HELICAL IMMERSIONS INTO A EUCLIDEAN SPACE

Kunio Sakamoto

0. Introduction. Let M be a connected Riemannian manifold and f: M - M
an isometric immersion into a Riemannian manifold M. If the image f-+y of each
geodesic y in M has constant Frenet curvatures which are independent of the
chosen geodesic v, then f is called a helical immersion. Furthermore, if the oscu-
lating order of fev in M is equal to d, then the helical immersion is said to be of
order d. In [8], [9], and [12], helical immersions of order two into real space forms
were classified (see also [6]). When the ambient manifold M is a sphere, the the-
ory of helical minimal immersions is a submanifold version of compact harmonic
manifolds (cf. [1], [13]) and low order cases (d <5) were classified in [10]-and
[15]-[17]. In the present paper, we shall study helical immersions into a Euclidean
space.

On the other hand, in [3] and [4], Chen and Verheyen introduced a notion of
submanifolds with geodesic normal sections and obtained many results, in par-
ticular for the case where the submanifolds are surfaces. Here we recall the defi-
nition of a submanifold M with geodesic normal sections in a Euclidean space
E™ of dimension m. For each point x in M and vector X tangent to M at x, the
intersection of M and the affine subspace through x spanned by X and the nor-
mal space at x gives rise to a curve v in a neighborhood of x. If such curve v is a
geodesic in M, then the submanifold M is called a submanifold with geodesic
normal sections in E™. In [3], [4], and [19], surfaces with geodesic normal sec-
tions in E” where 3 < m < 6 were classified. In this paper, we shall determine 2-
or odd-dimensional complete submanifolds with geodesic normal sections in E"”
but without restrictions on .

Verheyen proved that M is a submanifold with geodesic normal sections in E""
if and only if the inclusion map ¢: M — E" is a helical immersion (cf. [19, Theo-
rem 2]). So the concept “helical immersion” coincides with that “submanifold
with geodesic normal sections” when the ambient manifold is a Euclidean space.
We shall study from the viewpoint of helical immersions, because we can give an
explicit expression of a geodesic of M in the ambient space.

In Section 1, we give basic equations used later as well as the accurate definition
of helical immersions of order d. In Section 2, making use of an expression of a
helical immersion f: M — E" in the geodesic polar coordinates around an arbi-
trarily fixed point, we prove that the extrinsic distance of two points in M is a
function of their intrinsic distance. This result is a characterization of helical im-
mersions into E". By using this result, we can show that if M is compact then it is
a Blaschke manifold, and that if M is complete and noncompact then all points
of M are poles. In Section 3, we deal with helical imbeddings of odd order into
E™. We show that if f: M — E" is a helical imbedding of odd order and M is
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complete, then M = E" and f is totally geodesic. In Section 4, we are absorbed in
the study of the case that the order is even. Our main result is that the order of f
is even if and only if M is compact. Finally, we apply Berger’s theorem about the
Blaschke conjecture and Tsukada’s theorem about the rigidity of helical immer-
sions into a sphere to the case dim M =2 or odd.

1. Preliminaries. In the present paper, the differentiability of all geometric ob-
jects will be C*. Let f: M — M be an isometric immersion of an n-dimensional
Riemannian manifold M into an m-dimensional Riemannian manifold M. We
shall identify the tangent space 7, M of M with a subspace f, T, M of Ty, M.
Let V and V denote the covariant differential operators of M and M respec-
tively. Then the Gauss equation is given by

(1.1) VxY=VxY+H(X,Y)

for vector fields X, Y tangent to M, where H denotes the second fundamental
form. The Weingarten equation is given by

(1.2) Vxt=—A: X+VxE

for a vector field £ normal to M, where A; denotes the shape operator correspond-
ing to £ and V* the normal connection. Clearly 4 gisrelated to Has (A;: X, Y)=
(H(X,Y), &), {,) being the inner product of vectors.

Let the ambient space M be a Euclidean space E’". Let R be the curvature ten-
sor of M. The structure equation of Gauss and Codazzi are given by

(1.3) RX, YVZ=Apyy,.nX—Aux.2yY,

(1.4) (DxHYY,Z)=(DyH) (X, Z)

(respectively), where (Dx H)(Y, Z) is defined as
(DxH)(Y,Z)=VxH(Y,Z)—H(VxY,Z)—H(Y,Vx Z).

