EQUIVARIANT IMBEDDINGS OF G-COMPLEXES INTO
REPRESENTATION SPACES

Soren Illman

Let G be a finite group. We are concerned with the problem of finding a repre-
sentation space V of G of minimal dimension with respect to the property that
every k-dimensional G-complex X can be equivariantly imbedded in V. In case
G = {e} we have the well-known classical result that every k-dimensional com-
plex can be imbedded in R%¥*1 and that this is best possible; that is, the minimal
imbedding dimension in the non-equivariant case is 2k + 1. The general fact that
every G-complex has an equivariant imbedding into some representation space
follows from Mostow’s theorem [9], or one can also prove directly that every
G-complex has a proper p.l. G-imbedding into some representation space of G
(see for example Proposition 1.1 in [6]). But these results do not determine the
minimal imbedding dimension in the equivariant case; in fact, they do not even
give any reasonable information about the required dimensions of the represen-
tation spaces in question. In this paper we solve, among other things, the prob-
lem of the minimal imbedding dimension and the minimal representation space
in the case of finite nilpotent groups.

In the case when G is a finite cyclic group Z, of prime order, Copeland and
de Groot [4] proved that every k-dimensional metrizable Z,-space can be equi-
variantly imbedded in a representation space of dimension 3k+2 or 3k + 3, de-
pending on whether p and &k are odd or even, and they also showed that their re-
sult is best possible, that is, gives the minimal imbedding dimension in this case.
In [8] Kister and Mann obtained results on the required dimensions of the repre-
sentation spaces in the case of equivariant imbeddings of actions of compact
abelian Lie groups, with a finite number of orbit types, on finite-dimensional
separable metrizable spaces. Their results on the required dimensions of the rep-
resentation spaces are not in general best possible, at least not in the case of equi-
variant imbeddings of G-complexes with G a finite abelian group.

In [7, Theorem 4.2] we proved a general equivariant imbedding result which,
for an arbitrary finite group G, gives conditions that are sufficient for the existence
of equivariant imbeddings of G-complexes into a given representation space V.
Furthermore, we showed in [7] that in the case of a finite cyclic group Z,,, m=2,
this general equivariant imbedding result gives the best possible result, and we
also explicitly determined the minimal imbedding dimension in this case. In the
present paper we prove that Theorem 4.2 of [7] is in fact best possible when G is
a finite nilpotent group. A somewhat simplified version of our main result is as
follows. (See Theorem 3.1 for a more general formulation.)

THEOREM 1. Suppose G is a finite nilpotent group and that (H,), ..., (H,;)
are G-isotropy types. Let V be a representation space of G. In order for every
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k-dimensional G-complex with isotropy types among (H;), 1<i=<gq, to have an
equivariant imbedding into V, the following are necessary and sufficient:

() dimV7i—dimVv>Hi=k+1 and

(i) dimV¥i=2k+1
Jori=1,...,q.

Here we have denoted V> ={yeV|H S G,]. In the more general formula-
tion given in Theorem 3.1, the role of the fixed integer k is replaced by an arbi-
trary dimension function n: {(H;)}7-;— N. If each H; (1<i=<gq) is normal in G,
we may drop the assumption that G is nilpotent. In particular this applies to the
case of equivariant imbeddings of G-complexes with free or semi-free G-actions,
and the following two results hold for G an arbitrary finite group.

THEOREM 11. Let G be a finite group and V a linear representation space of G.
In order that every k-dimensional free G-complex can be equivariantly imbedded
in V it is necessary and sufficient that

(1) dimV—dim V> =k+1 and
2) dimV=2k+1.

THEOREM 11'. Otherwise as in Theorem 11 but change “free” into “semi-free”
and condition (2) into
) dimVC=2k+1.

In the special case of equivariant imbeddings of semi-free compact finite-dimen-
sional metric Z,,,-spaces X, with a given imbedding i: X ?m —» R of the fixed point
set, an imbedding dimension is obtained in Allen [1, Theorems 1 and 2] and the
corresponding result for semi-free Z,,-complexes (not necessarily compact) ap-
pears as Corollary 4.5 of [7]. Although not shown in [1] or [7], it is easy to see
that this imbedding dimension is the minimal imbedding dimension in this case.

Theorem I solves the problem of determining the minimal imbedding dimension
in the case of finite nilpotent groups, in the following sense. By w(g; ), ..., 1 1(k),
or simply by wg(k), we denote the minimal imbedding dimension in the case of
equivariant imbeddings into representation spaces of k-dimensional G-complexes
with isotropy types among (H;), 1 <i <gq. That is, wg (k) is the least integer for
which it is true that each 4£-dimensional G-complex as above has an equivariant
imbedding into some representation space of dimension wg (k). From Theorem I
we obtain the following result.

COROLLARY I1I. Let G be a finite nilpotent group and let (H,), ..., (H,) be G-
isotropy types. Then the minimal imbedding dimension wg (k) = w(g; (H1)sens (H)) (k)
is given by

wg (k) =min{dim V' |V is a representation space of G which
satisfies (i) and (ii) in Theorem 1}.

Thus the determination of the minimal imbedding dimension wg(k) is com-
pletely reduced to the linear representation theory of G. In particular it follows
from Corollary III that we can always find one representation space W, of the
minimal dimension wg(k) such that every k-dimensional G-complex with the
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specified isotropy types has an equivariant imbedding into this same represen-
tation space W. In Section 3 we also construct, for each integer k =0, a specific
k-dimensional G-complex with specified isotropy types which cannot be equi-
variantly imbedded in any representation space of dimension less than wg (k). In
most cases these G-complexes can be chosen to be connected. These construc-
tions are in fact also carried out in the greater generality where, instead of deal-
ing with a fixed integer k& as dimension estimate, we are dealing with an arbitrary
dimension function #: {(H;)}7-, — N.

