ON A THEOREM OF GIFFEN

Ruth Charney and Ronnie Lee

0. Introduction. This paper is based on some ideas of Giffen concerning the
Karoubi conjecture. Let R be a ring with unit and an involution. Let GL(R) =
lim GL,(R) be the infinite general linear group and .O(R) =1im (O, ,(R) be the
infinite orthogonal group where e= *+1 and O, ,(R) is the group of automor-
phisms of R?” preserving the e-hermitian pairing

oy =x| 2 |5
X, y)= [dn O]y-

Applying the plus-construction to the classifying spaces BGL(R) and B . O(R) of
these groups we obtain the classifying spaces of algebraic K-theory and hermitian
K-theory, respectively.

During the early development of K-theory, Karoubi studied the relation between
these two theories. The natural inclusion .O,, ,(R) — GL,,(R) and the hyperbolic
map GL,(R) - O, ,(R) which takes

%_0_
¢ [0 (g')—l]’

induce mappings B.O(R)" - BGL(R)* and BGL(R)T - B.O(R)". Motivated
by periodicity in topological K-theory, Karoubi [7] conjectured that the homo-
topy fibers [ V(R) and [ U(R) of these maps are related by a homotopy equiva-
lence, Q@ U(R) = _V(R). This conjecture was proven to be true by Karoubi and
Loday ([9], [10]) under the assumption that 2 is invertible in R.

More recently, Giffen attempted to reinterpret this conjecture in a categorical
framework. For this, he introduced a category .W(R) intended as a model for a
delooping of A U(R). These ideas have never appeared in print, but have signifi-
cant implications in light of recent work by the current authors. The main pur-
pose of this paper, therefore, is to describe the category .W{(R) and to prove that
there exists a homotopy fibration of infinite loop spaces

0.1) KO(R)XBGL(R)“*—»KJI(R)XBEO(R)J‘—)|€W(R)|

as predicted by Giffen.

Our own interest in this problem stems from the study of compactifications of
moduli spaces. In [5], we construct maps from the Satake compactification of
Siegel space, Sj, to certain subspaces |_W,(Z)| of |_;W(Z)|, and prove that
these maps induce isomorphisms on rational cohomology. Using a special case of
the fibration (0.1) (proved in the appendix of [5]) and computations of Borel, we
are able to determine this cohomology in degrees < n. Recent work of the authors
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170 RUTH CHARNEY AND RONNIE LEE

suggests that this relation between .W(R) categories and Satake compactifica-
tions can be greatly generalized and, in some cases, sharpened to a correspon-
dence of integral cohomologies. This is our motivation for the current work.

1. The category . W(R). Let R be a ring with unit and an involution r - F (i.c.,
Fr=r and (rs) =5F). Fix e= *=1. For any right R-module M, the dual module
M*=Hompz(M, R) will be viewed as a right R-module via (f-r)(m)=rf(m).
There is a natural pairing

prp: (MOM* )X (MDM*) >R
(m, f)X(n, g)~g(m)+ef(n).

In particular, if M is a free R-module with basis e, ..., e,, and ef, ..., e} is the
dual basis for AM*, then with respect to this basis, the pairing takes the form

(X, ) = x o |1,1._,
PMm X, Y) = GIn 0 y .

We denote by H(M) the module M@ M* together with the pairing us,. In gen-
eral, for any right R-module P and pairing \: P X P — R we say that (P,\) is a
hyperbolic R-module if there exists an isometry (P, \) = H(M) for some finitely
generated projective R-module M. The isometry classes of hyperbolic R-modules
form a commutative monoid under direct sum, H(MY®D H(N)=HM®N). The
Grothendieck group of this monoid will be denoted K¢ (R).

The set of hyperbolic R-modules (P, \) constitute the objects of the category
W(R). To define morphisms in ;W (R), recall that a submodule L C P is isotropic
(with respect to \) if L < L+, where

Lt={xeP|N\x,y)=0vyel}.
For such an L, \ induces a pairing
Ae:LY/LxLY/L—R.

A morphism (P’,\’)— (P, \) in [ (R) consists of a pair (L, ¢), where L is an
isotropic direct summand of P and ¢: L*/L — P’ is an isometry of (L*/L,\;)
to (P’, \’). (It follows that (L*/L,\;) must be hyperbolic.) Note that (L, ¢) is
an isomorphism in MW/ (R) if and only if L =0 and ¢: P — P’ is an isometry. In
particular, if (P, \) = H(M) with M a free module of rank #, then Aut(P, \)=
¢On, n(R).