We shall denote (DxH)(Y,Z) by (DH)(X,Y,Z).

Next we explain Frenet curvatures of a curve 7: I — M parameterized by the
arc-length s. Let 7; = 7 be the unit tangent vector and put \; = |V; 7;|. If \; van-
ishes on 7, then 7 is said to be of order 1. If A\, is not identically zero, then one de-
fines 7, by V;ri= N on I)={sel: \(s)#0}. Put \y=|V;72+ N\ 7). [f \3=0
on I, then 7 is said to be of order 2. If \, is not identically zero on /,, then we de-
fine 73 by v.;—’fz = —)\] 71 +>\2 T3. Inductively we put )\d= "v.}Td"}‘)\d_] Td_]", andif
Aa=0on I;_, then 7 is said to be of order d. If 7 is of order d, then we have a
matrix equation V;(7y, 72, ..., 7g) = (71, 724 ..., Tq)A On I;_;, where A is a d xd
matrix defined by

—

0 —\ h
T S Y 0

(1.5) A=
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Equation (1.5), {7y, ..., 74}, and \,, ..., A4 are called (respectively) the Frenet for-
mula, Frenet frame and Frenet curvatures of 7.

Now we give the definition of helical immersion. Let «: 7 — M be an arbitrary
geodesic in M. If the curve 7= fov in M is of order d and has constant curvatures
Ais---s Ag—1 (#0), Ay (=0) which are independent of the chosen geodesic v, then
the isometric immersion f: M — M is called a kelical immersion of order d. Heli-
cal immersions are \;-isotropic (cf. [13]). Here we recall the definition of isotropic
immersion (cf. [11]). An isometric immersion f: M — M is said to be \-isotropic if
A(x) =|H(X, X)| is independent of the choice of Xe U M ={XeT, M: |X|=1]}.
In particular, when \(x) is constant on M, f is said to be constant isotropic. It is
easily seen that f is N-isotropic if and only if

(1.6) SAux.vVZ=NSX(X,Y)Z

for every X, Y, Z e TM, where S denotes the cyclic sum with respect to X, Y,
and Z.

2. Helical immersions into E™. In the sequel, M will be a connected complete
Riemannian manifold of dimension n (n=2). Let f: M — E" be a helical im-
mersion of order d into an m-dimensional Euclidean space E". Let v be an arbi-
trary geodesic in M parameterized by the arc-length s. The ith order derivative of
the second fundamental form is denoted by D'H, and (D'H)Y(X, ..., X) is writ-
ten as (D'H)(X'*?). We have the following.

LEMMA 2.1 (see [13, Theorem 3.1, p. 67; Remark, p. 70]. The Frenet frame of
7= fovy is given by
TI="7,
=N No) T B (D TPH) ()
Jorj=2,...,d, where i runs over the range {2,4, ..., j} if jiseven and {3, 5, ..., J}

if j is odd. The coefficients a;;’s are positive constants determined by curvatures
)\1, cees >\d—l OfT.

Let ‘(f1(s), ..., fa(s)) be the first column of the matrix {J exp sA ds. Then the
functions f; (i=1,...,d) defined on R satisfy

Ji=1=N\ f2,
2.1 JSi=Niafici—Nifinn Q=i=d-1),
Ja=Na—1Sa-1

and f;(0) =0 for all i. We easily see that f; is an odd (resp. even) function if / is
odd (resp. even). We define normal vectors £(s; X) and {(s; X) by
£s; X)= 2 [fi(s)Ti(X),

J:even

;(S’X)= E f](S)TJ(X)9

Jjrodd=3

for all X e U, M, where 7;(X) = (\;- --kj_l)_’E aji(Di'zH)(Xi). We now repre-
sent f by the geodesic polar coordinates around a fixed point x.
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LEMMA 2.2 (cf. [13, Theorem 5.4]). For se R, and X e U, M, we have
J(expx sX) = f(x)+ f1(s) X+ &E(s; X) + (55 X).
Proof. Solve the Frenet equation

d
E‘-(Tl,'ﬂs Td)=(7'ly ey Td)A

with initial conditions 7;(0) = 7;(X) fori=1,...,d, where 7(s) = f(exp, sX). We
see that (71(s), ..., 74(5)) = (71(X), ..., 74(X)) exp sA. In particular, we obtain
71(8) = (11(X), ..., Ta(X)) exp sA-e;, where e; =(1,0, ...,0) RY. 1t follows that

