STABILIZING SURFACE SYMMETRIES

Charles Livingston

This paper concerns free, orientation preserving actions of finite groups on
closed, connected, oriented surfaces. Given such a group G and surface M, such
an action consists by definition of an injective homomorphism ¢ : G — Diff, (M),
where Diff . (M) is the group of orientation preserving diffeomorphisms of M,
and ¢(g) is fixed point free for all g e G, other than the identity. Two such
actions, ¢; and ¢,, of G on surfaces M, and M, are called equivalent if there is an
orientation preserving diffeomorphism #A:M;— M, such that hc'qbl(g)oh”1 =
¢,(g) for all geG.

A general motivating question concerning such actions is, for fixed group, to
determine all possible equivalence classes of actions of that group on a given sur-
face. This has been done for cyclic groups by Nielsen [3] and for abelian and
metacyclic groups by Edmonds [1; 2]. The results in those cases essentially state
that two actions are equivalent if they are freely bordant. We note here that the
free bordism group, Q°(G), is isomorphic to H,(G, Z). For further results
including the nonorientable case see [4; 5].

As an example, the Zs actions on S' x S! generated by the maps (x, y) = (x, w'y),
where w is a primitive fifth root of unity and i is 1 or 2, are equivalent. Finding
the equivalence 4 is an enlightening exercise.

Given an action of G on a surface M there is a natural way to stabilize the
action to an action on M#, T2, where k = order(G), and M#; T2 denotes the con-
nected sum of M with k copies of T?=S'x S!. Essentially we let G freely per-
mute the added tori. This will be defined precisely in Section 1. Two actions are
called stably equivalent if upon repeated stabilization they become equivalent.
The main result of this paper is the following:

THEOREM. Let ¢, and ¢, be free, orientation preserving actions on connected
closed oriented surfaces M, and M,. (M, and M, need not be homeomorphic.)
Then ¢, and ¢, are stably equivalent if they are freely bordant.

The converse is trivially true, as any action is bordant to its stabilization, and
equivalent actions are bordant.

Whether or not stable equivalence implies equivalence for group actions is an
open question. As noted earlier, such an implication holds in the case of cyclic,
abelian, and metacyclic groups. In addition, it has been verified for a variety of
other groups.

An outline of the paper is as follows. In Section 1 preliminary material is
presented. Section 2 contains a proof of the main theorem. In the final section
extensions of the main result to the unoriented or nonfree setting are summarized.
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I would like to thank Allan Edmonds for pointing out the problem of stable
equivalence of group actions to me. In addition, the observations concerning the
extension of the main theorem to the nonfree setting which are described in Sec-
tion 3 are essentially his.

1. Preliminaries. Throughout this paper G represents a fixed finite group.
Manifolds are always smooth, compact, and oriented. Surfaces are closed.
Group actions are always free.

This section begins with a precise definition of stabilization. Following that, it
is shown how covering space theory yields a reformulation of statements con-
cerning group actions into statements concerning representations of surface
groups into G. The section concludes with the proof of a key lemma.

Stabilization. Let ¢ be an action of G on M. It is possible to find an embedding
of D?x G (where G has the discrete topology) into M such that ¢(g)(x, g;) =
(x,88), (x,g)eD?*xG <M. To find such an embedding consider the orbit of a
regular neighborhood of a point on M.

Let F be a punctured torus; that is, 72—int(D?), where D? is an embedded
disk on T2. There is an action y of G on FXx G as above. As the actions of ¢ and
Y are equivalent when restricted to (M —int(D?x G)) and —d(Fx G), they
combine to give an action ¢, of G on (M—int(D?>x G))U,(FxG), where
h:3(FxG) - —3(D?*x G) is that equivalence. Note that the resulting space is
diffeomorphic to M#, T2

The action ¢; is well defined up to equivalence.

Covering spaces. Dropping the restriction that M be 2-dimensional temporarily,
note that the free action ¢ of G on M determines a quotient space M of which M
is a covering space. Fixing a base point in M, x;,, that covering space is deter-
mined by a representation ¢: m;(M, xo) = G. As M is connected, ¢ is surjective.