For L C P an isotropic direct summand, we will call a summand L, C P a hy-
perbolic dual for L if LNLp={0} and the map

L®Lp > LOL*
x5, y) = (X, N)) N(xX)=N(x,»)

is an isometry of (L@ Lp, N\ | L@r,) to H(L). Such hyperbolic duals always exist
[3, §2] and give rise to isometries P=(L"NLH)DL@DLp=L"/LOL®L*=
P'@H((L).
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The direct sum operation (P, \)® (P, N')=(P@®P’', \@®N\’) gives rise to an as-
sociative H-space structure on W (R) with the identity element given by the zero
module. The requirement that an object (P, \) in W (R) be hyperbolic insures
that there exists a direct summant M C P with M * = M, and hence there exists a
morphism (M, idg): 0 — (P, N\). It follows that W (R) is connected and so | W (R)|
is an H-group, that is, an associative H-space with homotopy inverses (cf. [6,
p. 227)).

As noted in the Introduction, there is a map BGL(R)" - B.O(R)™" induced by

the group homomorphism
g 0
& ol@H |

Combining this with the homomorphism K (R) - K{/(R) induced by P — H{P),
we get a map

h:Ko(R)XBGL(R)T - K (RYyxB.O(R)™.
Our main theorem is as follows.
THEOREM. There is a homotopy fibration of infinite loop spaces
Ko(R)X BGL(R)* 5 K§(Ryx B.O(R)* - | W(R)|.
The proof is found in Section 3.
2. Preliminaries.

2.1. The proof of the main theorem uses category-theoretic techniques devel-
oped by Quillen in [6] and [12]. We first recall some terminology and results from
[12]. For a functor 6: A — B and an object b in B, there are three “fiber catego-
ries” as follows.

(i) 6 ~'(b): This is the category whose objects are {a e obj A | 6(a) = b}, and
whose morphisms @ = a’ are morphisms in A such that 8(«) =id,.

(ii) 6/b: The set of objects of this category is {(a, 8(a) —gb) |laeobj A, Bis a
B-morphism}, and morphisms (a, (a) E»b) % (a’,0(a’) LN b) are A-morphisms
a > a’ such that the diagram

0(a)—2 6(a’)

b
commutes in B.

(iii) b\ 0: Here we take the objects to be {(a, 6(a) gﬁ b)|aeobj A, B8isa B-mor-
phism}, and morphisms (a, 8(a) £ b) % (a’, 0(a’) < b) to be A-morphisms a% a’
such that the diagram

0(a) —=o 9(a")
N S
b

commutes in B.
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For each b, there are natural inclusions
6~ 1(b) > b\6 0~ 1(b)—0/b
a(a,0(a)Sb)  a-(a,0(a)&b)
and projections
b\0>A4  6/b3 A
(a,0(a) > b)—a (a,0(a) « b))+ a.
Associated to a morphism B: b— b’ in B is a base-change functor
B*:b'\0—-b\0
(a,0(a) L b’)— (a,0(a) <L b).
and a cobase-change functor
B«:60/b—06/b’

(a,0(a) b b) - (a,0(a) 22 b7y,

In Theorem B of [12], Quillen proves that if every base-change functor is a homo-
topy equivalence then the diagram

b7r
b\o — A
l le
b — B

is homotopy cartesian, or in other words the natural map from |b\0| into the
homotopy fiber F, of |#| over b is a homotopy equivalence. For the proof of our
main theorem we will need a homological version of Quillen’s theorem.

2.2. PROPOSITION. Suppose 6: A — B is a functor such that every base-change
(resp. cobase-change) induces isomorphisms on homology. Then for every ob-
Ject b € B, the natural map from |b\0| (resp. |0/b|) into F, induces isomorphisms
on homology.

Proof. The proof follows Quillen’s [12] proof of Theorem B, replacing the no-
tion of quasi-fibration by that of homology-fibration (McDuff and Segal [11]).
In particular, Proposition 4 of [11] substitutes for Quillen’s main lemma. We leave
the details to the reader. O

2.3. REMARK. Let §: A — B be as in the proposition. If 4 and B are monoidal
categories and 6 is a monoidal functor, then 0\ @ inherits a monoidal structure
and the natural map |0\ 8| — Fp is an H-space map. If, in addition, 7o(0\ ) is a
group under the monoid law, then |0\@| and F; are H-groups and the proposi-
tion implies that |0\ 8| — Fy is actually a homotopy equivalence.
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2.4. We next recall the “localization” construction from [6]. Suppose S is a
monoidal category all of whose morphisms are isomorphisms, and suppose there
is a left action of S on a category X, S XX & X. We can form the “localized” cat-
egory S "X whose objects are pairs (A4, B) with 4 € obj S, B € obj X, and whose
morphisms (A, b) — (A’, B’) are equivalence classes of triples (C, «, 8), with C e
objSand a: C+A4— A’, 3: C+ B — B’ morphisms in S and X, respectively. The
equivalence relation is given by (C, o, 8) ~ (C’, «’, B8’), if there exists an isomor-
phism vy: C= C”’ in S such that the diagrams

c+A cva c+B% o4 B
v

commute. The homology groups of X and S~ '.X are related by the equation
H(S7'X)=mo(S) " Hu(X).

