STRUCTURE SPACES OF RINGS
AND BANACH ALGEBRAS

Bertram Yood

1. Introduction. This paper originated in a re-examination of a 1949 result of
Kaplansky [8, Theorem 8.1]. Let B be a Banach algebra, P(B) be the structure
space of B (space of primitive ideals of B) and §(B) be the set of isolated points
of P(B). Kaplansky’s theorem asserts that for a B*-algebra B, §(B) =P(B) if
and only if B is the B*(o)-sum of topologically simple B*-algebras. Alternatively
one may say that §(B) = P(B) if and only if B is the direct topological sum of its
minimal closed ideals. We are using the notions of [9] and by an ideal we shall
always mean a two-sided ideal unless otherwise specified.

We took as our initial task a description of §(B) for a B*-algebra B. We found

hat the elements of &(B) are precisely the annihilators in B of the minimal
closed ideals of B. Inasmuch as the arguments for this result were largely
algebraic we were led into a consideration of §(A) for any semi-simple topo-
logical ring A. For a description of §(A) the notion of minimal closed ideal is
inadequate.

A basic notion here is that of a purely primitive ring (or algebra). A ring R is
purely primitive if (0) is the only primitive ideal of R. Easy examples show that
primitive rings need not be purely primitive.

For the semi-simple ring A, the elements of §(A4) are precisely the annihilators
of those non-zero ideals of A which are purely primitive rings. For the B*-algebra
B, S(B) is in one-to-one correspondence with the minimal closed ideals. The
corresponding fact for A is that §(A4) is in one-to-one correspondence with the
non-zero ideals of 4 which are maximal with respect to the property of being
purely primitive rings. Such ideals are closed in A if the primitive ideals of A are
closed in A or if P(A) is a T;-space.

With this information in hand some results are obtained for rings 4 with
discrete structure space and also for those where §(A4) is dense in P(A). The
class of semi-simple Banach algebras for which &(A) is dense in P(A) is fairly
natural —a B*-algebra has this property if and only if every non-zero closed ideal
of B contains a minimal closed ideal of B. A semi-simple Banach algebra A has
this property if and only if every non-zero closed ideal of 4 contains a non-zero
ideal of 4 which is a purely primitive Banach algebra. Clearly any semi-simple
topologically simple Banach algebra is purely primitive. The converse is false and
we now turn to that question.

2. Purely primitive rings. Let R be a primitive topological ring (or algebra).
We say that R is purely primitive if (0) is the only primitive ideal of R. This is a
key concept of our program. Suppose that R has minimal one-sided ideals and
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that S is the socle of R. Then the primitive ring R is purely primitive if and only if
R is a modular annihilator ring in the sense of [10, p. 39]. This follows since R is
a modular annihilator ring if and only if R/S is a radical ring [10, p. 38] and,
moreover, S is contained in every non-zero ideal of R. Also R is topologically
simple if and only if S is dense in R. Clearly R is purely primitive 1f it is topologi-
cally simple. The converse fails.

PROPOSITION 2.1. A primitive topological ring R with minimal one-sided
ideals is purely primitive and not topologically simple if and only if R is a modu-
lar annihilator ring and its socle is not dense.

This enables us to give examples of Banach algebras which are purely primitive
and not topologically simple. Consider a Banach space £ and the Banach alge-
bras K(£) of compact linear operators on £ and F(£E), the uniform limits of
finite rank linear operators. Alexander [1] showed that there is a closed linear
subspace of £ of /,,, 2 < p < oo for which F(E) # K(E). Now K(E) is a primitive
modular annihilator algebra by [2, p. 66]. Then K(E) is purely primitive and not
topologically simple by the preceding proposition.

Other examples can be obtained as follows. There are classical examples of
Banach spaces £ for which (1) not every weakly compact linear operator on £ is
compact and (2) the product of any two weakly compact linear operators is com-
pact. See [5] and [6]. For such a space let W(E) be the set of all weakly compact
linear operators on E. Inasmuch as W(FE)/K(E) is a radical algebra, it follows
from Proposition 2.1 that W(E) is a purely primitive Banach algebra which is not
topologically simple. It is readily seen that there are no commutative examples.

3. Basic theory. We turn to a consideration of a semi-simple topological ring
A (of course the topology could be the discrete topology). For a subset W of A4 let
L(W) (R(W)) denote the left (right) annihilator of ¥ in A. Let K be an ideal in
A. By [3, p. 462], L(K) =R(K). Weset K“=L(K) =R(K). Asin[11, p. 308] we
say that the ideal K is dual if K=K““ and note that K¢ is always dual. A dual
ideal 7 # (0) is called minimally dual if no non-zero ideal Jof A, JCI, J# I can
be dual.