In the case of equivariant imbeddings of free and semi-free G-complexes into
linear representation spaces we obtain (respectively) from Theorem II and II’, in
complete analogy with Corollary I1I, the determination of the minimal imbed-
ding dimensions in these cases. These results hold for G an arbitrary finite group.

In Section 4 we apply our results to the case of elementary abelian p-groups
(Z,)', t=2. We consider equivariant imbeddings of free (Zp)’-complexes into
representation spaces and establish a rough lower bound for the minimal imbed-
ding dimension in this case. Our results here give counterexamples to results in
Allen ([2]; see also [3]). A detailed discussion of this matter is given in Section 4.

In Section 5 we study the case G =2Z,®Z,, where p is a prime, and explicitly de-
termine the minimal imbedding dimension in the three different cases of equivariant
imbeddings of free, semi-free, and arbitrary (Z,® Z,)-complexes into represen-
tation spaces. For example, for p an odd prime the minimal imbedding dimen-
sion in the case of equivariant imbeddings of £-dimensional semi-free (Z,®Z,)-
complexes is given by

wi(k) = 3k+5+2[k/2p] if k is even,
BT 3k+4+2[k/2p] if k is odd,

and in the case of k-dimensional arbitrary (Z,®Z,)-complexes by

w(k) = 3k+3+p(k+2) if k is even,
| 3k+2+p(k+1) if k is odd.

Here [x] denotes the integer part of x. For the minimal imbedding dimensions in
the other cases we refer to Theorems 5.1.a and b. The results by Kister and Mann
[8] give imbedding dimensions that are much larger than the minimal imbedding
dimensions, and for example in the case of arbitrary (Z,®Z,)-complexes, p an
odd prime, the Kister-Mann imbedding dimension is greater than twice the min-
imal imbedding dimension w(k) given above. For more details on this matter see
Section 5.

The main equivariant imbedding results are proved in Section 3; see Theorems
3.1, 3.2, and 3.2’. These theorems are established in the general form where,
instead of considering k-dimensional G-complexes, we consider G-complexes
satisfying dim X< n(H,) for 1 <i < gq, where n: {(H;)}7-,— N is any given di-
mension function, that is, a function satisfying (H;) = (H;) = n(H;) < n(H;).
The fact that condition (ii) of Theorem I is a necessary condition is very easy to
see. Condition (i) of Theorem I is roughly speaking a necessary condition already
for the general existence of isovariant maps from k-dimensional G-complexes
into V. To be precise we have that the condition
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(%) dim V¥ —dimV>"i=k+1 forall 1=i=<gq with H;=G,

is necessary and sufficient in order for every k-dimensional finite G-complex to
have an isovariant map into V. See Proposition 2.1, where this result is proved
in the more general setting described above. The sufficiency part of (x) follows
from results in [7], and the necessity part of the condition () is proved in Sec-
tion 2.

1. Notation, terminology and preliminaries. Let G be a finite group and X
a G-space. By G, we denote the isotropy subgroup of G at the point x € X. Lzt
H be any subgroup of G. Then X denotes the fixed point set of H, and by X >/
we denote the set of points in X with isotropy subgroup strictly greater than H,
that is,

X H={xeX|G,2H)
which we may also write in the form

X "= x¥X.

K2H
Observe that in particular we have
x >lel = U Xx¢
geG-—{e}

where X ¢ denotes the fixed point set of g. The set X = X — X > equals the set
of all points in X with isotropy subgroup exactly equal to H.

An equivariant map or a G-map f: X — Y, where X and Y are G-spaces, is a
map such that f(gx)=gf(x) for every x € X and all g e G. It follows that G, C
Gy(x) for every x € X. An isovariant map f: X — Y is by definition a G-map for
which G, = Gy, for every x € X. That is, a G-map f: X — Y is isovariant if and
only if f(Xg) C Yy for every subgroup H of G.

For any subgroup H of G we let (H) denote the conjugacy class of H in G.
Such a conjugacy class (H) is also called a G-isotropy type, or simply an iso-
tropy type in cases where no misunderstanding can arise.

By a G-complex we mean a countable, locally finite, and finite-dimensional
simplicial complex on which G acts simplicially. One often needs to work with G-
complexes that satisfy some additional technical conditions. In [7] we reserved the
term “equivariant simplicial complex” for such a notion of a G-complex which
satisfies some additional conditions; see Section 1 of [7]. Although it was essen-
tial to work with equivariant simplicial complexes in [7], we shall not really need
to work with them in this paper (except for one very minor point) and hence we
will be content with referring to Section 1 of [7] for more information on this
matter. We shall only note here that in an equivariant simplicial complex we have
that all points in any open simplex s have the same isotropy subgroup; that is,
§ C Xy for some subgroup H of G. This fact is used in the proof of Lemma 1.2.

In the proof of Proposition 2.1 we need to find proper G-maps from G-com-
plexes into representation spaces. (A map is proper if the inverse image of any com-
pact set is compact.) For this purpose let us first record the following obvious fact.
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LEMMA 1.1. Let X be a G-complex and V a representation space of G with
dim V¢ = 1. Then there exists a proper G-map f: X — V.

Proof. Since V¢ contains a 1-dimensional linear subspace it is immediate that
there exists a proper G-map f: X > VCcV. O

In the case when V¢ = {0} we use Lemma 1.2 below, which is a reformulation
of a special case of Lemma 4.1 of [7]. In fact the actual proof of Lemma 4.1 in
[7] establishes Lemma 1.2, but we can also deduce Lemma 1.2 from the state-
ment of Lemma 4.1 of [7] as we do below.

LEMMA 1.2. Let G be a finite group and let (H,), ..., (Hy;) be G-isotropy types.
Let V be a representation space of G and X a G-complex such that the orbit types
occurring in X are among (H;), 1<i=<gq, and X Gisa finite complex or empty.
Assume that

dim(X -X?+1<dim V¥ for every He {H,, . Hy}, H#G.
Then there exists a proper G-map f: X - V.