If S acts invertibly on X (i.e., if C+: X — X is a homotopy equivalence for every
C), then the inclusion X > S~'X, A (0, A), is a homotopy equivalence. If T is
another monoidal category and f: T— S a monoidal functor, then f induces an
action of Ton X and a functor f~!'X: T 'X > S™'X. If fis cofinal (i.e., if for
any A eobj S, 3B eobj S and C e obj T such that A+B= f(T)), then f "' Xisa
homotopy equivalence.

Of particular interest is the case where X = S with the action given by the mo-
noid structure of S. If S is a symmetric monoidal category, (i.e., if the monoid
operation satisfies certain commutativity and associativity relations; see [1]), then
|S~'S| is an infinite loop space. For example, the categories

S = finitely generated projective R-modules and isomorphisms,
Sy =1Iso W(R)=hyperbolic R-modules and isometries
are symmetric monoidal and give rise to the infinite loop spaces
|S7!S| = Ko(R)x BGL(R)",
|Si'SH| = K§'(Ryx B.O(R)*.

The functor H: S — S which takes P H(P), a- a@®a*”), induces an infinite
loop space map |S_’S| — |SﬁlSH| which clearly corresponds to the map 4 de-
fined in Section 1.

The category W= W(R) is also a symmetric monoidal category under @ and,
as observed in Section 2 above, the action of W on itself is invertible. It follows
that [W|=|W ~'W| is an infinite loop space. Letting 7: Sy; — W be the inclusion
functor, the functors

-1 =17
2.4.1) sl N s, T S wlw

induce infinite loop-space maps
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Ko(R)x BGL(R)* % K§(RYyx B.O(R)* — |W|.

The proof of the main theorem consists in showing that this diagram represents
a homotopy fibration.

3. The fibration sequence. We now restate and prove the main theorem.
3.1. THEOREM. There is a homotopy fibration of infinite loop spaces
Ko(R) xBGL(R)*iK()HxBEO(R)Jf-» | W(R)|.

Proof. The hyperbolic functor H: S — S, and the inclusion functor 7: Sy, - W
are both cofinal, so it follows from the discussion in 2.4 that the diagram (2.4.1)
is homotopy equivalent to the diagram

s-1s S g-1g, ST s
Now the action of S on W,
A+P,N)=HA)DLP,N)=(ADA*DP, p4DN)

is not only invertible, it is actually trivial in the sense that for any A, the transila-
tion A+ : W — W is homotopic to the identity. The homotopy is induced by the
natural transformation 74:idy — (A+),

na(P)=(A4,idp): (P, \) > (ADA*®P, pa®MN).

This enables us to define a homotopy inverse ¢ to the inclusion W — S~ !'W,

yv:ST'wow
(B,P,\) » (P,N)
(A,0,8) | 1 Benyg(P)

(B, P',N') = (P",\).

Letting 8: S ~1.S;; — W be the composite functor 8 = ¢+ (S ~'7), it follows that the
homotopy fiber Fy of |0 is the same as that of |S~'7|. To identify this fiber, we
will apply Proposition 2.2.

3.2. LEMMA. 0: S!S, — W satisfies the hypotheses of Proposition 2.2.

3.3. REMARK. As noted below, the fiber categories (P, \) \ 0 are all of the form
S~1((P, N)\7) where (P, \)\ 7 is a groupoid (i.e., every morphism is an isomor-
phism). Up to natural isomorphism, a groupoid C is simply a disjoint union of
classifying categories of groups

C = ]1 Aut(x,),
{xgl
where the union runs over a set of representatives {x,} for the isomorphism classes
of objects of C. Suppose now that R is a ring such that every finitely generated
projective module is free. Then the groups Aut(x) for an object x in (P, A\)\7
are simply matrix groups of the form
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X % * *

0 1 *x 0 . o
Gnk=18€Onn(R) | g=|~ (;‘ %o | X=&XH

0 0 * I

In this case, Lemma 3.2 reduces to the claim that for £’ < k, the maps

11_1’)1’1 Gn, k' l!{,n Gn,k’
n n
defined by the inclusions G, x-C G, x (as subgroups of O, ,(R)), induce iso-
morphisms on homology. The reader who is not completely comfortable with
category theory may wish to consider this special case and translate the arguments
below into group-theoretic arguments.