LEMMA 3.1. If P is a prime ideal in A and P? # (0), then P is minimally dual
and P is dual.

Proof. In fact, if K (0) is an ideal of A, K C P¢, then K“ = P. First observe
that K¢ P and so K“C P. But KD P?. Thus P“CK“C PC P“,

LEMMA 3.2. The intersection of any number of dual ideals of A is a dual ideal.
Proof. For if {Ig} is a family of dual ideals,

n IB C (ﬂlﬁ)"”c nlaa: nlg
LEMMA 3.3. If P, # P, are two prime ideals of A then P{ NPy = (0).

Proof. We may suppose P{# (0) and P5 # (0). By Lemmas 3.1 and 3.2,
either P{NP§ = (0) or else P/ NPs =Py =P;5. But in the latter case, P{‘= Py
so that P, = P, by Lemma 3.1, which is contrary to our hypotheses. U
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The only prime ideals of concern here are primitive ideals.

LEMMA 3.4. Let W (0) be an ideal in A where W is a primitive ring. Then
there is a unique primitive ideal P of A with W C P“. Also W C Q for any primi-
tive ideal Q # P and Q“ # (0).

Proof. By [7, p. 206, Proposition 2] there exists a primitive ideal P of A such
that PNW = (0). Therefore W C P“. The uniqueness of P is given by Lemma 3.3.
If QO # Pis a primitive ideal and Q¢ # (0) then WN QY= (0) so that W C Q““ =
Q. 0

LEMMA 3.5. The direct sum 3, P? of the ideals P“ # (0), where P is a primitive
ideal, is the smallest ideal of A which contains every ideal of A which is itself a
primitive ring.

Proof. In view of Lemma 3.4 it is sufficient to see that each of the P (0) isa
primitive ring. Let 7 be the natural homomorphism of 4 onto A/P. Then = (P“)
is an isomorphic image of P“ and, being an ideal in the primitive ring A/P, is
itself a primitive ring. |

Consider the structure space (space of primitive ideals) *P(A) in the hull-kernel
topology. For a set Sin P(A) let £(S), the kernel of S, be the intersection of the
primitive ideals P in &. For each primitive ideal P let W ([P) be the kernel of the
QeP(A4), Q= P. Inasmuch as A is semi-simple we always have W(P) C P“.
Note that P is an isolated point of ‘P(A) if and only if P 2 W(P). As W(P) C P*,
P is an isolated point if and only if W(P) # (0). Suppose W(P) # (0). We see
from [7, Proposition 2, p. 206] that W(P) is a purely primitive ring.

LEMMA 3.6. Let K# (0) be an ideal of A which is a purely primitive ring.
Then there is a unique primitive ideal P of A so that K C W(P).

Proof. Take the primitive ideal P so that K C P“ as given by Lemma 3.4. Let
Q # P be a primitive ideal of 4. Suppose that K ¢ Q. Then KN Q is a primitive
ideal of K and so KN Q = (0). Hence K C Q“, which is impossible by Lemma 3.3.
Thus K C W(P). 0]

We characterize the W(P) # (0) intrinsically.

LEMMA 3.7. The ideals W(P) # (0) are the non-zero ideals of A which are
purely primitive rings and properly contained in no ideal which is a purely prim-
itive ring.

The following is a counterpart to Lemma 3.5.

LEMMA 3.8. The direct sum Y W(P) of the W(P) # (0) is the smallest ideal of
A which contains every ideal of A which is a purely primitive ring.

It should be noted that one can have W(P) # P?. For let A be the algebra of all
bounded linear operators on /,. P=(0) is a primitive ideal with W (P) all the
compact linear operators on /, and P% = A.
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This direct sum N= Y W(P), PeJ(A), plays an important role in our theory.
(We take N=(0) if §(A) is empty.)

THEOREM 3.9. (1) The ideals of A which are in §(A) are precisely the anni-
hilators of those non-zero ideals of A which are purely primitive rings. (2) The
closure of Y(A) in P(A) is the hull of N“.

Proof. As noted above, Pe §(A) if and only if W(P) # (0). Let K # (0) be
any ideal of A which is a purely primitive ring. By Lemma 3.6, K C W(P) for
some PeG(A). Also K= P by the calculation of Lemma 3.1. Conversely, if
PeS(A), then W(P) # (0) and P= (W(P))" where W(P) is a purely primitive
ring.