7(s)=Ff(xX)+(11(X), ..., 74(X)) S: expsAds-e,

which shows the assertion. ]
Making use of Lemma 2.2, we have the following.
PROPOSITION 2.3. Let 6 denote the distance function on M. Then

2.2) |£G) =S = G(3(x, »))

for every x,y e M, where G=3¢_, f~ Thus we can say that the extrinsic dis-

tance of two points in M is a function of their intrinsic distance. Conversely, if
f:M— E"™ is an isometric immersion such that (2.2) holds for some even func-
tion G, then f is helical.

Proof. For every x,yeM there exists a geodesic s—exp,sX such that
expy 6(x, y)X =y, since M is connected and complete. By Lemma 2.2., we have
FO)~—f(X)=Fi(S)X+E(s; X)+ £(s; X). Since |fi()X +E£(s; X)+ (3 X) P =
>9_, f(s), we obtain (2.2). Conversely, if (2.2) holds with some even func-
tion G, then for any geodesic v in M parameterized by the arc-length we have
l7(s)—7(¢£)|* = G(s—¢), where |s—¢|<e:small. It follows that {i(s), #(¢))=
1G”(s—t) and hence (7*)(s), 7()(s)) (k,¢=1) are constants depending only
on GY%)(0) (k:even). From the definition of Frenet curvatures, we see that fis
helical. ]

THEOREM 2.4. Let f: M — E" be a helical immersion of a connected com-
plete Riemannian manifold M into a Euclidean space E'". If M is compact, then
M is a Blaschke manifold (i.e., for each x e M, the distance from x to its cut
points is constant; for details, see [11). If M is noncompact, then every point of
M is a pole.

Proof. Let x e M be arbitrarily chosen and - be a unit speed geodesic such that
v(0) =x and y(0) = X. It suffices to prove that if y(s¢) is a conjugate point of x,
then fi(s¢) =0 and G’=2f. If this assertion has been proved, then the smooth-
ness of the function | f(x) —f(v(s))|? of s for each geodesic v issuing from x im-
plies that when M is compact it is a Blaschke manifold and, when M is noncom-
pact, exp,: 7, M — M is a diffeomorphism (see the proof of Theorem 6.2 in [13,
p. 77]). Let Jy be a Jacobi field along v such that
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Jy(0)=0 and VyJy=Ve{X}'NU,M.

Such Jacobi field is obtained from the variation (s, )~ exp, sX(6), where X(0) =
cos 0. X +sin 8V. In virtue of Lemma 2.2, we find

d
(2.3) Jy(8) =J1($)V+ -5 {E(s; X(0)) + £ (55 X(0))) lo=o0-

Thus if Jy(s¢) =0, then fi(s¢) = 0. We next prove G’ =2 f;. Equation (2.1) can be
rewritten as

‘S ees SO =A'(S1s - f)+'(1,0,...,0).
Since G’'=2Y f; fi by the definition of G, we have

G’ =2(f1, .., J) ' UTs -0 SO
=2(f15 e s S A (S1, --0s f)+(1, 0, ..., 0))
=2f1,
where we have used the fact that A is skew-symmetric. ]

Next we recall the definition of “geodesic normal sections” (cf. [3], [4]). Let M
be a connected n-dimensional (n = 2) submanifold of an m-dimensional Euclid-
ean space E"'. For xe M and X € U, M, the vector X and the normal space N, M
at x determine an (s — n+1)-dimensional affine subspace E(x, X) in E" through
x. The intersection of M and E(x, X) gives rise to a curve + in a neighborhood
of x which is called the normal section of M at x in the direction X. If every nor-
mal section at arbitrary point is a geodesic of M, then M is called a submanifold
with geodesic normal sections.

In [19], Verheyen proved that if M is a submanifold with geodesic normal sec-
tions in E’, then the inclusion ¢: M — E’" is helical. The converse is clear from
Lemma 2.2. Thus we have the following.

