REMARKS ON THE APPROXIMATION TO AN
ALGEBRAIC NUMBER BY ALGEBRAIC NUMBERS

E. Bombieri and J. Mueller

1. Introduction. Let o be a real algebraic number and let k be a real algebraic
number field, o ¢ k. The celebrated theorem of K. F. Roth ([12], [13]) asserts
that o cannot be approximated too well by elements of X and, more precisely, for
every € >0 there is ¢(«, €) >0 such that for every Sek

(1) la—B| > c(a, ) Hi(B) ~27¢,

where H;(B) is the field height, that is the largest coefficient of the integral poly-
nomial with roots o(3), counted with multiplicity, for all distinct embeddings
o: k — C. Since it is known (see e.g. Schmidt [14, Ch. VIII, Th. 2A]) that there
are infinitely many 8’s in the field kX such that

() la—B| <c(a)Hi(B) 73,

the above result of Roth is clearly best possible.

It is a well-known feature of Roth’s theorem that inequality (1) is ineffective, in
the sense that the proof yields the existence of the constant c¢(«, €) in (1) but does
not allow the calculation of a lower bound for it. If we ask for effective lower
bounds for |« —g3| then our knowledge about approximations is much weaker
than that given by (1). Let us define p.g(«, k) to be the infimum of all u’s for
which an inequality |a— 8| > c(a)Hi(B8) " holds for every 8 € k and some effec-
tively computable c(a) > 0.

The first general improvement on the elementary bound peg(o, k) = [k(a): k]
was obtained by Baker [1] using his theory of linear forms in logarithms, and
eventually Feldman [11] proved (at least in the case kX =Q) that peg(c, k)=
deg o —n, where » =7n(a, k) > 0 is a positive very small constant. For an account
of this theory see Baker’s monograph [2].

The Baker-Feldman theorem is the only non-trivial effective result available
today valid for every algebraic number o and every number field k. On the other
hand, for special numbers o better effective results are known, in particular:
a=£Y" with £ ek ([3], [4], [6], [7]); o a cubic number ([7], [10]); some special
algebraic numbers, such as o’ +ma—1=0 ([5]); the typical situation here is the
case in which k= Q, while « is restricted in various ways.

In this paper we show that for any given « one can find algebraic number fields
k for which precise information about effective approximation can be obtained.

THEOREM 1. Let « be a real algebraic number of degree r = 3 and let >0 be
any positive constant. Then one can find infinitely many real algebraic number
Jields k of degree r —1 such that peg(a, k) =2+ 1.
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At the end of this paper we illustrate our theorem with the example of o = \3/5
and k = Q(~/D ) for suitable very large discriminants D. Finally we should men-
tion that our method of proof yields the stronger result p.g(a’, k) =24y for
every e’ e k(a), oa’& k; if deg o> 3, this statement appears to be a non-trivial
reinforcement of the conclusion of our theorem.

The authors wish to thank D. Masser and the referee for several useful
comments. ’

2. The Thue principle. Thue’s method depends on the comparison of two dis-
tinct approximations 3, 3, to the algebraic number «, and is used to show that it
is not possible, under appropriate auxiliary conditions, for both approximations
to be exceptionally good. If the first approximation 3; to « is so good that Thue's
method implies a non-trivial lower bound for approximations to «, then we call
(o, 81) an anchor pair. The papers [5] and [6] provide the first explicit formula-
tion of Thue’s method which was actually used to produce explicit examples of
anchor pairs. We state it in simplified form as follows:

THUE’S PRINCIPLE. Lef k be a real number field and let o, || <1, be real
algebraic of degree r =2 over k. Let h(§) denote the absolute height of the alge-
braic number &.