Since the sum N= Y W(P), PeJ(A), is a direct sum we have

N=N{(W(P))": PeF(A)}.
Inasmuch as (W(P))?= P for these P, we get N“=k(F(A)). OJ

Clearly &(A) is in one-to-one correspondence with the set of ideals W(P) #
(0). The ideals W (P) are closed if the primitive ideals of A4 are all closed ideals.
If these primitive ideals need not be closed the matter is obscure. One case is
easy.

LEMMA 3.10. Suppose that Pye ‘P(A) and P§ # (0). If { Py} is a closed point
of P(A), then W(Py) = P§.

Proof. We have W(Py) C P§. If PeP(A), P# P,, then P cannot contain P,
by hypothesis. Therefore P D P, so P§ C W(P,). ]

For a set S in P(A) let Int(S) denote the interior of S. For PeP(A) let [P]
denote the closure of the point P.

LEMMA 3.11. For P, Q in P(A), Qe Int([P]) if and only if Q D P“.

Proof. Consider any Q € ‘P(A) where Q¢ [P]. As Q ? P we have Q D P“. Thus
P“C K where K is the kernel of the complement of [P]. On the other hand P =
k([P]) so that, by semi-simplicity, KNP = (0) or K C P“. Hence K = P“.

From this we see that Q » P if and only if Q is in the complement of the
closure of the complement of [P] which is Int([P]). Ll

LEMMA 3.12. P§ # (0) if and only if PyeInt([Py]). If Py # (0) the mapping
Q- QN P§ is a homeomorphism of Int([Py]) onto P(Pf).

Proof. Let P=(Q =P, in Lemma 3.11, where P » P“ if and only if P“3# (0).
The homeomorphism follows from [7, p. 206]. ]

If the point P is closed in P(A), P is an isolated point if and only if P“# (0).
As the example following Lemma 3.8 shows, an isolated point need not be closed
in ‘P(A).

While P“> (0) for every isolated point P, we have no example of P e P(A)
where P (0) and P is not an isolated point. But at least for the closure of
% (A) we can be definite.
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THEOREM 3.13. For P in the closure of §(A), PeJ(A) if PY# (0).

Proof. Take P in the closure of §(A), P“# (0). By Lemma 3.12, P e Int([P]).
Hence there exists Qe §(A) with Q e Int([P]). Since Qe F(A4), Q“# (0). As
Qe [P], we have P C Q. It follows from [11, Lemma 2.1] that P = Q. |

We now give characterizations for §(A) =P(A) and for F(A) to be dense in

P(A).

THEOREM 3.14. The following are equivalent.
(1) J(A) =PA).

(2) P#(0) forall PeP(A).

(3) A/N is a radical ring.

Proof. As noted earlier P (0) for all Pe $(A4), so (1) implies (2). Suppose
(2) and that P; # P, are in P(A). It follows from [11, Lemma 2.1] that P, ¢ P,.
Hence {P,} is a closed point of P(A4), so P{ = W(P,) by Lemma 3.10. Clearly no
Q€ P(A) contains every P and therefore does not contain the ideal N. Hence
A/N is a radical ring.

Suppose (3) and let Q € P(A). Since Q fails to contain N, there is P e P(A) so
that Q  W(P). Since W(P) is a purely primitive ring we have W(P)NQ = (0)
and QC (W(P))?=P by Lemma 3.1. Since Q“## (0) we have Q=P by [l11,
Lemma 2.1]. Therefore W(Q) # (0) so that Qe §(A). O

THEOREM 3.15. The following are equivalent.

(1) §(A) is dense in P(A).

(2) N?=(0).

(3) Every closed ideal K # (0) of A contains a non-zero ideal of A which is a
purely primitive ring.

Proof. By semi-simplicity a subset S of P(A) is dense in P(A) if and only if
k(S) = (0). By Theorem 3.9, N“=k(3(A)). Hence (1) and (2) are equivalent.

Assume (2). Let K (0) be a closed ideal of A. There exists P e §(A) so that
KW(P) # (0). Inasmuch as any ideal of a purely primitive ring is purely primi-
tive by [7, p. 206, Proposition 2], we see that (2) implies (3).

Assume (3). If N (0) then the closed ideal N contains an ideal J # (0) of 4
which is a purely primitive ring. By Lemma 3.6, JC W(P) for some P eP(A).
But then J C N, which is impossible. O

COROLLARY 3.16. Let K be an ideal of A. If F(A) is dense in P(A), then
S(K) is dense in P(K).