COROLLARY 2.5. Let M be a connected submanifold with geodesic normal
sections in E"'. If M is compact, then M is a Blaschke manifold. If M is noncom-
pact, then every point of M is a pole.

Concluding this section, we note the following.

LEMMA 2.6 (cf. [13, Corollary 6.3]). Let f: M — E" be a helical immersion of
a connected complete Riemannian manifold M into E'. If f is not injective, then
M is isometric to a sphere 8" and f= fox, where w: S" - RP" is the covering
projection and f: RP" — E™ is a helical imbedding. Moreover, M is simply con-
nected except for the case that M is diffeomorphic to RP".

Proof. By the same argument as in the proof of Theorem 6.99 ([1, p. 176]) and
using Berger’s theorem ([1, Appendix D., p. 236]), we have the first assertion. For
the second assertion, we have only to consider fox: M — E™ (where 7w: M — M is
the universal Riemannian covering) and note that fo« is also helical. L]

In virtue of Lemma 2.6, we may assume that the helical immersion f: M - E"
is an imbedding.



358 KUNIO SAKAMOTO

3. Helical imbeddings of odd order. At the beginning of this section, we
study the functions fj, ..., fq4. The straightforward computation shows det A =
AN\]---\%_,=0if d iseven and rank A =d —1if d is odd. Thus the normal form
of A is given by
d/2
@ R(e;) if d is even,
i=1
(d=1)/2

R(a;)DO if d isodd,

i=1

(3.1) T 'AT=

with some orthogonal matrix 7", where

0 o
‘R‘“"’=(—a. N
1

and, in the case d is odd, @0 means that the (d, d)-element of T~ 'AT is zero.
We have (cf. [7]) the following.

LEMMA 3.1. If i is even then

) (O<O£1$'"S()l[d/2])

[d/2]
fi(s)= kEI vix(1—cos as),
and if i is odd then
d/2
> vig sin o s (d: even),

K=1
Jils) = (d-1/2

vir Sinoags+v;s (d:odd),
k=1
where v;;, and v; are constants determined by \,, ..., N\q_1. Moreover we see that
o, ..., Apgy2) are all distinct and v; # 0 for each odd integer i (1=i=d).

Proof. By the definition of f; and (3.1), we easily have the assertion for f;.
In order to prove that f,..., fy are linearly independent, let ¥ a; f; =0. Since
f20)=0 (j<1) and f;(0) = \,---\;_; for each / because of (2.1), we have
inductively @y = --- =a,;=0. Thus we easily see that «y, ..., o[q4/2) are all distinct
and that »; # 0 for some i. Using (2.1), we have

N1 Vi—1—Njviy1=0 (i:evensd—l)
if d is odd. It follows that »; 0 for all odd integers i (1<i=<d). 0

Let f: M — E' be a helical imbedding of order d. Assume that d is odd. Let -y
be a unit speed geodesic in M such that y(0) =x and y(0) = X.

LEMMA 3.2. If Jy is a Jacobi field along v such that Jy(0)=0 and VxJy=
Ve {X}"NU,M, then we have lim; _, , . |Jy| = + .

Proof. In the proof of Theorem 2.4, we have shown that Jy(s)= fi(s)V
mod N, M. It follows that |Jy(s)|=|fi1(s)|. Furthermore, Lemma 3.1 implies
that lim; _, 4 | f1(s)| = +oo. O
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THEOREM 3.3. If f: M — E" is a helical imbedding of odd order of a connect-
ed complete Riemannian manifold M into E", then M is isometric to a Euclidean
space E" and f is totally geodesic.

Proof. At first, we note that M is noncompact because 6(x, y) = | f(x)— (V)|
for every x,yeM, and hence 8(v(0),v(s))*=]v(0)—v(s)|*=G(s) » + as
s — +oo. Therefore, by Theorem 2.4, M is diffeomorphic to E” and has no con-
jugate points.

We shall prove
3.2) lim |H(y, V*)[=0,

5§ — +oco

where V*=J, /|Jy|. By Gauss equation (1.1), we have
Vi Jy=V;Jy+H(¥, Jy)
=V, Jy+H, V) ||

We see from (2.3) that Jy is a linear combination of fi, ..., f4 whose coefficients
are constant vectors at x. Taking account of Lemma 3.1, the length of V,Jy
(=d/dsJy) is bounded. So |H(v, V*)||Jv| is bounded. We conclude, from
Lemma 3.2, equation (3.2).