For every B € k with \a—B| <1 and for every positive a, 0 <a <1, we have

2(r+a?)[k: Q] log h(B)+(r/a®)(log h(x)+1)
(1—a)? log(1/|ec—B|)
More precisely, the right-hand side is also a bound for

pei(k(a)/k) = sup peg(a’,k).

a’' e k(a)

Here h(¢) denotes the absolute height of £, that is,
log h(£) = log™|£],,
v

”'eff(a, k) =

where v runs over all the normalized absolute values of a number field F with
£ e F. We have h(£)%8¢ = M (&), where M (&) is the Mahler measure and thus

27UH () S h(E) = (d+1)PH(8),

where d =[k:Q], for any £ek. If P(x) =aoxd+ .-+ +ay is a defining equation
for £ we have

d
M(E)‘: |a0| ._I]:lmax(ls |£ll)’

where £; runs over the roots of P(x).

In some cases the bound obtained by the Thue principle is better than the trivial
Liouville bound r and then we say that («, 3) is an anchor pair for the extension
K/k.

The result stated above is a corollary of the similar result in [6, p. 179], with
the following remarks:
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(i) the quantity c(29¢) in [6] can be replaced by log 3, with the same conclusion;

(i) Ai=rt¥@—rt?)(og h(oy)+3);

(iii) the alternatives (5A) and (5B) of [6] imply the bound pcg(oz, k) =
29/(t — 1), provided a5 generates k(«a;) over k;

(iv) if v is the real place associated to the real field k, then |oy—g|J ¥ =
|y —B1|, where | | denotes the ordinary absolute value in R.

First of all, if r =2 we have p.g(a, k) =2 by the Liouville bound in [6, p. 189]
while the upper bound we want to prove in the Thue principle is > 2, so that
there is nothing to prove.

Hence let us assume r = 3. We apply the Thue principle [6, p. 179] with o = «,
ay=«’, 81 =0 and 3, variable. We choose ¢ = (2/(r+az))1/2 and 6 so small that
r=Qa*/(r+a®)+(r—1)8)/?><t. We put A;=rt*/(2—rt?)(log h(a;)+3), i=
1,2. To choose ¢, note first that there is A > 0 such that

(3) |y —Bilo = (e 1h(By)) "2/,

where v is the valuation such that | —Bll,ﬁ"= |y —B,| for d =[k: Q]. From the
Liouville bound of [6, p. 189] we deduce

(2h(a)) h(B1)) " = Be™ h(B1)) ™M < (2h(a)) h(B1)) 2™,

—2/x

so that A > ¢. Since also 3 <x (x>0) we see that

) loey —Bi1]| = | —Bi|o <Nt —7).
Now take any J > \. We shall verify that

%) peir(a’s k) =28/(t—71),

provided k{a’) = k(«a). Translating if necessary by a rational integer, we may
assume |a’| =1. A simple calculation from (3) shows that 283/(¢ —7) approaches
the upper bound of Thue’s principle as é approaches 0.

To prove (5) note first that if ¢ = (r/2)¢ then 283/(¢t — 7) > r; hence in this case
(4) follows from the Liouville bound. So we may suppose ¢ <9 < (r/2)t <t
Now since c(x) =log 3 (0 <x <1) the inequality (3) above implies (4) [6, p. 179],
and also (4) implies the inequality preceding this. By Lemma 1 [6, p. 183] the
triple (A,, A,, 7) is admissible provided «’ has degree r over k. So all the hypoth-
eses of [6] are satisfied. Now the alternatives (5A) and (5B) or the inequality just
preceding them clearly imply (5). Note that the exponent in (5A) should read
—243/(t — 7). This completes the proof, at least in the case in which k(a’) = k().

If k(a’) C k() the result depends on the fact that the triple (A4;, A,, 7) remains
admissible if 1 < <(r/2)t; the proof of this requires a reworking of Dyson’s
lemma and will not be given here, since the needed result will appear in a forth-
coming paper by C. Viola.

3. Wirsing’s theorems. In [15], Wirsing investigated the problem of approxi-
mating a given real number « by algebraic numbers of fixed degree. This problem
appears rather naturally if one considers Koksma’s classification of transcen-
dental numbers.
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Let o be a real number and let us assume that « is not algebraic of degree = k.
We are interested in the approximation of o by algebraic numbers 8 of degree
= k and we seek results of the type |a—g| <K H(B) "~ ! for infinitely many g.
Let wg(«) be the best bound of such w’s and let wi =inf, wi(x).