Proof. We may assume that X is an equivariant simplicial complex, since this
can be achieved by taking the second barycentric subdivision of X. In case X
@ we define fp: X% — V by fo(x) =0 for every x e X ©. Since X is compact fp
is a proper G-map. By Lemma 4.1 of [7] we have that there exists a proper G-
map f: X — V, extending fp for the case where X% = @&, if

) dim(X - X%*+1=<dim VX for every subgroup K of G.

Since dim & = —1 this always holds when (X —X%¥X = @&. (In particular (1)
holds for K =G even when V¢ ={0}.) Now assume that (X —X°)X = & and
let s be a simplex of (X—X%)X of maximal dimension, and denote dims =
dim(X — X ©)X = m. Let H be the principal isotropy subgroup of s, that is, § C X},.
Then (H) equals one of the G-orbit types (H,), ..., (H,) and H # G, and fur-
thermore K C H. Thus we have

dim(X - X" +1=dim V¥ <=dim V¥,
that is, m+1=<dim VX, which shows that (#) holds for X. m

Lemma 1.3 below is of crucial importance in this paper. It corresponds to the
arguments used in Copeland-de Groot [4, Section 4]. The Z,-spaces Y*(p) de-
fined below are the same ones as Copeland and de Groot used in [4] in showing
that their result gives the minimal imbedding dimension in the case of Z,-spaces,
P a prime.

Let p be a prime. We write the group Z, multiplicatively and denote Z, =
{e,f,...,t?"1}. For any non-negative integer £k we define a k-dimensional free
Z,-complex Yk(p) as follows.

(1) Assume k is odd. Let U denote C“, where a=(k+1)/2, with Z,-action
given by #(zy,...,24) =(£21, ..., £2,). Here £ = exp(2wi/p). We define

(1) Y*(p)=S(U),
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where S(U) denotes the unit sphere in C? = R*¥*!. Then Z, acts freely on Y*(p),
and Y*(p) can easily be triangulated so that Z, acts 31mphclally and thus Y*(p)
becomes a finite free Z,-complex.

(2) Assume k is even. Then let U be C?, where b = k/2, with Z,-action as above.
Let D(U) denote the unit ball in C?= R" and consider the product DWU)x1Z,
with diagonal Z,-action. Here Z, acts on Z, by multiplication. Now define

(2) Y*(p)=(DWU)XZ,)/~

where (z,g)~ (z’,g’) if and only if z=2z"e S(U). The diagonal Z,-action on
D(U)x Z, induces a Z,-action on Y*(p) and this action is free. Moreover Y*(p)
can be trlangulated SO that Z, acts simplicially and thus Y*(p) becomes a finite
free Z,-complex.

Let W denote a linear representation space for Z,. Then we have the following.

LEMMA 1.3. The existence of an isovariant map f: Y¥( p)— W implies that
dim W—dim W2 =k +1.

Proof. Since the Z,-action on Y*(p) is free and f is isovariant we have
im/fNwWir=g.
The composite
FY (o) b w s wywe = w,

where 7 denotes the natural projection, is a Z,-map with 0 ¢ im f. Hence we
obtain a Z,-map

f:Y5(p) — S(m)

by defining £(») = f(»)/|f(»)| for every y € Y¥(p). We claim that the existence
of such a Z,-map f implies that dim S(W,;) = k, that is, that

(%) dim W—dim W%4r—1=k.

(1) Assume that & is odd, and hence Y¥(p)=SU). If dim S( W) <k=dimS(U)
there exists a Z,-map h: S(W;) — S(U), and the composite map hof:S(U)— S(U)
has degree O and hence Lefschetz number equal to 1. But since the Z,-action on
S(U) is free and hef is a Z,-map, the Lefschetz number of /4. f must be divisible
by p, a contradiction. Thus (%) holds in this case.

(2) Assume that & is even, and thus Y*(p) is given by (2). Since S(W;) # & it fol-
lows that (*) holds for k¥ =0, and hence we may assume that £k = 2. If dim S(W#) <
k—1=dim S(U) there exists a Z,-map h:S(W;) — S(U). Then the restriction
(hef)|:S(U)— S(U) is a Z,-map which has degree 0, since it extends to a map
from D(U) to S(U). But as we saw above in case (1) this leads to a contradiction,
and hence (*) also holds in this case. ]

2. Existence of isovariant maps into representation spaces. Let (H,), ..., (H,)
be G-isotropy types. We say that a function n: {(H;)}?=| — N is a dimension func-
tion if it satisfies

(H,)Z(HJ)=>H(H,)SH(HJ) for all IS!,]S(]
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For G a finite nilpotent group we give in the result below a condition that is both
necessary and sufficient for the general existence of isovariant maps into a repre-
sentation space V.

PROPOSITION 2.1. Let G be a finite nilpotent group and V a representation
space of G. Let (H,), ..., (Hg) be G-isotropy types and n: {(H;)}?-,—> N a di-
mension function. In order that there exist an isovariant map f: X - V for each
finite G-complex X with dim X i <n(H,;) and isotropy types among (H;), 1<
[ <gq, it is necessary and sufficient that

(*) dim V¥i—dim V>Hi=n(H;)+1 for all 1<i<gq with H;#G.

ADDENDUM 2.1. Let X be a G-complex as above except that X need not be a
finite complex. In case G ¢ {H\, ..., H;} and hence X% =0, or more generally
in case X% is a finite complex, condition (*) is sufficient for the existence of an
isovariant proper p.l. map f: X - V. If X € is not a finite complex we have that
(*) together with dimV° =1 are sufficient conditions for the existence of an iso-
variant proper p.l. map f: X — V. Moreover these facts hold for G an arbitrary
finite group.