Proof. Consider any non-zero ideal L of K. That L contains a non-zero ideal J
of A is seen by [7, p. 65]. We apply Theorem 3.15 to A4 in the discrete topology to
see that J contains a non-zero ideal of 4 which is a purely primitive ring. Then,
by Theorem 3.15 again, §(K) is dense in P(K). O

We apply our results to B*-algebras. Note that a B*-algebra B is purely primi-
tive if and only if it is topologically simple. For if K # (0) is a closed ideal and
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K # B then, as B/K is semi-simple, there is a primitive ideal of B containing K.
Here the ideals W(P) are all closed. Thus (see Lemma 3.6), the ideals W(P) #
(0), PeP(B), are the minimal closed ideals of B.

COROLLARY 3.17. For a B*-algebra B, the elements of J(B) are the annihi-
lators of the minimal closed ideals of B. Also §(B) is dense in P (B) if and only if
every closed ideal K # (0) of B contains a minimal closed ideal of B.

4. Discrete structure spaces. Let 4 be a semi-simple topological ring or
algebra. The hypothesis that no non-zero continuous homomorphic image of A4
.is a radical ring occurs in Theorem 4.1 and elsewhere below. This hypothesis is
equivalent to the statement that every proper closed ideal of A is contained in a
primitive ideal of A. It is satisfied by B*-algebras and by any A4 for which no
proper closed ideal contains every non-zero idempotent. Let B be a semi-simple
Banach algebra which has pointwise bounded left approximate units (see [4,
p. 50] for definitions). It follows from [4, Proposition 11.6] that B also satisfies
the above hypothesis. In particular this holds for L(G) where G is a locally com-
pact group. In §2 above we gave examples of semi-simple Banach algebras which
fail to satisfy the hypothesis.

THEOREM 4.1. All the primitive ideals of A are closed in A and A is the direct
topological sum of its minimal closed ideals if and only if A has discrete structure
space, and no non-zero continuous homomorphic image of A is a radical ring.

Proaf. Suppose all P e P(A) are closed and A is the direct topological sum of
its minimal closed ideals. Let P € P(A). There is a minimal closed ideal K such
that P » K. Then K C PY and A has discrete structure space by Theorem 3.14.
Consider a proper closed ideal J of A. If A/J is a radical ring, then no primitive
ideal of A contains J. For any P e P(A4), we have J¢ C P. Therefore J“ = (0) so
that JNK =K for every minimal closed ideal K. This makes J=A which is
impossible. Thus A/J is not a radical ring.

Suppose P(A) =F(A) and the homomorphic image requirement. Inasmuch as
P9 (0) for all PeP(A) we see that each P e P(A) is dual and therefore closed
by Lemma 3.1. Let R be a proper closed ideal of A. Then there exists a primitive
ideal Q containing R. Inasmuch as Q“# (0) we have also R“# (0). That A4 is
the direct topological sum of its minimal closed ideals now follows from [11,
Theorem 2.6]. 0

Let e = 0 be an idempotent in A. We say that e is a purely primitive idempotent
if eAe is a purely primitive ring.

LEMMA 4.2, If e is a purely primitive idempotent, e #0, then e lies in exactly
one P, PeP(A). If j #0 is an idempotent in P, where P is a closed point of
P(A), then j is a purely primitive idempotent.

Proof. Consider a purely primitive idempotent e 0. Let Q be any primitive
ideal of A. If Q DeAe then ee Q. Otherwise QMNeAe is a primitive ideal of eAe
by [7, Proposition 4, p. 206]. In that case QNeAde = (0) so that eQe = (0). Then
by semi-simplicity eQ = (0) or e e Q“. Hence either e Q or e Q°.
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Now e cannot lie in every primitive ideal so there exists P € P(A) where e ¢ P.
Then e € P?. The uniqueness of P follows from Lemma 3.3.

Now let j # 0 be an idempotent in P“ where P is a closed point of P(A4). By [7,
Proposition 4, p. 206], (0) is a closed point in P(jA4/). Hence (0) is the only
primitive ideal of jA;. L

THEOREM 4.3. Suppose that A has discrete structure space. Then the idem-
potents of A are the finite sums of mutually orthogonal purely primitive idem-
potents of A.

Proof. Theorem 3.14 shows that A/N is a radical ring, so that every idempotent
of A must lie in N. For such an idempotent p 0 we can write p=x,+ --- +x,
where each x; € P¢, Py e P(A), and PfNP{=(0) if i#j (see Lemma 3.3). It
follows that each xy is an idempotent and so is a purely primitive idempotent by
Lemma 4.2. ]

It follows readily that if 4 has discrete structure space and has an identity,
then A is the direct sum of a finite number of simple rings with identity.