The following is known:

k+2
(Ax) wk“z—{:—+£ k2+4k—4 ;

(B) if « is algebraic of degree = k+1, then wi(a) =k;

(C) if wi(a)=sup w, where |P(a)| << H(P) " for infinitely many polynomials
P of degree = k with integral coefficients, then

wi(a) = wi(a)—k+1,
wi(a) Z 3 (Wi(a)+1),

wi(a)
wi(a)—k+1"

Of course, wi(a) = k is an easy consequence of Minkowski’s theorem in the
geometry of numbers.

Of these, (A,) is due to Dirichlet; (A;) is due to Davenport and Schmidt [8];
and (Ay) is in Wirsing [15]. Also, (B) for deg o = k+1 and (C) are in Wirsing [15]
and (B) is a consequence of the last statement in (C) and the fact that if X <deg o
then Schmidt’s subspace theorem implies that w;(«) = k, hence w,(a) = k; since
wi (o) = wi(a) for every o, we get (B).

Schmidt’s result is ineffective and this leads to the following curious situation:
if e>01is given and k < deg o then we obtain that there are infinitely many alge-
braic numbers 8 of degree k such that |a— 8| = H(B8) ~*~'*¢, but we cannot give
an upper bound for first solution of this inequality. On the other hand one could
at least theoretically test the inequality for solutions, and we would produce one
by persevering long enough in our tries; the ineffectivity lies in the fact that we
cannot tell a priori when our tries will come to a satisfactory conclusion. The
special case in which kK =deg o —1 does not depend on Schmidt’s deep result and
can be treated elementarily in an effective and satisfactory manner, as Wirsing’s
proof of

wi(o) =

wy (o)
Wk(a)—k+1

wi(a) =

shows. In what follows we shall give a new proof of the fact that if « is real alge-
braic and kK =deg o —1 then wg(«) = k. Our argument could also be used to prove
lower bounds for wi(«) in terms of wy(«); although the results one obtains in
this way appear to be slightly inferior to Wirsing’s, we feel that our treatment is
sufficiently different to merit independent consideration.
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THEOREM 2. Let a, |a|= %, be real algebraic of degree r and height H(c).
For every X =2 there is 3, algebraic of degree at most r—1, such that

ri(r—1)
xr
HB)=2"(r(r+1)H(a)" V7 x,

la—B| =

Moreover, (3 is real as soon as X > (r(r+1)) H(a) ™.
The proof of Theorem 2 is an easy consequence of the following two lemmata.

LEMMA 1. Let Q(x)=ayx*+ --- +ao be a polynomial with real or complex
coefficients, not identically 0. Let o be any complex number with Q'(a)#0.
Then the closest root 3 of Q to « satisfies

|Q(a)]
a—QBl=sk——.
=127 @)
Proof. Clear from the identity
Q'(a) 1
=2 ,
O(x) g a—f3
where B8 runs over all roots, counted with multiplicity, of Q(x). (For this argu-
ment, see Davenport and Schmidt, [8, p. 217].) 1

Let o be real and let S(X) be the convex symmetrical body in R**! defined by

|Xo+ X104 -+ +x3af | =X K
|X1]§X

|xk| éX’

and let \;=\;(X), i=1,...,k+1 be the successive minima of S(X). Let x,
i=1,..., k+1Dbe points at which the minimum J\; is attained and let P;(y) denote
the polynomial

Pi(»)=x§"+x{0y+ - +x" k.

LEMMA 2. We have

N\
P! > I
Jor at least one suffix i.
Proof. Let
Y =max|P/(a)|/Ni;
i
by definition of Y, A\, ..., Ay, are still the successive minima of the convex body

S(X,Y)=S(X)N{|x1+2axs+ -+ +ka* x| = Y)

and, by Minkowski’s second theorem, we have
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2k+l

m =N ... )\k+1 VOI(S(X’ Y)).

Again by Minkowski’s second theorem we have
Al .o Agg1 VOI(S(X)) = 2K +1,

Thus A\;... Ax 1 =1, and we get

2k+]

m—l‘)!— =vol(S(X,Y)).