Proof. We first prove Addendum 2.1. Let G be a finite group and assume that
condition (%) holds. Let X be a not necessarily finite G-complex with dim X" <
n(H;) and isotropy types among (H;), l<i<gq.Forany He {H\, ..., H,}, H#G,
we then have

dim(X—-X"+1=dim X"+1=n(H)+1
<dim V¥ —dim V> <dim v*.

In case X is a finite complex or empty we therefore have by Lemma 1.2 that
there exists a proper G-map f: X — V. In case X ¢ is not finite but we are assum-
ing that dim V¢ = 1, there also exists a proper G-map f: X — V; see Lemma 1.1.
By Theorems 3.1 and 3.5 in [7], (cf. the Remark in [7, p. 139]), condition (*) and
the existence of a proper G-map f: X — V imply that there exists an isovariant
proper p.l. map f: X — V. This proves Addendum 2.1 and hence in particular
the sufficiency part of Proposition 2.1.

Now assume that G is a finite nilpotent group. We shall prove that in this case
condition (*) is also necessary for the existence of isovariant maps. Let V be a
representation space of G such that there exists an isovariant map f: X — V for
every finite G-complex X with dim X/ < n(H;) and orbit types among (H;),
1 =i =gq. In particular there then exist isovariant maps f;: G/H; — V and hence
vHi—y>Hi=yy # @ for 1=i<gq. Thus dim V> i<dim Vi, 1<i<gq.

For each subgroup He{H,,..., H,} with H # G, we shall construct a finite
G-complex X with the following properties. We have dim X i < n(H;) for 1 =<
i =< q and each point in X has isotropy type equal to (H'), and the existence of an
isovariant map f: X — ¥ implies that dim V¥ —dim V> = n(H) +1.

Solet He {H,, ..., H,}, where H # G. As we observed above, we then have

(1) dim V=" <dim V¥,
Since H # G there exists a subgroup K 2 H such that
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) dim V¥ =dimv>#.

Since G is nilpotent also K is nilpotent and hence H & K implies (see, e.g., [10,
§5.2.4]) that

3) HSNg(H)=N(H)NK.

Now choose g e (N(H)NK)— H such that g” e H, for some prime p, and let
4) P=(g, H).

Since H & P C K we have dim VX <dim VP < dim V>#, and hence (2) implies that
5) dim V¥ =dim v>".

Furthermore H is normal in P and P/H =Z, with gH as a generator. The quo-
tient group P/H acts on V¥ and we have

6) vP— (yHyP/H,

Let Y= Y"¥)(p) be the n(H )-dimensional finite free P/H-complex defined in
Section 1. (In order to be specific let us say that we identify P/H with Z, by let-
ting the generator gH € P/H correspond to the generator t € Z,.) We make Y
into a P-space through the natural projection n: P — P/H, and form the twisted
product

(7) X=X""(p.HYy=GxpY.

Then X is an n(H )-dimensional G-complex, and since every point in the P-space
Y has isotropy subgroup equal to H it follows that every point in X has G-isotropy
type equal to (H). For H' e {H,, ..., H,} with (H’)<(H) we have dimx7'=
n(H)=<n(H’), and in case (H’) = (H) we have X'=¢. Thus dim X" < n(H,)
forl=i=<g.

Now assume that f: X — V is an isovariant G-map. Since Y C X*’ we have an
induced map f|: Y — Vv which is an isovariant P/H-map. Thus we have by
Lemma 1.3 and (5) and (6) that

n(H)=dim Y =dim V" —dim(V)"/H -1
=dim V7 —dim V> —1. .

REMARK. In the proof of Proposition 2.1 the assumption that G is nilpo-
tent was used only to establish (3), that is, to show that H & K C G implies that
H S Ng(H)=N(H)NK. Therefore we may replace the assumption that G is nil-
potent by the assumption that A is normal in G. Hence Proposition 2.1 is valid
for G an arbitrary finite group if we assume that the subgroups H,, ..., H, are
normal in G. In particular this remark applies to the case of G-complexes with
free or semi-free actions, and hence we obtain the following.

PROPOSITION 2.2. Let G be a finite group and V a representation space of G.
In order that there exist an isovariant map f: X — V for every k-dimensional fi-
nite free [semi-free] G-complex X it is necessary and sufficient that

(%) dim V—dim V19 =k +1. J
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If we wish to construct one finite G-complex X such that the existence of an
isovariant map f: X — V forces condition (*) in Proposition 2.1 to hold, we pro-
ceed as follows. As before, G denotes a finite nilpotent group, (), ..., (H,) are
G-isotropy types, and n: {(H;)}7=, — N is a given dimension function. We then
define

X=U Ux""(P; H)

where the first disjoint union is over all H € {H,, ..., H,} with H # G, and for a
fixed subgroup H the second disjoint union is over all subgroups P of G such
that A is normal in P and P/H is cyclic of prime order. Here X")(P; H) is de-
fined by (7) in the proof of Proposition 2.1. Clearly X is a finite G-complex and
the isotropy types occurring in X are exactly all (H,), ..., (H,) with H; # G. Using
the fact that » is a dimension function it follows immediately that dim X*i <
n(H;) for 1=i=<gq. The proof of Proposition 2.1 shows that if there exists an
isovariant map f: X — V then condition (*) in Proposition 2.1 must hold. In
case H; <G, 1=<i=<gq, we need not assume that G is nilpotent; see the Remark
after Proposition 2.1.
For any finite group G we set

Xkee= U X*P;ste)) = U GxpYF

where the disjoint union is over all cyclic subgroups P of prime order of G. (Here
the P-space Y* equals Y*(p), where p = |P| and Y*(p) is as in Section 1.) Then
XE&.. is a k-dimensional finite free G-complex, and the existence of an isovariant
map f: X£..— V into a representation space V of G implies that

dimV—dim V> = k+1.