Proof of Lemma 3.2. For any object (P, \) in W, the requirement that (P, \)
be hyperbolic means that P contains an isotropic subspace M such that M =M ",
Hence (M, idy) is a morphism in W from the 0-object to (P, N\). It follows that
any morphism 8: (P, \) — (P’, \’) fits into a commutative diagram of the form

(P,\) —— (P",\)

(M,?(M /A’/f'.id)
0.

It therefore suffices to show that all the base-change maps
(M, id)*: (P,N)\0—0\¢6

induce isomorphisms on homology.
Let 7: Sy — W be the inclusion as above. It is straightforward to verify that for
any (P, \), (P,A\)\0=S"'((P,\)\7), where S acts on (P,\)\7 by

T+(P,\) S (P, \)] = [(P, \) 20 (@ (7, W)

Moreover, for any morphism 8 in W, the induced base change 3* on —\ 7 com-
mutes with the action of S and the corresponding map S ~!8* is precisely the base
change on —\#6.

We remark that there are also right actions of S on S;; and W. On W, this ac-
tion is invertible (in fact trivial) via the natural transformation p7:idy — (+7),

pr(P)=(0®T,idp): (P, N\) = (P,N)YDH(T),
so we have an induced right action on (P, \)\7:

aepr(P’)
—_—

[(P,N) > (P, N)+T=[(P,\) (P, NY®H(T)].

Equivalently, this action may be viewed as the composite p7(P)*- Ry of the functor

(P, M\7~5 (P, N@H(T)\7,
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which adds H(T') (on the right) to both the target and source of an arrow, and
the base-change functor

%
H(T® P, M\ 225 (P, )\ 7
induced by p7(P). It follows from the fact that pr is a natural transformation
that these two definitions are equivalent. Clearly, the right action of Ton (P, \)\ 7
is naturally isomorphic to the left action, hence inverting the left S action gives
rise to a homotopy equivalence

(+7): (P, N)\0— (P, N)\0.

Now consider an arbitrary morphism 8=(M,~vy): (P, \N') > (P,\) in W. In
addition to the base change functor, 8*: (P, \)\7— (P’, N\ )\ 7, we can define a
functor B¥: (P’,\)\7— (P, N)\7 as follows. Using the right action of M on
both W and Sy we get a functor

Ry: (P, NIN\N7 = (P, N)@H(M)\7

(L, ) (L, p)®id
[(P",N) 5 (P, N)] = [(P, N) @ H(M) — =00 (P \")@® H(M)].
On the other hand, (P’, N)Y®H(M) is isomorphic (in W) to (P, \). Choosing an
isomorphism 6: (P,\) > (P, N )Y@ H(M), we thus get a functor

6*oRpr: (P, N)\7— (P, N\ 7.
In particular, we can obtain such an isomorphism 6 by choosing a hyperbolic
dual space M C P for M (cf. §1). Then
P=(M'NMYOMOM=M*/MOMDM*

(where the second equal sign is actually a canonical isomorphism), and we set
6 = v@idps@ar- (Recall that 8= (M, v) so yv: M*/M — P’ is an isometry.) The
functor 8*- R, arising from this choice of & will be denoted 8. The significance
of this choice of § is that the composite map 6-8: (P’,\') > (P, N)DH(M) is
simply the morphism py, = (0@ M, idp-). Thus the composite

sM B .,
(P, NI\7— (P, M)\ 7— (P',N)\7
satisfies
B*oBM = B*e8*s Rpr = plyo Ry = (+M),

where (+M) is the right action of M. It follows from the discussion above that
the induced composite S ~!8*- S ~!8¥ is a homotopy equivalence.

The situation with the reverse composite S —1gM, s-13* is slightly more com-
plicated. For this we restrict our attention to the case

(P',\N)=0, B=(M,id): 0 — (P, N).

As noted at the beginning of this proof, it sufﬁcgs to consider this case. Let
B=(M®PDO,id): (P,\) > (P@P,\@®\). Then 0®M is dual to 0DM in PDP.



ON A THEOREM OF GIFFEN 177

Consider the diagram
(P, M\7 —— O\7

poOM | 1 ¥

(POP,NDNM\7 SN (P, M\ 7.

By the previous paragraph, the composite 3*- 32®* becomes a homotopy equiva-
lence after inverting S. Unfortunately, the diagram does not commute. (For exam-
ple, the object (P, \) S (P, \) in (P, )\ 7 goes to (P, \) M08, (p \y@H(M)
under one composite and to (P, ) LMD, (p \y@® H (M) under the other.)
However, if we let 0: P@P — P@® P be the isometry which switches the factors,
then we obtain a commutative diagram

(P, M\ 7 ——> O\7
po®M | 1 sM

POPAON\T =2 (P, M\ 7.