Clearly
|Xo+x10+ -+ + x| = XK
vol(S(X,Y))=vol! |xj+x20a+ -+ +x ka7 =Y

x| =X, ..., x| =X
=2k+lY/X, ‘
and we obtain ’
ﬁ—l—sz“‘}’/x.
(k+1)! —
Thus Y= (1/(k+1)!)X and Lemma 2 follows. C

Proof of Theorem 2. We apply Lemma 1 and Lemma 2 with £k =r —1. By defi-
nition of successive minima,

|Pi(a)| =N X ¥,

max |x{)| =N X
1=h=k

©

and thus
. k ,
Ix8"| = IP;(a)I+hE] JeA”] | ex)”
k
=X R x T 27h=nx
h=1

because X = 2. It follows that
) |H(P;)| =\ X.
By Lemma 2, there is 7 such that

1
|P/(a)| = r—,)\iX,

and now Lemma 1 and (6) yield

lIA

® la—8|

Also, B is a root of P;, thus
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&) H(B)=2"H(P)=2"N X,

by using the inequality H(PQ) =2 e P~-d€Q rr(p) H(Q) (see Duncan [9]).
It remains to obtain an upper bound for \; and this is done as follows. As
remarked in the proof of Lemma 2, we have A\{ A, ... A\,=1, hence

(10) NSN SN

so that we need a lower bound for \;. By definition of A;, the polynomial P,
satisfies

|P(a)| =N X 5,

an max Ix,(,”|§)\1X;
1=h=k

(12) H(P) =\ X.

Now (11) and (12) imply

(13) |Pi(a)| S N H(P) -

On the other hand, by taking norms or, even better, by considering absolute
heights, if P is any polynomial with integral coefficients of degree at most
k =r—1 and not identically O we have

1
(r(r+ 1) H(a)H(P))*"
Indeed, let £ = P(«) and let F=Q(«). Let w be the real normalized absolute
value of F corresponding to the real embedding of F determined by «. We have

10g|5|w= - E 10g+'5|u

(14) |P(a)| =

vEW
- _ €v +
= .,Ew([F?Q] log(rH(P))+ k log ]a],))

(where ¢, =0 if v is non-Archimedean, ¢, =1 if v is real, ¢, =2 if v is complex),
because

log*|£|, =log¥ | P(a)|y = —2— log(rH(P)) + k log™* | al,
[£:Q]
for every v. Now (14) follows from |P(«)|=|£|, from
€y 1

=1 ,
vgw [F:Q] r

and

> logt ||, =log A(a) = —j_— log((r+1)H(x)).

If we combine (13) and (14) we get
(15) M (r(r+1)H(er)) 07,
the first clause of Theorem 2 follows from (8), (9), (10), and (15).
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It remains to prove that 3 is real provided X is sufficiently large. If 8 were non-
real then we would have

ri(r—1)

~ ri(r—1)
— <l
Xr ’ Ia I °

Therefore, if s =deg P;, we would have
. K
|Pi(a)| = |x&7| ]H] loe— B4
h =

ri(r—

O
X’ h=3
. 2
< (.’ﬂ!()r(_rl) ZS_ZM(P,')
(rt(r—1))22572px\;
é X2r—l ’

where 8,=8, B2=08, B3,...,8, are the roots of P,. If we compare this upper
bound with the lower bound (14) (note that H(P;) = \; X ) we obtain, after some
calculation, the upper bound for X in the last clause of Theorem 2. O

4. Proof of Theorem 1 and concluding remarks. In order to prove our Theo-
rem 1 we apply Theorem 2, with X very large. Then we have

(16) log 1 =rlog X+0Q1),
| — B
1
(17) log h(B)=mlogX+O(1),
and thus

l+a2/r 1
=2— R
ueﬂ(a,k)_Z(l )2 (I+O( 2] X))’

where the constant involved in the O(...) term depends only on «. If we choose a
of order (log X)~3 we find

pen(a, k) =2+ O((log X)~'/3),

and k£ is generated by an equation of degree =r—1 and height O(X).