The G-complex X defined above is not connected. In case either G or {e} are
among the given G-isotropy types (H,),..., (H,), that is, in case either fixed
points or free orbits are allowed, we may easily modify X such that we obtain a
connected G-complex which serves the same purpose as X.

In case Ge {Hy, ..., H,} we simply add a disjoint fixed point {*} to X and then
join each component of X by suitable 1-simplexes to {*} in such a way that we
obtain a G-complex X,. Then X, is a finite connected G-complex containing X as
a G-subcomplex. We have (X.)® = {+} and dim(X, )= max(1, n(H)) for all He
{H,, ..., H;} with H G, and the orbit types occurring in X, are exactly all
(H:), ..., (Hg). Thus under the very mild additional assumption that n(H;)=1
for every (H;), 1<i=<gq, we have that dim(X,)"i=n(H;) for 1<i=< q, and
hence in this case X, is a finite connected G-complex of the required type such
that the existence of an isovariant map f: X, — V into a representation space V
implies that condition (*) of Proposition 2.1 holds.

In case {e} e {H|, ..., H,} we can proceed as follows in order to change X into
a finite connected G-complex. Let F be a connected 1-dimensional finite sim-
plicial complex on which G acts freely and simplicially. We then join each com-
ponent of X to F by suitable 1-simplexes in such a way that we obtain a G-com-
plex X*. Then X* is a finite connected G-complex containing X as a G-complex.
Furthermore we have dim X* = max(l, n({e})) and dim(X*)"” = n(H) for H # (e},
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and the orbit types occurring in X* are exactly the same ones as the ones occur-
ring in X. Thus in case {e} € {H), ..., H,} and n({e}) =1 we may as well replace
the G-complex X by the connected G-complex X*.

3. Existence of equivariant imbeddings into representation spaces. In this sec-
tion we establish the main result which, for G a finite nilpotent group, gives con-
ditions that are both necessary and sufficient for the general existence of equi-
variant imbeddings of G-complexes into a representation space. In the case of
G-complexes with free or semi-free actions we need not assume that G is nil-
potent. The main part of the proof that the conditions are necessary conditions
was given already in the proof of Proposition 2.1.

THEOREM 3.1. Let G be a finite nilpotent group and V a representation space
of G. Let (H,), ...,(H,;) be G-isotropy types and n: {(H)}!_,— N a dimension
Junction. In order for every G-complex X with isotropy types among (H;) and
dim XPi<n(H;) (1<i=< q) to have an equivariant imbedding into V, it is neces-
sary and sufficient that

() dimVZi—dim V> Hi=n(H;)+1 and

(i) dimV%i=2n(H;)+1

Jori=1,...,q.

ADDENDUM 3.1. Conditions (1) and (ii) are in fact sufficient conditions for
the existence of a proper p.l. G-imbedding f: X — V, and moreover this holds
Jor G an arbitrary finite group. On the other hand, for G a finite nilpotent group,
conditions (1) and (ii) are necessary conditions even in the case of topological G-
imbeddings of finite G-complexes.

Proof. By Theorem 4.2 in [7] the above conditions are sufficient for the exis-
tence of an equivariant proper p.l. imbedding f: X — ¥V, and in fact this holds
for G an arbitrary finite group.

Let He (H,, ..., H,}. By A= A" we denote the n(H )-skeleton of the standard
(2n(H)+2)-simplex. Then G/H X A is an n(H )-dimensional finite G-complex.
Every point in G/H x A has G-isotropy type equal to (H) and dim(G/H x A)' =
n(H)=<n(H’) for every H' € {H}, ..., H,}, with (H’) <(H) and (G/H x A)/'=
D incase (H'Y%x(H).If f: G/HX A - Vis aG-imbedding we obtain an induced
imbedding f|: A4 — V¥, and hence by [5] we have dim V' = 2n(H ) +1. This fact
and Proposition 2.1 show that (i) and (ii) are necessary conditions for the exis-
tence of an equivariant imbedding. ]

REMARK. As was the case with Proposition 2.1, Theorem 3.1 also remains
valid for G an arbitrary finite group if we assume that H;<1G for 1<i=<gq. In
particular we have, in the case of G-complexes with free or semi-free actions, the
following results.

THEOREM 3.2. Let G be a finite group and V a representation space of G. In
order for every k-dimensional free G-complex to have an equivariant imbedding
into V, it is necessary and sufficient that
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(1) dimV—dim V> =k+1 and
(2) dimV=2k+1. O

THEOREM 3.2’. Let G and V be as in Theorem 3.2 and let n: {{e}, G} > N bea
dimension function, that is, n({e}) = n(G). In order for every semi-free G-com-
plex X with dim X < n({fe}) and dim X% < n(G) to have an equivariant imbed-
ding into V, it is necessary and sufficient that

(1) dimV—dim V> = n(fe})+1,
2) dimV°=2n(G)+1, and dimV=2n({e})+1. O

As in the case of isovariant maps considered in Section 2, we may also here
analogously construct one finite G-complex such that the existence of a G-im-
bedding f: X — V into a representation space V forces conditions (i) and (ii)
in Theorem 3.1 to hold. Let G, (H,),...,(H,), and n: {(H)}7—,—> N be as in
Theorem 3.1. We define

q
X= U (G/H:;x A"HyU X,
i=1

where X is the G-complex defined in Section 2 and A* denotes the k-skeleton of
the standard (2k + 2)-simplex. Then X is a finite G-complex whose isotropy types
are exactly (), ..., (H,;) and dim XHi< n(H;) for 1 =i =<gq. The proof of The-
orem 3.1 shows that the existence of a G-imbedding f: X — V, where V is a linear
representation space of G, implies that conditions (i) and (ii) in Theorem 3.1
must hold. In case H; <1 G, 1<i=<gq, we may drop the assumption that G is nil-
potent.

