac{\eta}{4M} \tilde{K}(\tilde{t}_M(x)).$$

By (23), (24), (25), and (26), we have

(27)
$$\int_{-\infty}^{+\infty} K(x-z,t) f(z) dz \le \left(L - \frac{\eta}{2}\right) K(x, \tilde{t}_M(x)) + \frac{\eta}{2M} \tilde{k}(\tilde{t}_M(x)),$$
$$0 < x \le 1/2, \ 0 < t \le \tilde{t}_M(x).$$

By Lemma 1(ii), this implies that

(28)
$$u(x,t) \le \tilde{k}(\tilde{t}_M(x)) \le \tilde{k}(t) \le \epsilon k(t), \quad 0 < x \le 1/2, \quad 0 < t \le \tilde{t}_M(x).$$

The inequality (27) implies also that $u(x, \tilde{t}_M(x)) \le 0$, $0 < x \le 1/2$. Since by (c') $u(0, t) \le 0$ (t < 0) and by (22) $u(1/2, t) \le \tilde{k}(1)$ ($t \ge \tilde{t}_M(1/2)$), an application of the maximum principle gives that $u(x, t) \le \tilde{k}(1)$ if $0 \le x \le 1/2$ and $t \ge \tilde{t}_M(x)$. In particular,

(29)
$$u(x,t) \le \tilde{k}(1) \le \tilde{k}(t) \le \epsilon k(t)$$
 if $0 \le x \le 1/2$ and $\tilde{t}_M(x) \le t \le 1$.

If $x \ge 1/2$ then, by (22),

(30)
$$u(x,t) \le \tilde{k}(1) \le \epsilon k(t), \quad 0 < t \le 1.$$

Finally, if $x \le 0$ then, by (c'),

(31)
$$u(x,t) = \int_0^\infty K(x-z,t)f(z) dz - LK(x,t) \\ = \int_0^\infty [K(x-z,t) - K(x,t)]f(z) dz - \eta K(x,t) < 0 < \epsilon k(t), \quad t > 0.$$

Combining (28), (29), (30), and (31), we obtain (ii).

Proof of Theorem 3. Let us construct sequences (ϵ_j) of real positive numbers and (f_i) of nonnegative functions on **R** inductively as follows.

Let $\epsilon_1 = 1/2$ and let f_1 be the function from Theorem 4 corresponding to L = 6 and $\delta = 1$. If $\epsilon_1, \epsilon_2, ..., \epsilon_j$ and $f_1, f_2, ..., f_j$ are already chosen then let ϵ_{j+1} be a positive number less than or equal to $\epsilon_j/2$, and such that for $0 < t < \epsilon_{j+1}$ and $1 \le i \le j$ we have

(32)
$$\int_{x}^{0} u_{i}(z,t) dz \leq -1, \quad x < 0$$

and

$$\int_0^x u_i(z,t) \, dz \ge \frac{4}{5} \int_0^x f_i(z) \, dz - 3, \quad \epsilon_j < x,$$

where

$$u_i(x,t) = \int_{-\infty}^{+\infty} f_i(z) K(x-z,t) dz - LK(x,t).$$

Also, let f_{j+1} be the function from Theorem 4 corresponding to $\epsilon = \epsilon_{j+1}$, L = 6, and $\delta = 1$. This step is possible by Theorem 4 and by the fact that whenever μ is a finite measure on **R** and $w(x, t) = \int_{-\infty}^{+\infty} K(x-z, t) d\mu(z)$ then

$$\lim_{t\to 0+} \int_a^b w(z,t) \, dz = \frac{\mu([a,b]) + \mu((a,b))}{2}$$

uniformly in a and b, a < b.

Let $\tilde{u}(x,t) = \sum_{i=1}^{\infty} u_i(x,t)$. If x > 0 and $j_0 = \min\{j : \epsilon_j < x\}$ then for arbitrary j $(j > j_0)$ and t $(\epsilon_{j+1} \le t < \epsilon_j)$ we have

$$\int_{0}^{x} \tilde{u}(z,t) dz = \sum_{i=1}^{j_{0}-1} \int_{0}^{x} u_{i}(z,t) dz + \sum_{i=j_{0}}^{j-1} \int_{0}^{x} u_{i}(z,t) dz + \int_{0}^{x} u_{j}(z,t) dz + \sum_{i=j+1}^{\infty} \int_{0}^{x} u_{i}(z,t) dz$$

$$\geq -3j_{0} + (j-j_{0}) \left(\frac{4}{5} \cdot 5 - 3\right) - 3 - \sum_{i=j+1}^{\infty} \frac{1}{2^{i}} \geq j - 4(j_{0} + 1).$$

Hence $\lim_{t \to 0+} \int_0^x \tilde{u}(z, t) dz = +\infty$ if x > 0. If x < 0 and $0 < t < \epsilon_{j+1}$ then, by (32),

$$\int_0^x \tilde{u}(z,t)\,dz \ge j.$$

Hence $\lim_{t\to 0+} \int_0^x \tilde{u}(z,t) dz = +\infty$, x>0. On the other hand,

$$\tilde{u}(x,t) \le \sum_{i=1}^{\infty} \frac{1}{2^i} k(t) = k(t), \quad 0 < t \le 1.$$

Hence $u = \tilde{u} - k(1)$ satisfies the assertion of Theorem 3.

REMARK. The above proof can be easily modified to give (under assumptions of Theorem 3) a solution u of the heat equation on \mathfrak{D}_{∞} with $u(x, t) \leq k(t)$, t > 0, and such that for each $x \neq 0$:

$$\limsup_{t\to 0+} \int_0^x u(z,t)\,dz = +\infty \quad \text{and} \quad \liminf_{t\to 0+} \int_0^x u(z,t)\,dz = -\infty.$$

REFERENCES

- 1. J. R. Cannon, *The one-dimensional heat equation*, Addison-Wesley, Reading, Mass., 1984.
- 2. E. B. Fabes and U. Neri, *Characterizations of temperatures with initial data in BMO*, Duke Math. J. 42 (1975), 725-734.
- 3. F. W. Gehring, On solutions of the equation of heat conduction, Michigan Math. J. 5 (1958), 191-202.
- 4. ——, The boundary behavior and uniqueness of solutions of the heat equation, Trans. Amer. Math. Soc. 94 (1960), 337–364.
- 5. W. K. Hayman and B. Korenblum, An extension of the Riesz-Herglotz formula, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 175-201.
- 6. D. Resch, Temperature bounds on the infinite rod, Proc. Amer. Math. Soc. 3 (1952), 632-634.
- 7. K. Samotij, A representation theorem for harmonic functions in the open ball in \mathbb{R}^n , Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), 29–37.
- 8. D. V. Widder, *Positive temperatures on an infinite rod*, Trans. Amer. Math. Soc. 55 (1944), 85-95.

Instytut Matematyki Politechnika Wrocławska Wyspianskiego 27, 50-370 Wrocław POLAND