We next prove

3.3) im (H(y,vy), H(V* V*))=0.

§— +o0

Using Gauss and Weingarten equations (1.1) and (1.2), we find

d? _
—JV= V.\;,ZJV

ds?
= V2 Ty +2H (¥, Ve Jv) — Ane, s 7+ (DH) (7, 7, Iv).

Since Jyp is a Jacobi field, we have VfJV=R('}'z, Jy)y. It follows from Gauss’
structure equation (1.3) that
dZ
ds?

Thus, by Lemma 3.1,

Jyv=—Aune,nJIv+2H (v, V3 Jy) +(DH) (v, 7, Jv).

2

o> |—sIv|= A, » vl = 1AnaG,H» VI Iv]-

Using Lemma 3.2, we obtain
im |Apy,q4) V*]=0.
S — oo
Since
[KH (v, v), HV*, V*))| = [KApe,» V5 V|
=|AuG,»V*,

we conclude (3.3).
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The helical imbedding f is A\j-constant isotropic, and hence
CH(¥,7)s HV*, V)4 2|H(y, V)P =\

because of (1.6). Applying (3.2) and (3.3) to this equation, we obtain A\; = 0 which
shows that f is totally geodesic. ]

We can say that a connected complete Riemannian manifold does not admit a
helical immersion into a Euclidean space such that the order is odd and greater
than three.

4. Helical imbeddings of even order. As before, let f: M — E" be a helical im-
bedding of order d. The main purpose of this section is to prove that d is even if
and only if M is compact. In the preceding section, we have shown the if part.
Thus we assume that d is even and M is a connected complete noncompact Rie-
mannian manifold. So M has no conjugate points and every geodesic in M is a
minimizing one in virtue of Theorem 2.4.

LEMMA 4.1. There exists a divergent sequence {s;}; - such that

lim fi(s;)=0 fori=1,2,...,d.
K — oo
Proof. Let vy be a unit speed geodesic in M and x =v(0). Put x;y =~v(k) (ke
Z ). Since G is bounded (Lemma 3.1), we see from (2.2) that f(x;) is bounded.
Therefore a subsequence { f(yx)} of {f(xx)} converges. Put 7, = 6()x, x). Then

lim G(tx—ti-1)= lim /)= fe-)]*=0.
Define a sequence {u} by uy =1t —t,_; (=1) forevery ke Z, . If {u,} is bounded,
then a subsequence {u;} of {u;} converges. For this subsequence {uf} we have
G(lm up)= lim G(uz)=0, lim u;#0,
k — o0 k — co k— o
which contradicts the assumption that f is an imbedding. Thus the sequence {u;}
has a subsequence {sx} which diverges and satisfies limy _, ., G(sx) = 0. Noting that
G =3X¢_, f7 we obtain the assertion. O

Let v be a unit speed geodesic in M such that y(0) =x and y(0) = X. Since M
has no conjugate points, Jacobi fields {Jy: J,(0)=0, VxJ,=Ve{X}'} along vy
span the subspace {y(s)}* of T, )M at each point y(s) (s=0). Let Jy be the Ja-
cobi field along « satisfying J;(0) = Ve {X}* and VyxJp =0. There exists a sym-
metric transformation Sy (s) acting on {X}* such that JJ(s) = JIsy(s)v(s) for each
se R—{0}. Clearly Sx(s) is smooth with respect to s. The Jacobi field J is in-
duced from a variation of geodesics (s, 8) — expg ) sX*(0), where 3(0) is a curve
in M which satisfies 3(0) =x and 8(0) = V and where X*(0) is the parallel vector
field along B8 such that X*(0) = X. Making use of (1.1), (1.2), and Lemma 2.2,
we have

(41) J;(S) = V_'A.E(s;X) V—‘Ag-(s;x) V
mod N, M (cf. [15, Theorem 2.1]). It follows from (2.3) and (4.1) that
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1
(4.2) Sx(s)= m{I“Ag(s;X)—Ai'(s;X)}
for each s e R—{0}, where we note that A, xy and A, x) leave { X}* invariant
(cf. [13, Lemma 3.3, p. 68]). Let g; denote the Riemannian metric induced on the
unit tangent sphere U, M by the map U, M — (geodesic sphere with center x and
radius s) sending V to exp, sV. By using the same argument as in the proof of
[14, Proposition 2.3, p. 200] or [16, Lemma 3.3], we have the following.