In particular we have that, for any finite group G, the k-dimensional finite free
G-complex

XEee=GxAYUXE,.
is such that the existence of a G-imbedding f: X£.. — V implies that

dimV—dim V> =k +1,
dimV=2k+1.

The question of replacing X by a connected G-complex is completely analogous
to the corresponding problem for the G-complex X in Section 2. In case G e
{H,, ..., H,;} we can easily construct a connected G-complex X, with dim(X,) =
max(1, n(H)) for al H e {H,, ..., H,}, and which otherwise has the same proper-
ties as X and serves the same purpose as X. In case {e} e (H], ..., H,} the same
construction as in Section 2 gives us a connected G-complex X*, with dim X*=
max (1, n({e})), that otherwise has the same properties as X and serves the same
purpose as X.

4. Free (Zp)’-complexes. In this section we apply our results to the case where
G is an elementary abelian p-group (Z,)’, ¢=2. We consider isovariant maps
and equivariant imbeddings of finite free (Z,)'-complexes (¢ =2) into represen-
tation spaces, and give counterexamples to results in Allen [2].
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First we need the following simple fact.

LEMMA 4.1. Let V be a linear representation space of the group (Z,)', where
p is a prime and t = 2. Then either V' =V or we have

2t—2 if p is odd and dimV is even,
dimV == ! 2¢t—1 if p is odd and dimV is odd,
t—1 if p=2.
Proof. Assume that p is odd and that dim V'=2n is even. Then V is a direct

sum of 2-dimensional representation spaces (i.e., of 1-dimensional complex rep-
resentation spaces) and the corresponding representation is a homomorphism

p:(Zp) = (Z,)"C(UA)".

If p is not injective we have V!¢ = V. If p is injective we have ¢ < n and dencte
qg=n—t+1. Since t+q > n it follows by general position that

impN(fe}""TD(Zp)7) # {e}.

Thus there exists ge(Z,)’, g # e, such that p(g) € {e}" 7@ (Z,)?, and hence
dim V> =dimVé=2(n—q)=2¢-2.

In case p is odd and dim V is odd we have V= V2"@R, with trivial (Z,)'-
action on R. This completes the proof when p is odd. The proof for the case
p =2 is completely analogous. ]

Let X£.. denote the k-dimensional finite free G-complex defined at the end of
Section 2. Recall that X{.. is such that if f: X£.. — V is an isovariant map intc a
representation space V, then we must have dim V—dim V!¢ = k +1.

COROLLARY 4.2. (a) Let G =(Z,)’, where p is an odd prime and r = 2, and let
k=0 be a non-negative integer. Then the k-dimensional finite free G-complex
X {‘;ee is such that if f: X k «— V is an isovariant map we must have

. 2r+k if k iseven,
dimV =
m {2r+k—1 if k is odd.

(b) In case G = (Z.,)°, where s =2, the corresponding conclusion is that
dimV=s+k.

Proof. This follows directly from Lemma 4.1 and the fact that we must have
dim V—dim V> > k+1. O

Corollary 4.2 shows that Theorem 1.1 in Allen [2] is incorrect. Let p denote an
odd prime. According to Theorem 1.1 in [2], every compact k-dimensional met-
ric space X with a free (Z,) -action [(Z;)’-action] should have an equivariant
imbedding into a representation space of dimension equal to max(2k+1, 2r)
[max(2k+1,s)]. Thus for p an odd prime and any r = 2, the 2-dimensional finite
free (Z,)"-complex X 2.. is a counterexample to Theorem 1.1 in'[2], since the
existence of an isovariant map f: XZ..— V already implies that we must have
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dimV =2r+2 > max(5,2r). In case p =2 and s = 3 the 1-dimensional (Z.)’-
complex X} provides a counterexample to Theorem 1.1 in [2].

A mistake in Allen [2] can be found in the proof of Theorem 5.7, where it is
incorrectly stated that a certain representation space is free, that is, that the ac-
tion in question is free outside the origin. (See [2, p. 30, lines 15 and 24-25].) Of
course groups like (Z,)’, ¢ =2, do not have any free representations at all. In
[2], Theorem 1.1 is obtained as a special case of Theorem 5.7, and Theorems 6.2
and 6.3 are based upon Theorem 5.7 and also contain it as a special case. Hence
the above counterexamples show that Theorems 1.1, 5.7, 6.2, and 6.3 in [2] are
incorrect.

So far we did not give a counterexample to the results of [2] for the case when
G=Z7Z,®Z,. In order to do so we consider the 1-dimensional finite semi-free
(Z,®DZ,)-complex X1 = A"U X} . (See the discussion at the end of Section 3.)
Here A! denotes the 1-skeleton of the standard 4-simplex, with trivial (Z,® Z,)-
action. Now assume that f: X! —» V is a G-imbedding into a linear representa-
tion space V of G =Z,®Z,. Then we have the induced imbedding f¢: A' -» V°
and hence dim V¢ = 3. Moreover, the composite map

Xee T v v/ Ve =y,

where 7 denotes the natural projection, is an isovariant map; hence we have by
Corollary 4.2.b that dim V; = 3. Thus dim V' = 6. This is a counterexample to The-
orem 5.7 in [2] when G =Z,®Z,, because according to [2, Theorem 5.7] X!
should have a G-imbedding into a 5-dimensional linear representation space. (In
the next section we will see that in fact 6 is the minimal imbedding dimension in
this case.)

5. The minimal imbedding dimensions for free, semi-free and arbitrary
(Z,DZ,)-complexes. Let p be a prime. In this section we determine the mini-
mal imbedding dimensions in the three different cases of equivariant imbeddings
into representation spaces of free, semi-free and arbitrary (Z,® Z,)-complexes.
These minimal imbedding dimensions depend on whether p is odd or even, and
they are given in Theorem 5.1.a and 5.1.b, respectively. Let us here recall the gen-
eral fact that the minimal imbedding dimensions do not depend on whether we
consider only finite G-complexes or arbitrary G-complexes or if we consider equi-
variant proper p.l. imbeddings of arbitrary G-complexes. As we already pointed
out in the introduction, it is also a general fact that we can always choose one
representation space W with dimension equal to the minimal imbedding dimen-
sion w(k) such that every k-dimensional G-complex, of the appropriate kind,
has an equivariant (proper p.l.) imbedding into W. In the proof of Theorem 5.1.a
we also explicitly give such a minimal representation space in each of the three
cases being considered.