On the other hand, since ¢ is an isomorphism in W, the induced base change
o* induces the identity map on homology. This follows from the fact that for
y eobj W, the category y\ 7 is a groupoid (every morphism is an isomorphism),
and o* acts trivially on wo(y\ 7). In other words, restricting to a skeletal sub-
category of y\ 7, we get a disjoint union of classifying categories of groups with
o* acting on each component as an inner automorphism. "

Thus we conclude that the map induced on homology by 8« 3*=*.0 oB‘)@M
is the same as the map induced by B*o ,3269“ Inverting S, therefore, we see that
SIgM. 513+ induces an isomorphism on homology. Combining this with the
fact that S ~'8*>S™!8M is a homotopy equivalence, we see that both maps, S ~'3*
and S7!8M  induce isomorphisms on homology. This completes the procf of
Lemma 3.2. ]

It now follows from Proposition 2.2 and Remark 2.3 that |0\#| is the homo-
topy fiber of |#|. It remains to compare O\0=S_l(0\’l') with S~!S. For this,
note that the objects of 0\ 7 may be viewed as triples

(M, id)
(MyP’ )\) = (0——'_>(P’ )\))
such that M C P is a summand with M+ =M. In this notation, a morphism
(M, P,\)y—>(M’, P’,\") in 0\ 7 is simply an isometry «: P = P’ such that «(M) =
M’, and the action of S on 0\ 7 is given by
T+(M,P,\)=(TOM, TOT*OP, ur®DN).
Clearly, then, M~ (M, H(M)), o~ H(xa), defines a functor A: S—0\7 and a
factorization of H,
S —— 0\~

H\ /07r
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where o7 is the projection (M, P,\) — (P, \) as in 2.1. Inverting the action of S,
we get a commutative diagram

-1

S8 25§10\ r) =0\0
S—IA ;/s—l(ovr)
S~'Sy
The following lemma will complete the proof of the main theorem.
3.4. LEMMA. S~ !A: S71s > 0\@ is a homotopy equivalence.

Proof. Since |S"1A| is an H-space map, it suffices to show that it induces iso-
morphisms on homology. Since S is a groupoid, restricting to a skeletal subcate-
gory gives S =T Aut(P), where the disjoint union runs over a set of representa-
tives P for wo(S) and Aut(P) denotes the classifying category of the group of
automorphisms of P. Since the free R-modules form a cofinal set in 7 (S), it fol-
lows that

H.(S7'S)=mo(S) 'H.(S)
=lim H,(GL,(R))
= H,(GL(R)),

where GL(R) =1im GL,(R) and the limit is taken with respect to the lower right
inclusion maps GL,, —» GL,, . (cf. [6]). Similarly, O\ 7 is a groupoid with the triples

o0i77_
(R",R*", ), pn(X,y)=x ¥,
el|lO

representing a cofinal set in 7wo(0\ 7); hence
H,(S7(0\ 7)) =mo(S) "' H.(0\7)
=lim H,(Aut(R", R*", u,)).
More explicitly, letting
Gn(R)=Aut(R",R*", p,)
X | * _ —
= {geeon,n(R)’g=[0 ~],X=(X’) 1},
there is a canonical isomorphism
R+ (R",R*, i) = (RO®R", ROR*DR*", pg@pn)
=(R", R*"D, 1)

which induces

In
Gn(R) = Gp11(R),
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- o O

0
X
0
0

C QOIOC =
My O % ©

0

Let G(R) =lim G,(R) defined by the maps /. Then
H.(S™(0\7)) =lim H.(G,(R)) = H.(G(R)).

The functor A: S — 0\ 7 takes R" to (R", R*", u,,) and GL,,(R) to G,(R) by the
hyperbolic map

GL,(R) ~% G.(R),

X [X 0 ]
0]X
Hence the lemma reduces to proving that, in the limit, the map &2 = li_r_p h,, induces
isomorphisms on homology, or (equivalently) that 4 induces isomorphisms on
H.,( ; k) for every algebraically closed field £. The maps A,, are split injective with
splittings
Gn(R) -5 GL,(R),

X | %
Sle ]
These splittings commute with the inclusions GL,,C GL, +, G,C G, 4+, so the
limit map # is likewise split injective with splitting » =1im r,. It follows that the
induced map A, on H,.( ; k) is injective. It remains to prove that A4, is surjective,
or (equivalently) that r, is injective.

