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1. Introduction. Let A denote the class of functions f(z) analytic in U=
{z:|z] <1} with f(0)=f"(0)—1=0. For a given o, 0 <a <1, S*(o) CA is the
class of functions f, starlike of order o, i.e. Re(zf'(z)/f(z)) > a, z € U. We write
S*=S5*(0). We denote by K the class of functions f in S* such that f(U) is a
convex domain. If fe A then fe K if and only if zf'(z) e S*.

In 1969 Mocanu [3] showed that if fe 4, f(z)f'(z)#0 for 0<|z| <1, and if
for a given 3=0, f(z) satisfies the inequality

7

zf'(z) zf"(z)
1 Rel(1—-8)——— 1+ —— 0, U,
g e{( QAT “3(* @) >}> ee
then fe S*. Under the same conditions but with the inequality (1) replaced by
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where {f, z} denotes the Schwarzian derivative (f”(z)/f’(z))’—% (f"(2)/f'(2))?
Miller and Mocanu [2] showed that again fe S*.

In this paper we consider classes of functions fe A with f(z)#0 for 0<
|z] <1, and such that, for a given a >0, f(z) satisfies an inequality involving a
suitably prescribed lower bound on |z|=r <1 for the real part of the analytic
function
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This lower bound may have one of a variety of given forms from which we can
conclude not only that fe S* but that Re(zf”(z)/f(z)) has a positive lower bound
on |z|=r<1 with a pre-determined rate of growth as a function of r and the
given parameter «. Because of the freedom of the parameter o and because of a
wide choice for the given lower bound on the real part of the function (3), a large
group of various classes of starlike functions emerges. The method of approach
is quite different from that appearing in [2]. Rather, it depends fundamentally
upon an extension of a lemma introduced by the author [4] in a study of second-
order differential equations; see also [1].

2. The main theorem.

DEFINITION. Let Q denote the class of bounded real functions g(r) having a
continuous derivative g’(r) for 0 =r <1 and such that 0 < g(r)<q(0)=1.
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LEMMA 1. Let o be a given positive real number. Let y(p) and its derivative
Y'(p) be real functions that are continuous in p for 0<p<1. Let q(r) € Q. Then
Jorallryand r, 0<ry<r<1, the following inequality holds:
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Equality holds if and only if

yor=koe |’ gty -1
Jor ri<p<r, where k=k(r,) is a real constant.

The lemma follows easily from the following calculation using partial
integration:
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THEOREM 1. Let f(z)e A and let f(z)#0 for 0<|z|<1. For a given a>0
and a given q(r) e Q let f(z) satisfy the inequality

(LR, (S@NY] L 24D, (9N _
o re[z{( 5 ) +e (f(z)>}] () +(5P) ) e
Then fe S* and Re[zf'(z)/f(z)1=q(r)>0, |z|=r<]1.
Proof. Let F(z2)=[f(z)1*=2%27=0b,z", bp=1, where o and f satisfy the

conditions of Theorem 1. Then z “F(z) is analytic without zeros in U. The
several branches of F(z) differ by constant factors. Each branch of F(z) satisfies

the equation
Z°F"(z) =az2{<i’_(§l)’+ (f'(Z)> }
F(z) f(z) f(z)
The function z2Q(z) = — [z%F"(z)/F(z)] is analytic in U and, for z € U, W = F(z)

satisfies the equation W”(z)+ Q(z) W(z) =0. Moreover, by the hypothesis of
Theorem 1,

’ 2
Re[—220(z)] = jz|2K O‘qr(r) ) +<°‘4(r)) ] 2| =r<l.

r

The Green’s Transform [4;1] of the equation W”(z)+ Q(z) W(z) =0 may be
written

reif _ areit
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rie re
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where z = pe’®, @ =constant, 0<r i <p<r< 1. We multiply (6) by re'’ and equate
the real part of the equation to zero. If W(re'?) =0, W(re®)#0, and z =pe'?,
then, by Lemma 1,

[IW(Z)|2Re [re’a W(z) }:l )

W(z)
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where y(p)—lW(pe"’)I and y’(p)-IW(pe’g)] By hypothesis f(z) and F(z)
have no zeros for 0 < |z| < 1so the condition W(re' YW (rie') #0is satisfied. We
now have
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which is equivalent to
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Since F(z)=2z% Xp=0 b,2", bp=1, we have

[ZIF'(ZI)
e | 2221

F(z1) ]:a+0(|21l), zi=rie”.

Since g(0) =1 and g(r) has a continuous derivative q’(r) for 0 <r <1, we also
have ag(r;) =a+ O(r;). Hence, as r; - 0,

r ,. rie’F/(rie) @
-rT[F(rle 9)|2[Re{ ‘ F(r,e"}’) }—aq(r.)]=0(r:2 ).