Conversely, a surjective homomorphism ¢: (M, xo) = G determines a G
action, ¢, on the associated connected covering space. The choice of base point
does not affect the equivalence class of the action on the covering space. More
generally, any diffeomorphism A of M determines a new representation ¢oh,.
The associated group actions are equivalent. Except where explicitly needed, we
will drop references to base points.

We now proceed to interpret stabilization in this setting. Given a repre-
sentation ¢:m(M)— G, we wish to describe an associated representation
és: m(M#T?) > G, such that @ and ¢, correspond under the correspondence
described in the previous paragraph.

First we describe the connected sum. Let D be an embedded disk on M,
and D; and D, be disjoint embedded disks in the interior of D. M#T?*=
(M —int(D;UD,))US!x I.

Generators of m(M#T?) can be described as follows. Pick a basepoint x,
for M on 8D. Pick a second point x; on 3D, and an arc o; on D—int(D,UD,)
from xg to x;. Similarly, pick a point x, and arc «; using D,. Pick an embedded
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arc a on S!x I running from x; to x;. Finally, let 8 be the path running around
d0D;, based at x;. Define m:q,*ﬁ*a,“ and 1=a2*a*a1‘1. A set of paths
{mi, 1}i=1,... » in M—int(D), with n=genus(M) can be chosen to represent the
standard generators of m(M ). The collection {m;, l;}; 1, ... nU{m, !} represents a
standard generating set for m;(M#T 2y,

To define ¢, proceed as follows. Let g € G be some fixed element of G. Define
(gs,g by ‘Es,g(mi)zﬁ_z_(mi)s (Es,g(li)=<-5(li)s (Es,g_(m)=1, and as,g(l) =_g- ¢s,g is
well defined, since ¢, (117~ [m;, ;1) =1 and ¢ ,([m,[]) =1. Hence ¢s , deter-
mines a well-defined homomorphism from m(M#7T?) since it vanishes on
(ITf=1 [ms, 1;1) ([, 11).

Set ¢s=¢s,1. @5 corresponds to ¢ via the representation, group action rela-
tionship described above.

MAIN LEMMA. If ¢: 7(M) — G is surjective and g € G, then there is a diffeo-
morphism h: M#T?* — M#T? such that ¢, gohy = ;.

Proof. Pick a smooth closed path v based at x;, contained in M —int(D;UD,),
such that ¢(a;*y* g ') =g ~L. Note that this implies G, g (Qy %y * a Y=g las
well. Viewing v as is an isotopy of maps of a point into M, we can use the isotopy
extension theorem to construct a family of diffeomorphisms A, of M to itself
such that A,(x;) =+(¢). With a little care it can be arranged that A, | p, =id for
all ¢, ho=id, k| p,=id, and A,(x¢) =x, for all . (For that last point it is neces-
sary to arrange that v misses xy.)

Define F, = (M —int(h,(D;UD,)))US'xI. Since h(D,;UD,)=D,UD,, F,
and F) are identical surfaces. More precisely, there is a diffeomorphism from Fj
to F; which is the identity on M — (D;UD,). We use that diffeomorphism to iden-
tify each with M#T2.

On the other hand, for all #, 4, can be used to define a diffeomorphism of Fj to
F,. Hence h;: Fy— F) is a diffeomorphism, which by the above identification can
be viewed as a self diffeomorphism of M#T2. h, is the desired diffeomorphism. It
remains to analyze ¢ gohy,.

Define a 2-complex C,=F,Uh,(D,UD,). The identification of Fy with F] ex-
tends to one of Cy with C. h, extends to a homeomorphism j,: Co— C,. As
@s,, and ¢ vanish on m, they factor through representations s , and y; of
m1(Co) — G. We have reduced the problem to one of showing that ¥ go /i« = ¥s.

The relationship ¢ goji« = ¥s follows from the following observations: j,(m;)
is homotopic (fixing xg) to m; on Cy. Similarly, j;(/;) is homotopic to /; on
Cy, again fixing xg. j;(m) is null homotopic on Cy, as is m. Finally, j (/)=
[ %oy *vy* oy . From the last observation, Vs, eoJ1s (1) = g8 “T=1=y,().