A. p is odd prime. Write any representation space of Z,®Z,, as a direct sum of
irreducible representation spaces. We have the trivial 1-dimensional representa-
tion, and every non-trivial irreducible representation of Z,® Z, (p an odd prime)
is 2-dimensional. Each non-trivial 2-dimensional representation of Z,®Z, can



254 SOREN ILLMAN

be considered as a 1-dimensional complex representation and has as kernel a
non-trivial cyclic subgroup of Z,®Z,. Moreover, each non-trivial cyclic sub-
group of Z,®Z, occurs as the kernel of some non-trivial 1-dimensional com-
plex representation of Z,®Z,, and there are exactly p+1 non-trivial cyclic sub-
groups of Z,DZ,,.

In the following we let U* denote a complex representation space of Z,®Z,
of complex dimension u. We define y: N — N by

Y(u) =min{dim¢ U~ |dim¢c U = u}.
It follows from the above remarks that we have
d if u=(p+1)d,
Y(u) = o
d+1 if u=(p+1)d+r, 1=<r=p,
that is,

w(u)=[”+p].

p+1

Furthermore, we have the following. Let Hy, ..., H,; denote the nontrivial
cyclic subgroups of Z,®Z,, and let U; be a 1-dimensional complex representa-
tion space of Z,® Z, with kernel H;, 1 <i/ =< p+1. Given any integer u = 0 we set
u=(p+1)d+r, where 0 <r < p, and define

(1) U=U® - DU, ) @U®D - DU,.

Then U is a u-dimensional complex representation space for which dim¢ U !¢
attains the minimal value; that is, we have Y(u) = dim¢ U~ €.

For any integer £k = 0 we now define u(k) as the least integer « for which there
exists a u-dimensional complex representation space U such that

) dimc U—dimc U™ = 1(k+1).

Assume k = 0 given and let Uy = U¥® be a complex representation space which
satisfies (2) and has the minimal dimension u#o=u(k). We claim that we then
have

3) dimc Us ' = ¢ (14).

If (3) does not hold we would have dim& %) = y/(«,) + 1. Let U be a complex repre-
sentation space of dimension uy— 1 with dim¢ U~ €} = Y(ug—1). Since Y (ug—1)<
Y (up) we then have

dimc U—dimc U™ =ug—1—yY(uo—1) = uo—1—y(10)
>ug—dimc Ug 1= L (k+1),

which contradicts the minimality of o= u(k). Thus (3) holds.
It follows from the above that the function #: N — N is determined by the fact
that u (k) is the least integer for which

u(k)—yuk)) = 3(k+1);
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that is, #(k) equals the least integer for which

u(k)+p

u(k)—[ p+1

1

Hence it follows by elementary considerations that we have

k+2 k

—g—+l+[$] for k even,

——k+1 +1+[——k ] for k odd.
2 2p

ulk)=

Moreover, the discussion above shows that a solution of (2) of the minimal di-
mension u#(k) is given by the complex representation space U defined in (1),
where u(k)=(p+1)d+r and 0<r=p.

Now observe that if V is a real representation space of Z,®Z, of minimal di-
mension with respect to the inequality

4) dimV—dim V> =k +1

then we must have V' %»®%») = {0}. Hence we may consider V as a complex repre-
sentation space, and therefore dim V' =dimg V' =2u(k). By considering U de-
fined by (1) as a real representation space, where u(k)=(p+1)d+r and 0 <
r < p, we obtain a specific 2u(k)-dimensional representation space which salis-
fies (4).

We are now ready to prove the following.

THEOREM 5.1.a. Lef p be an odd prime. The minimal imbedding dimension
Sor equivariant imbeddings of k-dimensional free (Z,® Z,)-complexes equais

4 for k=0,1,
wo(k)=< 6 Jor k=2,
2k+1 for k=3.

In the case of semi-free (Z,® Z,)-complexes, the minimal imbedding dimension
is given by

3k+4+42[k/2p] if k is odd,
and in the case of arbitrary (Z,®ZL,)-complexes by

wik) = 3k+3+p(k+2) if k iseven,
| 3k+424pk+1) if k is odd.

3k+5+2[k/2 if k is even,
wl(k)={ [k/2p] if

Proof. By Theorem 3.2 and the above discussion the minimal imbedding di-
mension for equivariant imbeddings of k-dimensional free (Z,® Z,)-complexes
equals

wo(k) =maxf{2u(k),2k+1}.
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Observe that 2u(k)>2k+1forO<k=<2and 2k+1>2u(k) for k =3. For each
k =0, the real representation space

Wo=U®R*W

(where U is as above, a(k)=0if 0=k =<2, and a(k)=2k+1—-2u(k) if k=3)
is a representation space of the minimal imbedding dimension wg(k) such that
every k-dimensional free (Z,®Z,)-complex has an equivariant proper p.l. im-
bedding in Wj.

It follows by Theorem 3.2’ and the discussion proceeding Theorem 5.1.a that
the minimal imbedding dimension in the case of semi-free (Z,® Z,)-complexes
equals wy(k) =2k+1+2u(k). As a specific w;(k)-dimensional representation
space into which every k-dimensional semi-free (Z,® Z,)-complex has an equi-
variant proper p.l. imbedding, we may take W, =R* '@ T.