We now fix an algebraically closed field & and assume all homology to have k-
coefficients, that is, H,( )= H.( ; k). We begin by showing that the lemma holds
for certain finite extensions of R. By a lemma of Quillen [13, p. 208], for any inte-
ger d > 0 there exists an order O in a number field of degree d over Q, such that
if NV is an O-module then (for 0 <i <d) H;(N, k) decomposes as a direct sum of
non-trivial 1-dimensional representations of O* over k. A careful reading of Quil-
len’s proof shows that if d is assumed to be odd, then the characters o: O* — k* of
these representations cannot be of order 2. (The crucial observation here is that
for d odd, g = (p%— 1)/(p—1) is also odd and hence the congruence on page 215
of Quillen’s proof, Yo<s<a(m,+n,)p? =0 mod g, holds in the case of order-2
characters as well as trivial characters.) Assume, therefore, that d is an odd inte-
ger >0 and O is as in Quillen’s lemma. Let A4 be the R-algebra, A = R®z0O. Then
the involution on R induces an involution s®z=5®z on A. Let i: © — A be the
ring homomorphism i(z) =1&®z. Note that i(O) is contained in the center of A4
and is fixed by the involution. Consider the exact sequence

rA
1->N-G,(A)— GL,(A4) — 1.
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The kernel N can be identified with the additive group of » X n matrices over A
satisfying M= —eM. Letting z € O act on M € N via left multiplication by

i(z) 0
D — '._ .
z [ 0 l(Z)]
gives N the structure of an O-module. The restriction of this action to the group
of units O* in O extends to an action O* on G,(A):

X|M_ [X|z-M
“lolx T lol X |

The induced action on GL,(A) is trivial. It follows that O* acts on the spectral
sequence

Ej g=Hp(GL,(A); Hy(N)) = Hp 4(G,(A))

and that the entire spectral sequence decomposes into a direct sum of spectral se-
quences, ,E%,., on which O* acts by the character o: D* — k*. By Quillen’s lemma,
if ¢ is trivial or of order 2, then ,E} ,=,E; ;=0 for 0<g<d. On the other
hand, from the equation

» [X|M] _[D] 0 [X|M[D'|0
“lolX [T oo || olX || o [p;
we see that z2 acts on G, (A) as an inner automorphism. (Recall that i(z) =i(z)

so D;'=D,.) Hence it acts trivially on homology. It follows that if ¢ is not of
order 1 or 2, then ,E,’,=0 for all p, g. Combining these we see that

p,0=Hp,(GL,(A))
Ey,=0 for 0<g<d.

We conclude that r: H;(G,(A)) = H;(GL,(A)) for all i <d.

Next note that since O is a free Z-module of rank d, A =R®z0O is a free R-
module of rank d. Thus, choosing a basis we can identify A = RY. (For conve-
nience, choose a basis of the form {1&®z;}.) This gives rise to inclusion maps
Jjn: GL,(A) = GL,(R) and j,: G,(A) = G,(R). Passing to the limit as n — o, we
get inclusions j: GL(A) «GL(R) and j: G(A) = G(R). Consider the commuta-
tive diagram

G(R) —> G(Aa) - G(R)

r l rA ,L r l
GL(R) —» GL(A) - GL(R),

where ¢, f are induced by the inclusion 7~ r®1 of R into A. The composite jeof
takes each entry r of a matrix in G(R) to a d Xd diagonal matrix

re1 0
( 0o r@l)'
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On the other hand, this is precisely the map which defines multiplication by d on
H,.(G(R)). In particular, the kernel of j, 7, is the d-torsion subgroup 4 H.(G(R)).
If we assume that d > i, then from the commutative diagram

Hi(G(R)) ~> Hi{(G(A) 1> H/(G(R))

re d l= dre
H;(GL(R)) S H;(GL(A)) EiN H;(GL(R)),

we see that ker r, S ker 7, Sker j. 7+ € 4H;(G(R)). But this holds for every odd
integer d > i. This is clearly impossible unless ker r, = 0. This completes the proof
of Lemma 3.4 and Theorem 3.1. O]

3.4. We conclude this section with a discussion of some alternate versions of
W= _W(R). We consider first a “split” version of W= W(R). By this we mean
the category WP whose objects are the same as the objects of W, but whose mor-
phisms (P, N\) = (P’, \’) consist of a W-morphism (L, ¢) together with a choice
of hyperbolic dual space Lp for L in P’. Recall that such a choice determines a
decomposition P'=(L*"NLE)DL@®Lp=LY/LOL®L* and hence determines
an isometry (P,A\)®H(L)=(P’,\"). Conversely, given M eobj S and an iso-
metry ¢: (P, \)®H(M) = (P’,\'), the triple (o(M), o(M*), ¢ | ') represents a
morphism in WP, It follows that WP is precisely the category {S, Sy) described
in [6] and hence (by [6, p. 223]) there exists a homotopy fibration

—1
S—lsi_ﬁ S”ISH—E* WP,
where 7, is projection on the second factor. Comparing this fibration with the
homotopy fibration
S—1H 0
STIS——STisy—>w
constructed above, we have a commutative diagram
SIS — SISy 25 WP
lid lid lF
S7'S — S57Isy Low
where F is the forgetful functor. We conclude with the following.