2. Proof of Theorem. Let ¢ and ¢; be freely bordant actions of G on surfaces
M, and M,. By definition, this means that there is a 3-manifold W with a free
action ¢ of G and a diffeomorphism /: M1 —M, — W such that ¢(g)eh |y, =
heoi(g), for i =1and 2. We denote h(M;) =9, (W) and h(—M,)=0_(W). It is
sufficient to prove that ¢ |5, w and ¢ | —3_w are stably equivalent.
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As in the previous section, denote by W the quotient of W under ¢. Denote the
two components of d(W) by d, W and d_W. ¢ denotes the associated repre-
sentation of 7 (W) to G. It induces representations ¢, and ¢_ of #,(d,+ W) and
71(d- W) to G. It remains to show that ¢, and ¢_ are stably equivalent.

Using a standard handlebody or Morse theory argument, we can find dis-
joint embedded surfaces in W, d, W=F,F,,...,F, and G,,Gpn_1,..., G| =
d_ W with the following properties: (1) Fy = —G,,; (2) F; and —F;, cobound a
region in W which contains no other F; or G;, and which is diffeomorphic to
F;x I'U(1-handle); and (3) G; and —G; . similarly cobound a region in W con-
taining no other F; or G;, and which is diffecomorphic to G; x 7U(1-handle).

If we can show that ¢ |F +1 18 stably equivalent to ¢ | 7, and similarly for
¢ | G;,, and ¢ | g; we will be finished. This would show that ¢ | 5, j» is stably equiv-
alent to ¢ |, and that ¢ |,_w is stably equivalent to @ |g,. As Fy=—G,, it
follows that ¢y, j is stably equivalent ¢__j.

Notice that F;,; is constructed from F; by forming a connected sum with a
torus, as in Section 1. We claim that ¢ |r,, is constructed from ¢ | in the
manner required to apply the lemma of the last section. The only observation
that is not immediate here is that ¢ | r,, ,(mm) = 1. This follows from the fact that
m is null homotopic in W, as it bounds the cocore of a 1-handle.

A similar argument applied to G; and G, completes the proof. 1

3. Nonorientable and nonfree actions. In this section we discuss the effect of
dropping the orientability assumption, or the restriction to free actions, on the
stability result already obtained.

Nonorientable actions. The direct generalization of the main theorem to an
unoriented setting would be the following: If ¢, and ¢, are free actions on con-
nected, closed surfaces AM; and M,, then ¢; and ¢, are stably equivalent if they
are freely bordant. Here bordism and equivalence would be defined without
reference to orientation.

As stated, this result clearly is false: If M; and M, happen to be orientable, and
¢, and ¢, preserve some orientation, then ¢; and ¢, will be stably equivalent if
and only if the classes represented by ¢, and ¢, in Q5°°(G), [¢,] and [¢,], satisfy
[¢1] = = [#,]. Using the fact that the unoriented bordism group 915°°(G) is iso-
morphic to H>(G, Z,), whereas Q5°(G) = H,(G, Z), an example of unoriented
(but orientable) actions which are not freely bordant via an orientable manifold,
but which are freely bordant via a nonorientable manifold is readily constructed.

If one widens the notion of stability however, the generalization becomes
valid. The correct notion of stabilization in the unoriented setting is to admit
stabilizations which involve forming the connected sum with Klein bottles as well
as with tori. Making this notion formal, and proving the generalized theorem are
straightforward, following the exact lines of the previous work.

We conclude this section with the observation that in certain cases one need
not widen the notion of stabilization to prove the unoriented version of the
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theorem. The first of these is for the case of G actions on a nonorientable surface
M. The proof here depends on the observation that for some orientation revers-
ing curve y S M, ¢(y)=1e€G (just let y be the projection of an orientation
reversing curve on M). The second case is if two actions of G on orientable
surfaces are bordant via an orientable 3-manifold, W. In this case one has infor-
mation about W coming from the fact that W is orientable. Details are left to the
reader.