LEMMA 4.2. The derivative Sx(s) of Sx(s) satisfies
& (Sx(s)V, W)= —<V, W)
forevery V,We{X}*andseR,.
The following is a key lemma.

LEMMA 4.3. There exists a (unique) upe R, such that {(Sxy(ug)V,V)=0 for
each Xe UM and V (#0) e {X}*.

Proof. Consider a function se R, —» {(Sx(s)V, V). This function is monotone
decreasing because of Lemma 4.2. Furthermore, we have £(0; X)=¢(0; X)=0
and limg _, 4o f1(s) = +0 since f{(0) =1. Thus we see that

Iim (Sy(s)V, V)= +co.

s— +0
On the other hand, we know from Lemma 4.1 that
lim fi(sx)=0 and Ilim &(sp; X)= lim {(s4; X)=0

k— 4o Kk — +oo k— +oo
for some divergent sequence {sx}. Since {(Sx(s)V, V') is monotone decreasing,
(4.2) shows that

lim (Sx(s)V, V)= —oo.
S — 4o
Thus we have proved that there exists a unique ug € R, such that {(Sx(u)V, V) =0.
[

REMARK. We can explain Lemma 4.3 geometrically as follows. Let 8 be a unit
speed geodesic such that 8(0) =x and 8(0) = Ve U, MN{X}*. Consider Jacobi
field J=J;’5—-JSX(,,0)V along -, where ug is taken as in Lemma 4.3. This Jacobi
field satisfies J(up) =0, J(0) =V, and Vy J = —Sx(up) V. Since {(Sx (1) V, V>=0,
we have VxJ € {V'}*. Therefore v(uy) is a focal point of 8 along y. Conversely if
v(up) is a focal point of 8 along v, then there is a Jacobi field J such that J(0) =V,
J(ug) =0, and VxJe {V}*. Let J=Jp+Jyw, where W= VyxJ. Since J(uy) =0, we
obtain f1(uo){Sx(uo)V+ W}=0. Thus if fi(ug) #0 then W= —Sx(uo)V, and
hence (Sx(ug)V, V)=0.

By using Lemma 4.3, we show (cf. [5]) the following.

THEOREM 4.4. Let f: M — E" be a helical imbedding of a connected complete
Riemannian manifold M into a Euclidean space E'". If the order of f is even, then
M must be compact (and hence a Blaschke manifold).
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Proof. Assume that M is noncompact. Let v, X e U, M and Ve {X}* (V#0)
as before. By Lemma 4.3, there exist ug, #;€ R, such that {(Sy(ug)V, V)=
(S_x(u)V,V)=0. Consider a broken Jacobi field

J;—JSX("O)V ifOSSSu(),
J)=1 . :
JV—JSX(—ul)V if —u=s=<0,

along . The Jacobi field g satisfies J(0)=V, J(up)=Yg(—u;) =0, $,(0)=
—Sx(ug)V, and §-.(0)= —Sx(—u;)V, where g, (resp. §-) denotes the right
(resp. left) limit of the covariant derivatives of § with respect to . Let I be the
index form defined on all piecewise smooth vector fields along v which vanish at
v(uo) and y(—u;). Since there is no conjugate point of y(—u;) along v, the index
form is positive definite (cf. [2]). However, we have

I(g, ) =<{=Sx(—u)V+Sx(uo)V, V)
= (S-—X(ul)Va V)
=0,

which is a contradiction. ]

In [13], the author showed that if f: M — S(1) is a helical immersion of
a connected complete Riemannian manifold M into a unit sphere S(1), then
tof: M — E is a helical immersion of even order, where +: S(1) » E is the in-
clusion. We therefore have the following.

COROLLARY 4.5, Every connected complete noncompact Riemannian mani-
fold does not admit a helical immersion into a sphere.

Moreover, we obtain the following from Theorems 3.3 and 4.4.