We have tacitly assumed here that [k(«): k] = r, since we need this in the Thue
Principle. This follows immediately for large X from the Liouville bound, which
gives

log 1 =lk(x):k]llog X+0O()
|o— 8|

as X — oo,
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Theorem 1 also asserts that the field £ has exact degree r—1 infinitely many
times and also that we obtain infinitely many distinct fields this way. If we appeal
to Schmidt’s theorem, it is easy to prove these assertions, because if we had
[k: Q] =r—2 infinitely many times we would deduce w;_,(a)=r—1, contra-
dicting (B) of §2. Similarly if we did not have infinitely many distinct fields
k =Q(B) we would contradict the Roth theorem stated in (1) of §1.

The above argument is not effective in the sense that we cannot determine an
X such that if X' > X; and (16) and (17) hold then B has exact degree r—1,
although the preceding argument shows that such an X exists. However, in the
special but non-trivial case in which r =3 it is possible to appeal to Baker’s effec-
tive results in [2] instead of Schmidt’s theorem and make our Theorem 1 com-
pletely effective.

It is possible to obtain other estimates of this type, such as bounds in the case
in which k is further restricted to degree =s <r. On the other hand, it may be of
interest to look at specific examples. The following treatment of o= \3/5 can be
easily extended to general «’s and it provides an alternative way of finding #’s of
degree r—1 and exceptionally close to «.

Let p =e2™/3 and let us deﬁnen=\3/§—1, z9=p\3/§—1, 5=5\3/§—1. 7 is a unit
of the cubic field Q(~/2) and its absolute height is A(y)=(~/2 —1)""3, We
have |5| = A(n)~3; in the notation of [6], n ~! is a Thue number.

Let us define integers a,, b,, ¢, by

(18) 1" =+ by N2+, (J/2)2,
and let

P,(x)=a,+b,x+c,x>.
Then P, (x) has a root 8 such that

3
/5 gl =2 P2
V2RI=2 )l
We have
1

=5 8"+ 3" +1"),

an

b,= —L—(ﬁﬁ”+p5"+n")

n 3‘3/’2‘ 3
1

34

(p8"+p3" +1"),
and we obtain

35 29"
(19) |2 =8| = PNk

Since 1/7" = |#|*" and
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N (2, Q(\Dn )

435 2.99865
436 2.99854
437 2.99908
438 2.99880
439 2.99571
500 2.94154
1000 2.70467
5000 2.37793
10000 2.29271
50000 2.16483
Table 1

1 -
a, ~ ?(l?n-l-l?n),

bp 50'1'!‘93”)’

1
~___3\3/§(

(08" + pd"),

1
Cn 3 \3/1
we see that the right-hand side of (16) is usually of order H(3) ~? and then, for
large H(3), (\3/5, B) is an anchor pair for the field k,,(\3/§), where k&, is the qua-
dratic field k,, = Q(~/D,, ) with D,,= b2 —4a,c,.

We have computed some values for [Leﬂ‘(\:;/z , k,), using a refined version of the
Thue-Siegel principle in [6]; our calculations in Table 1 show that our pro-
cedure is still far from obtaining interesting results valid for fields & with a small
discriminant.

The results of Table 1 have been obtained using the Thue-Siegel principle
in [6, p. 179], together with an improvement of Lemma 1 of [6]. This improve-
ment allows us to use the principle with the values of A4, given in [6] and with 7=
2./2=rtZ 4+ O(8), rather than the bound 7 = /2 —rt? + O(5) of Lemma 1 of [6].
We have also computed Dy for N < 500 and, for example, D435 =2.31X% 10234,

Finally, we should observe that the major obstacle to finding substantially
better results seems to be in the estimation of A4, (i.e., the height of the auxiliary
polynomial). In the special case deg oo = 3 one can profitably use the technique of
Chudnovsky [7] to obtain good improvements of our results. Thus the bounds in
Table 1 should be considered only as providing an example of what can be proved
in the general case, rather than being associated with the special number \3/5 .
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