Nonfree actions. The reader is referred to [1; 2] for the definitions and details
concerning fixed point data. If ¢ is an action of a group G on a surface M, the
singular set S of ¢ is the set of points on M with nontrivial isotropy subgroups. S
is a finite set, a fact which depends on the compactness of M and on ¢ being
orientation preserving. Associated to each orbit of a singular point in S is the
conjugacy class of an element in G. These conjugacy classes form the fixed point
data.

The hoped-for generalization of the main theorem would be the following: If
¢; and ¢, are two (not necessarily free) orientation preserving actions of G on
closed, connected, oriented surfaces M; and M, then ¢; and ¢, are stably equiv-
alent if (and only if) they are bordant and have the same fixed point data. This
generalization is false. We will first discuss cases in which it is true, and then
conclude with a counterexample.

Let W be a bordism between M; and M,, and ¢ be an action of G on W pro-
viding a bordism form ¢; to ¢,.

Our first observation is that if the singular set consists only of arcs, with each
arc joining a singular point in M to a singular point in M;, the generalization
holds. In this case the proof is essentially the same as before. The only change is
that one uses a relative handlebody decomposition of W —(projection of singular
set).

A second observation is that the assumption that the singular set of ¢ consists
only of arcs is sufficient to prove the generalization, no assumptions about the
endpoints of the arcs are required. In this case one can perform equivariant
surgery on W to arrive at a situation as in the previous paragraph.

To conclude we show by means of an example that the generalization men-
tioned above cannot hold for all actions. We do this by constructing two free
actions (which hence have the same fixed point data) which are bordant, but not
freely bordant. It follows that these actions are not stably equivalent.

Figure 1 illustrates two disjoint solid handlebodies, H; and H,, in S*. A curve
C in 83— (H,UH,) is also illustrated. m(S>—(H;UH,UC)) is normally gen-
erated by the curves v, v, 6;, 6, and B illustrated. There is a representation p of
(S} — (HUH,UC)) to Z, X Z, defined by:

p(v1)=(1,0) p(y2)=(0,1)
p(61)=(0,1) p(62)=(0,0)
p(B)=(1,0).
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T

Figure 1,

This representation induces a Z,xZ, branched cover of S’—(H,UH,),
branched over C, which we denote by W. The boundary of W consists of two
genus 5 surfaces, each with a Z, X Z, action. W provides a bordism between the
surfaces, the covering translation provides a bordism between the actions.

Finally, to show that the actions are not freely bordant, we compute what each
represents in Hy(Z;XZ,;Z)=7Z,. Let my,1[;,my,l; be a standard basis for
m1(F,) (F> a surface of genus 2). The action on the cover of the boundary of H,
corresponds to the representation p;: 7 (F;) = Z, X Z, given by p;(m;)=(1,0),
o1(11)=(0,0), p1(my)=(0,1), p1(l2)=(1,0). The action on the cover of dH,
corresponds to the representation p,, given by p,(m)=(0,1), p2(/;)=(0,0),
p2(my) =(0,0), pa2(2)=(1,0).

That p; represents the generator of H,(Z, X Z,; Z) and p, represents O follows
from the Kunneth formula used in computing H,(Z; X Z,; Z).

Added in proof: The author has constructed inequivalent freely bordant actions
of the symmetric group, Sg, on a surface.

REFERENCES

[a—y

. Allan L. Edmonds, Surface symmetry I, Michigan Math. J. 29 (1982), 171-183.

, Surface symmetry II, Michigan Math. J. 30 (1983), 143-154.

. J. Nielsen, Die Strucktur periodisher Transformationen von Flachen, Danske Vid
Selsk., Mat.-Fys. Medd. 15 (1937), 1-77.

. K. Yokoyama, Classification of periodic maps on compact surfaces: I, Tokyo J. Math.
6 (1983), 75-94.

i

(8]

EN



STABILIZING SURFACE SYMMETRIES 255

, Classification of periodic maps on compact surfaces: II, Tokyo J. Math. 7
(1984), 249-285.

Department of Mathematics
Indiana University
Bloomington, Indiana 47405