3.5. COROLLARY. The forgetful functor F: W — W is a homotopy equiv-
alence.

3.6. Itis also interesting to consider what happens if we do not require the ob-
jects (P, \) of W to be hyperbolic, but insist only that P be a finitely generated
projective module and that X be bi-linear, e-hermitian (i.e., \(x, ¥) =e\X(}, X)),
and nonsingular (i.e., ad A\: P — P* is an isomorphism). Let W= W(R) denote
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the category of such pairs (P, \) with morphisms defined as for W. In particular,
a morphism (L, ¢): (P, \) = (P’, \’) exists if and only if there exists an isometry
(P, \N)=(P,\YDH(L) (though the isometry is not specified by the morphism).
It is clear that in general this category is not connected but rather that wo(W) is
the set of stable isometry classes of objects (P, \) of W. If, however, we assume
that 2 is invertible in R, then for every object (P, \) in W, (P, N ® (P, —\) is
hyperbolic and so 7o(W) is a group. It follows that W is an H-group and that all
of its connected components are homotopy equivalent. The component of the 0-
object, WO, consists of those objects (P, N\) which are stably hyperbolic, that is,
(P, \)@® H(M) is hyperbolic for some M. (We may, of course, choose M to be a
free module.) Filtering W ° by the full subcategories F’,

obj Fi= {(P,\) | (P,NYDH(R' '} is hyperbolic},
we obtain a filtration
W=F°cF'c...c UF =w?°
such that each inclusion F'c F'*! has a homotopy inverse (defined by adding

H(R)). It follows that the inclusion of W into W?° is a homotopy equivalence,
and we conclude that |W|=no(W) X |W|. Equivalently, we have the following.

3.7. COROLLARY. If 1 €R, then there is a homotopy fibration
Ko(RYx BGL(R)* — Lo(R)X B.O(R)* - | W(R)|.

If 2 is not invertible in R, the situation is, of course, more complicated. In this
case, W need not be an H-group. We could “group complete” W by passing to
W ~1W, but the relation between Wand W ~!'W is not clear. As our main theorem
demonstrates, W is the appropriate category to work with in this context since it
gives a delooping of Karoubi’s ,U(R).

4. The homotopy and homology of W (R).

4.1 Suppose X is a commutative H-space and o: X — X is an involution on X
which respects the H-space structure, that is, 62 =idy and 6 (x+y) = o(x) + o(»).
Suppose also that multiplication by 2 is invertible in X, that is, that the map

(X2): X35 XxX5Xx

is a homotopy equivalence. Then X is homotopy equivalent to a product of H-
spaces, X = X °x X ~?, where

X?=imagef(id+0): X —» X}
X ?=imagef(id—o0): X > X}.
If multiplication by 2 is not invertible, we can “localize at 2” by taking the homo-
topy limit
) X2 x2 X2
Xey=hollm(X—X-—X— ---).

The resulting space X ;) is a commutative H-space with 2 invertible and so, as
above, X o) = X2) X X5y -
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Consider the involutions on the categories S and Sy defined by
7:8§—>S by P-P* aw(a*)”),
0:Sy—=>Sy by (P,N)= (P, —\), a— .

These induce H-space involutions (which we again denote 7 and ¢) on X = |S'S]|
and Y= |S5'Sy|, from which we obtain decompositions

-7 g
X2y =X X X3y, Y=Y XY,

Karoubi [8] proves that the hyperbolic map (localized at 2), hioy: Xoy— Yo, is
homotopic to a map
Xy X X gy —> : X = Y(,_)—+ Y5, XYy

It follows from Theorem 3.1 that ||, is homotopic to Y(z)"xBX(E{, where
BX 2y is a connected delooping of X 3y. (As a model for BX 3y we can take Quil-
len’s Q-category on finitely generated projective R—modules [11] and define an
involution p: Q - Q, P~ P* (P &Lysb pr )~ (P* LN V*«—P’*) Then it is easily
verified that BX 3y =|Q|25.) The involutions 7 and ¢ induce corresponding in-
volutions on the K—groups K;(R)=m;(X), and on the L-groups, L;(R)=x,(Y)
(i=1). Letting Z’=7Z[3], i =1, we have

Ti(BX2)) =K, (R)®Z,
wi(Y2y)=Li “(R)RZ’.
The latter are also known as the Witt groups of R.
4.2. THEOREM. For Z'=17Z[%], i=1,
T(W(R)®Z = (L “(R)YRZ)D(K,1(R)RZ’).