The functions f(z) and F(z) were assumed to have no zeros for 0 < |z| <1. We
may now let r; » 0 and obtain for z =re'’, 0 <6 <2, the inequality

zf'(z) ) __I_Re re’'F'(re'’)
f@ 1! ]‘a [ F(re™)

Thus Re[zf'(z)/f(z)1=¢q(|]z]) >0, |z| <1, and the proof is now complete. [J

9 Re[ —aq(r)] >0.
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Since

2F'(z) _1zf'(z)
Fiz) a f(z)

we easily obtain Corollary 1 from the proof of Theorem 1.

|F(z)|=|f(z)|* and

COROLLARY 1. With the hypothesis of Theorem 1 the expression

| /(2> [, 2f'(z)
LA S R 7
2] [ *"f)

represents an increasing function of |z|.

(10) —q(lzl)], 12| <1,

3. Some examples of Theorem 1. We consider now some instructive special
cases of Theorem 1. Let g(r)=1—r/2€ Q. Then, for any oo >0,

’ 2 2
rzK—Q(r) ) +a(—q<r) ) ] =a—1 —a(r— r_) .
r r 4
With |z|=r <1 for the function f(z)=ze ~¥? we have

(11)

(LS @Y, (@Y _ 2\, r
Re{z Kf(z)>+a<f(z))]}—oz—l—aRe(z— 4>_a l—a(r— 4).

By Theorem 1 we conclude that fe S* and Re[zf"(z)/f(z)1=q(r)=1—r/2. This
last inequality may be readily verified directly since z/'(z)/f(z) =1—z/2.

For a second example, let {b,}, n=1, 2, ... denote a sequence of real numbers
b, =0 such that, for some >0, X, - (n+a)b, <. Let

1 E,‘lenbnr"

=]—— ,
q(r) (8 1—2;0=| b,,r"

Let f(z) =z(1—7=1 baz™)"*, f(0)=1. For |z] =r <1 we have
7 ’ 7 2 s _ n
e G ot

q(r)eQ.

f(z) f(z) (o4 1—- 271 byz"

1 Y71 n(n+2a—1)b,r"
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Since f(z) =0 for 0 < |z| <1, the conditions of Theorem 1 are satisfied. Hence

zf'(z) 1 w1 hb,r"
13 Re———==q(r)=1-— o >0’ Z|=r,
) fa) SO T b %
and fe S*.
In the second example, take b; = a/(a+1), >0, b,=0forn=2,3,.... Since
z8'(z) — (x+1)(A—r)
R =(a+1)Re({ ——=—)=gq(r), wh = ,
© g(z) (1) e(a+1—az) q(r), where g(r) a+l—ar €0
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we see at once that

az la ,
(14) g(z)—z(l-—a—+—1> € S*.

By Theorem 1, if f(z) e A and f(z)#0 for 0<|z| <1, and if

(L @Y, (SR 2f(aDY, [a)Y
Re{z [(f(z)>+°‘<f<z>>]}‘r [( r )“‘( r >]

(15)
(a+1)(a—1—ar)
= ,  lz]=r<1,
a+l—ar
then fe S* and
zf'(z) _(a+1)(1=r) B
e—f(z) =>q(r)= ol —ar >0, |z]=r<l.

4. A related theorem by another method. Our results so far have depended
upon the Green Transform method. We shall use another method in this section
to prove the following result.

THEOREM 2. Let f(z)e A with f(z) f'(z) #0, for 0<|z|<]1, and let 8 be a
constant, 3 <B<1. If

S"(z) <2(1—B) zf'(z)
fzy| B f(z)

holds, then fe S*(B) and zf'(z)/f(z) is subordinate to 8/(8—(1—8)z), ze U. In
particular, if 3 <8 <1, then fe K and |z2f"(z)/f"(z)| =1, z€ U. The constant 3
cannot be replaced by a smaller value.

(16) , zeU

Proof. The function

zf'(z)

is analytic for z € U, since f(z) f'(z) #0, and it omits the value 38/(1—3). More-
over, W(0)=0 and

zf'(z) _ B GW(2)) = B f(z)S"(z)
flzy — B-(1-B)W(z)’ 1-8 (f(=2)*
From (16) and (17) we obtain |(zW(z))’| =2|z]|, from which it follows that

W(z)=1f6<1— /) )

17)

_ < , |z} _ 2
|zW(z)|-|SO(tW(t)) dtlsgo 2|¢| d]t] =|z)2<1.

Since |W(z)| = |z| <1 we conclude from (17) that z/7(z)/f(z) is subordinate to
B/(B—(1—pB)z). For % < 8 <1 the subordination implies that Re[zf"(z)/f(z)]1=
and fe S*(B).

Next suppose that

RN

=B<1.
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The subordination of zf'(z)/f(z) to 8/(8—(1—B)z) implies that
2f'z)|__B
f(z) |7 28-1°

Then from (16) we have

zf"z) | _20=B) 2] B
S| B 23-1

from which we conclude that fe K. For the function

_ —1/3
(1-8) 23]

=|z| <1,

=zl1—
f(z) z[ s

we have

2f"(z) _ B+3(1-B)z’

fizy — B-U1-p)’°

sothat feK if 3 <B<1.If0<B<3 and z= —r, where 8/(3(1—8)) <r’<1, then
/")) _B=30-p)r’ _

f(z) ]— B+(1—-p)y3 =

1+

Re [1+

which implies f(z) ¢ K.
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