THEOREM 4.4. Suppose that A has discrete structure space and is strongly
semi-simple. Then every primitive ideal is a modular maximal ideal.

Proof. Suppose P is a primitive ideal which is not a modular maximal ideal.
For each modular maximal ideal M, P‘NM“= (0) by Lemma 3.3. Let K be the
direct sum of the M“ as M runs over the set of modular maximal ideals. Now
M = M? for each M so that K“?is the intersection of the modular maximal ideals
or K= (0). But then P?= (0), which is absurd. O

5. §(A) dense in P(A). We treat semi-simple topological rings A for which
%(A) is dense in P(A). We saw earlier, in Corollary 3.16, that if K is an ideal of
A then §(KX) is dense in P(K). We now examine the quotient ring 4A/K.

THEOREM 5.1. Let K be an ideal in A, K=K“. Suppose §(A) is dense in
P(A). Then A/K is semi-simple and Y(A/K) is dense in P(A/K).

Proof. Let ={PeJ(A): PD K} and ¢’ be the complement of Zin §(A). If
Qe ¥ then K ¢ Q, so that K C Q and therefore Q“ C K as K is dual. By Lemma
3.3 the algebraic sum ¥ Q¢ for Qe %, is a direct sum. Then

DOCKCk(®)

where k(.¥), the kernel of %, is the intersection of the P € 4 Now by Lemma 3.1,
each Qe ¥’ is dual. Taking annihilators of the ideals in the formula displayed
above we obtain A(¢’) DKD [k(£)]°.

Since J(A) is dense and J(A) = LU ¥’ we see that k(L)k(¥’)=(0) or
[K()1°Dk(Z’). Therefore k(¥’) =K =[k(¥)]°. Then

K=K“=[k(£)]""Dk(¥)DK.

Therefore K = k(%) and K is the intersection of the primitive ideals of 4 con-
taining K. This shows that A/K is semi-simple.
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The mapping 7: P > P+ K is a homeomorphism of {Pe P(4): PD K} onto
P(A/K) by [7, Proposition 1, p. 205] and .# is in the domain of definition of 7.
Inasmuch as k(¢) = K, we see 7(.¥) is dense in P(A/K). Since the point P of ¥
is an open set in P(A) we see that 7(P) is an isolated point in P(A4/K). Therefore
§(A/K) is dense in P(A/K). 1

That the property §(A) dense in P(A) is preserved under the process of taking
direct sums follows from the next result.

THEOREM 5.2. Let R be a semi-simple topological ring which is equal to the
topological sum of a given family {K,, \€ A} of its ideals. If G(K)) is dense in
P(Ky\) for each \ € A then §(R) is dense in P(R).

Proof. We consider the ideal NV of R which is the smallest ideal of R containing
every ideal of R which is a purely primitive ring (see Lemma 3.8). By Theorem
3.15 it is sufficient to show that N = (0).

Let xo e N and let V' be a non-zero ideal of K, which is a purely primitive ring.
Now V need not be an ideal of A, but K, VK, is a non-zero ideal of 4 and is a
purely primitive ring. Then x, K VK, = (0). As K is semi-simple, x, Ky V' = (0).
Therefore x( K, annihilates every ideal of K, which is a purely primitive ring. By
applying Theorem 3.15 to K we have xy K\ = (0). As A4 is the topological sum of
the ideals X, and A is semi-simple, x,=0. (]

THEOREM 5.3. Suppose that (1) (A) is dense in ‘P(A), 2) each PeJ(A) isa
closed point of P(A), and (3) no non-zero continuous homomorphic image of A
is a radical ring. Then every closed ideal K # (0) of A contains a minimal closed
ideal of A.

Proof. By (1) and Theorem 3.15, K contains the ideal KN W (P) # (0) for some
PeS(A). We show that P is a maximal-closed ideal of A. For if J is a closed
ideal of A and PCJC A, P#J, J# A, by (3) there must be a primitive ideal of
A containing J which is contrary to (2). Then [11, Lemma 2.3] shows that L =
(P“)2 must be a minimal closed ideal of 4. We claim that KN L  (0) so that
KD L. For otherwise we would have K C LY. Now L‘=P by Lemma 3.1. But
then KNW(P) Cc PN PY, which is impossible. il

A well-known example [9, p. 82] satisfies (1), (2) and (3) with §(A4) #= P(A).
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