4.3. Consider, in particular, the case where R is a ring of integers in a number
field with the trivial involution. Let r; and r, denote (respectively) the number of
real and complex places of R. In this case, the Witt groups of R are known to be

" ,_ @) i=0@
(R)®Z'= { 0 otherwise,

. ,_ @)y i=2@4)
1L "(R)®Z' = { 0 otherwise.

The K-groups of R are unfortunately not so well understood. However, by com-
putations of Borel [4], we do know the ranks of the K-groups of R:

0 i=0(4)i>0
A, i=1(4) i>1

0 i=2(4)

r, =3 (4),

rank K;(R) =dim(K;(R)®Q) =

and by Dirichlet, rankK;(R) = r; +r,—1. Borel also computes the ranks of the L-
groups of R,
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(ry i=0(4) i>0
0 i=1(@4)
0 i=2(4)

Lr2 =3 (4),

(0 i=0(4) i>0

rank 1L,(R) = dlm(;L,(R)®Q) = <

e | )]0 i=1@4)
rank _]L-,'(Ia)‘-'dlrn(—llq(le)QOQ)'—< r i=2 (4)
72 =3 (4).

(For i =1; this follows from the fact that (L (R)®Q = H,(.O,, ,(R); Q). The lat-
ter is zero by Borel’s computations.) Since the Witt groups are the cokernels of
the hyperbolic map, we conclude that for i =1,

ho: Ki(R)Y®Q — Li{(R)®Q

is an isomorphism when /i = 3 mod 4 and is the zero-map otherwise. The theorem
below follows immediately.

4.4, THEOREM. Let R be a ring of integers in a number field with the trivial
involution. Then for j=1,
~ rn+rn—1 i=2

r i=4j
rank =;(W(R)) = <
mGVRY PArs i=4j+2
L 0 otherwise,

([ 2ri+r—1 i=2
rank m; (_{W(R)) = 2ri+r; i=4j+2
0 otherwise.

-

The rational cohomology ring of W(R) is a polynomial algebra

r1+r2——1

ry+rp
H*(lW(R);Q)=( & [x2])®(®0[x4,1)®( [x4,-+21>, j=1,

2ri+ry—1 2ri+ry
HCwWREQ=( & Q[xz])®( & Q[x4j+z]>,

4.5. We continue to assume that R is a ring of integers in a number field with
the trivial involution. In this final section we consider a filtration of W which is
used in [5] to establish a connection between K-theory and the theory of moduli
spaces. Let W, be the full subcategory of W whose objects are pairs (P, \) with
rank P<2n, and let 1,,: W,,—» W, ,, be the inclusion functor. We claim that 7, in-
duces isomorphisms on homology in dimensions /i < #. (Our argument follows
that of Quillen [14] for the Q,, categories.) For an object (P, \) in W, ., consider
the category 7, /(P, \) defined as in 2.1. If rank P <2n, then /,, /(P, \) has a final
object ((P, N\),id(p,»)); hence I, /(P, \) is contractible. If rank P 2(n+1), then
(up to isomorphism) an object in 7,,/(P,\), ((P’,\"), (P’, )\’) (P, N\)), is
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completely determined by the (non-zero) isotropic summand L C P; a morphism
corresponds to an inclusion L’ € L of such summands. In other words, I, /(P, \)
is naturally isomorphic to the partially ordered set (or “poset”) of non-zero iso-
tropic direct summands of (£, \). On the other hand, tensoring with the field of
fractions F gives an isomorphism of this poset with the poset of non-zero iso-
tropic subspaces of the 2(n+1)-dimensional vector space PQ@rF. By a theorem
of Vogtmann [15], the latter has the homotopy type of a wedge of n-spheres. It
follows that for n =1, the spectral sequence associated to 7,,,

Ej q=Hy(Wyi133Cq) = Hpio(W,)
where JC, is the functor (P, \) - H,(I,/(P, \)), has E*terms
Epo=H,(Wyi1)
EZ,=0 (0<g<n-—1).
As a consequence, we obtain the following.

4.6. THEOREM. For R a ring of integers in a number field with the trivial in-
volution, the inclusion functor I,: W, (R)— W, 1(R) induces isomorphisms
H;(W,(R)) = Hi{(W,+1(R)) fori<n.
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