In the case of arbitrary (Z,®Z,)-complexes we have, by Theorem 3.1, that
in order for a representation V' to be such that every k-dimensional (Z,®Z,)-
complex has an equivariant imbedding into V, it is necessary and sufficient that
the following conditions hold:

(i) dimV;—dim V> = k+1,

(i) dim Vi —dimVY=k+1, and

(iii) dimVY=2k+1,
where Hy, ..., H,, denote the non-trivial cyclic subgroups of G=2Z,®Z,. As-
sume that W is a representation space of minimal dimension which satisfies (ii).
Then W° = {0}, and we may consider W as a complex representation space and
write W as a direct sum of 1-dimensional irreducible complex representations.
Since dim Wi = k +1 the number of irreducible summands in W with kernel H;
must be greater than %(k+1) fori=1,..., p+1. Thus

. ‘ (p+1)(k+2) if k is even,
dim W =
m >{(p+1)(k+l) if & is odd.

A representation space of minimal dimension which satisfies (ii) is given by
W=(U® - ®Up.1)"",

where b(k) =[(k+2)/2] and U; is a 1-dimensional complex representation space
with kernel H;, 1<i < p+1. Observe that

dim W—dim W~ =2pb(k) > k+1

and hence W automatically satisfies (i). It follows that the minimal dimension
for equivariant imbeddings of arbitrary (Z,®Z,)-complexes equals

wk) = 2k+1+(p+1)(k+2) if k is even,
| 2k+1+(p+1)(k+1) if k is odd.

As a specific w(k)-dimensional representation space into which every k-dimen-
sional (Z,®Z,)-complex has an equivariant proper p.l. imbedding, we may take

Ww=R¥*"'ow. O
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Let us now compare the various minimal imbedding dimensions given by The-
orem 5.1.a with earlier known equivariant imbedding results. The result by Kister
and Mann (see [8, Theorem 1, §4]) shows that every separable metrizable k-di-
mensional free or semi-free (Z,®Z,)-space can be equivariantly imbedded in a
representation space of dimension

4k+5 if k is even,
N =
<) {4k+3 if k is odd.

(The reason for the fact that the Kister-Mann result gives the same dimension
result in the case of both free and semi-free actions is that in their proof a factor
R%**! comes from an imbedding of the orbit space X/G, and no account is taken
of the possibility that the fixed point set X ¢ may be very low-dimensional or even
empty.) In the case of separable metrizable spaces with arbitrary (Z,®Z,)-actions,
the result by Kister and Mann {8, Theorem 2, §4] shows that every such k-dimen-
sional space has an equivariant imbedding in a representation space of dimension

M(k) = 6k+9+2p(k+2) if k is even,
| 6k+5+2p(k+1) if k is odd.

Thus we see that for (Z,®Z,)-complexes the results by Kister and Mann are far
from best possible. In the case of semi-free actions the Kister-Mann result comes
closest to the minimal imbedding dimension, and for X =0 or 1 it gives the min-
imal imbedding dimension. But for 2-dimensional semi-free (Z,® Z,)-complexes
the Kister-Mann result gives the imbedding dimension 13, whereas the minimal
imbedding dimension in this case equals 11. In the two other cases (i.e., for free
or arbitrary (Z,® Z,)-complexes) the imbedding dimension given by the Kister—
Mann result is strictly greater than the minimal imbedding dimension for all
k=0, and except for free (Z,®Z,)-complexes of dimension 0 or 1 it is in fact
greater than twice the minimal imbedding dimension.

B. The case G =2Z,®Z,. The procedure here is completely analogous to the
one in case A. This time we define ¥ : N — N by

Y(v) =min{dim > | dim V' = v},

where V denotes a real representation space of Z,@®Z, and dim =dimg. Since
the irreducible representations of Z,@ Z, are 1-dimensional and there are three
non-trivial different cyclic subgroups of Z,®Z,, it follows that

J(v) = d if v=3d,
| d+1 if v=3d+r, r=1or 2,
that is,

3

Let H,, H,, and H3; denote the non-trivial cyclic subgroups of Z,® Z, and let V;
be a 1-dimensional real representation space with kernel H;, 1<i=<3. For each
integer v=0 we set v=3d+r, 0<r <2, and define

V(v) = [v+2].
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¢)) V=(M@r-on) oo  -ev,.

Then V is a v-dimensional representation space for which dim > !¢} attains the
minimal value; that is, we have

Y(v) =dim P>tel,

For any integer k = 0 we define v(k) as the least integer v for which there exists
a v-dimensional representation space V satisfying

©)) dimV—dim V=¥ =k +1.

In the same way as in case A we see that v: N — N is determined by the fact that
v(k) is the least integer for which

v(k)—yY(vk)=k+1;
that is, v(k) equals the least integer for which

v(k)+2 ]

=k+1.
3 J> N

v(k)—[

It follows that

v(k)=k+2+ —g]

Moreover, V defined by (1), where v(k)=3d+r, 0<r =<2, is a representation
space of the minimal dimension v(k) which satisfies (2).

THEOREM 5.1.b. The minimal embedding dimension for equivariant imbed-
dings of k-dimensional free (Z.,® Z,)-complexes equals

2 if k=0,
k)=
Wolk) {2k+1 if k=1.

In the case of semi-free (4,®Z,)-complexes the minimal imbedding dimension
is given by

rE——ral

and in the case of arbitrary (Z,® Z.,)-complexes by
w(k) =5k+4.

Proof. The proof is completely analogous to the proof of Theorem 5.1.a. We
leave the details to the reader. ]

The results of Kister and Mann [8, Theorems 1 and 2] show that every k-di-
mensional free or semi-free (Z,® Z,)-complex has an equivariant imbedding in
a representation space of dimension 4k + 3; in the case of arbitrary (Z,®Z,)-
complexes the corresponding dimension is 10k +9.
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A preliminary version of this paper was written in July 1983, while the author

enjoyed the hospitality of the Department of Mathematics at the University of
Michigan in Ann Arbor.
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