COROLLARY 4.6. Let M be a connected complete submanifold with geo-
desic normal sections in E". If M is noncompact, then it is a totally geodesic
submanifold.

Now we explain helical immersions into a sphere which were given by Tsukada
[18]. Let M be a compact rank one symmetric space. Let V; be the kth eigen-
space of the Laplace operator on M and let dim V; = m(k)+ 1. We define an inner
product {, ) on Vi by (¢, ¢¥)=1{,, ¢y dx, where dx denotes the canonical mea-
sure of M. Taking an orthonormal base {¢¢, ..., dmk)} in Vi, we define a map
@ M — E™PF via & (x) = (¢0(X), .. s Gmix)(x)). Then, under a suitable ho-
mothety on M, &, becomes an isometric immersion. Furthermore, it is verified
that &, (M) is contained in a hypersphere $”7%¥) in E”®+1 and that &, : M — S™*®
is minimal and helical. The isometric immersion ®; is called the kth standard
minimal immersion into S™® (cf. [1], [20]). Tsukada defined a helical immersion
K, of M into Sm(k1)+---+m(k,)+r—l by

Pr, ok, (X) = (€1 Px (X)), .05 € Pp (X))
e Rm(kl)—f- +m(kr)+r’

.....

C], cesy Cr>Oc

In Corollary 3.5 ([18, p. 281]) he showed the following.
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THEOREM T. Let f: M — S be a helical immersion of a compact rank one sym-
metric space into a sphere. Assume that f is full. Then there exist nonnegative
integers ki, ..., k, such that f is equivalent to ¥y, .. , where ki, ..., k. are dis-
tinct and may contain zero (when k =0, ®, is considered as a nonzero constant
map).

We shall apply Theorem T to a helical imbedding f: M — E"" of a compact Rie-
mannian manifold M whose dimension is two or odd.

THEOREM 4.7. Let f: M — E"™ be a helical imbedding. Suppose that M is com-
pact and that dim M =2 or odd integer. Then M is isometric to a sphere or real
projective space and f is equivalent to 1> ®y . i, whereky, ..., k. are certain non-
negative integers and 1: S — E" is the inclusion map.

Proof. By Theorem 2.4 and Berger’s theorem [1, p. 236], we see that M is iso-
metric to a sphere or real projective space (see also Theorem 7.23 [1, p. 186]).
Thus we have only to prove that f is a helical immersion into a hypersphere S
of E™. Let Cy be the centroid of f:

1
Cr= vol(M) SM fdx,

which will become the center of S. Put r?(x)= 1f(x)— Cfﬂ2 for x e M. In order
to prove that r2 is constant, we compute V.r? for any Ve T, M. We have

1
—2—V-r2=<V,f(x)-cf>

1
= W<V’ SM (fC)—=f(») dy>

1

EETIvoY SM V, f(x)—F(»)ydy.

Let L, dX, and (s, X) be (respectively) the diameter of M, the canonical mea-
sure on U, M, and the value of +/det g; at X € U, M. Then we obtain

1 L
I
“4.3) 2Vol(M)V r o Ufol(s)(V,X)G(S,X) dsdX,
where we have used Lemma 2.2. Since M is isometric to a sphere or real pro-
jective space, 0(s, X) is independent of X € U, M. Thus the right-hand side of
(4.3) vanishes. We have proved that V-r2=0 for every Ve T, M, and hence r?
is constant. ]

COROLLARY 4.8. Let M be a compact submanifold with geodesic normal sec-
tions in E'". If dim =2 or odd, then we have the same conclusion for the inclu-
sion map M — E"™ as Theorem 4.7.

Corollaries 4.6 and 4.8 generalize results obtained in [3], [4], and [19] (see, €e.g.,
[19, Corollary 3]).

REMARK. Chen and Verheyen conjectured that each submanifold with geode-
sic normal sections in £ is an open part of an n-plane of E” or is contained in
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a hypersphere of E™. Perhaps C, will be the center of such sphere. For instance,
if M is a D’Atri space (i.e., 0(s, X) =60(s, — X)), then the right-hand side of (4.3)
vanishes. However, it seems difficult to show that if f: M — E'" is a helical im-
mersion then M is a D’Atri space.
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