STRUCTURE SPACES OF RINGS AND BANACH ALGEBRAS

Bertram Yood

1. Introduction. This paper originated in a re-examination of a 1949 result of Kaplansky [8, Theorem 8.1]. Let B be a Banach algebra, $\mathfrak{P}(B)$ be the structure space of B (space of primitive ideals of B) and $\mathfrak{F}(B)$ be the set of isolated points of $\mathfrak{P}(B)$. Kaplansky's theorem asserts that for a B^* -algebra B, $\mathfrak{F}(B) = \mathfrak{P}(B)$ if and only if B is the $B^*(\infty)$ -sum of topologically simple B^* -algebras. Alternatively one may say that $\mathfrak{F}(B) = \mathfrak{P}(B)$ if and only if B is the direct topological sum of its minimal closed ideals. We are using the notions of [9] and by an ideal we shall always mean a two-sided ideal unless otherwise specified.

We took as our initial task a description of $\mathfrak{J}(B)$ for a B^* -algebra B. We found that the elements of $\mathfrak{J}(B)$ are precisely the annihilators in B of the minimal closed ideals of B. Inasmuch as the arguments for this result were largely algebraic we were led into a consideration of $\mathfrak{J}(A)$ for any semi-simple topological ring A. For a description of $\mathfrak{J}(A)$ the notion of minimal closed ideal is inadequate.

A basic notion here is that of a purely primitive ring (or algebra). A ring R is purely primitive if (0) is the only primitive ideal of R. Easy examples show that primitive rings need not be purely primitive.

For the semi-simple ring A, the elements of $\mathfrak{F}(A)$ are precisely the annihilators of those non-zero ideals of A which are purely primitive rings. For the B^* -algebra B, $\mathfrak{F}(B)$ is in one-to-one correspondence with the minimal closed ideals. The corresponding fact for A is that $\mathfrak{F}(A)$ is in one-to-one correspondence with the non-zero ideals of A which are maximal with respect to the property of being purely primitive rings. Such ideals are closed in A if the primitive ideals of A are closed in A or if $\mathfrak{P}(A)$ is a T_1 -space.

With this information in hand some results are obtained for rings A with discrete structure space and also for those where $\mathfrak{F}(A)$ is dense in $\mathfrak{P}(A)$. The class of semi-simple Banach algebras for which $\mathfrak{F}(A)$ is dense in $\mathfrak{P}(A)$ is fairly natural—a B^* -algebra has this property if and only if every non-zero closed ideal of B contains a minimal closed ideal of B. A semi-simple Banach algebra A has this property if and only if every non-zero closed ideal of A contains a non-zero ideal of A which is a purely primitive Banach algebra. Clearly any semi-simple topologically simple Banach algebra is purely primitive. The converse is false and we now turn to that question.

2. Purely primitive rings. Let R be a primitive topological ring (or algebra). We say that R is *purely primitive* if (0) is the only primitive ideal of R. This is a key concept of our program. Suppose that R has minimal one-sided ideals and

Received September 8, 1983. Michigan Math. J. 31 (1984). that S is the socle of R. Then the primitive ring R is purely primitive if and only if R is a modular annihilator ring in the sense of [10, p. 39]. This follows since R is a modular annihilator ring if and only if R/S is a radical ring [10, p. 38] and, moreover, S is contained in every non-zero ideal of R. Also R is topologically simple if and only if S is dense in R. Clearly R is purely primitive if it is topologically simple. The converse fails.

PROPOSITION 2.1. A primitive topological ring R with minimal one-sided ideals is purely primitive and not topologically simple if and only if R is a modular annihilator ring and its socle is not dense.

This enables us to give examples of Banach algebras which are purely primitive and not topologically simple. Consider a Banach space E and the Banach algebras K(E) of compact linear operators on E and F(E), the uniform limits of finite rank linear operators. Alexander [1] showed that there is a closed linear subspace of E of I_p , $2 for which <math>F(E) \neq K(E)$. Now K(E) is a primitive modular annihilator algebra by [2, p. 66]. Then K(E) is purely primitive and not topologically simple by the preceding proposition.

Other examples can be obtained as follows. There are classical examples of Banach spaces E for which (1) not every weakly compact linear operator on E is compact and (2) the product of any two weakly compact linear operators is compact. See [5] and [6]. For such a space let W(E) be the set of all weakly compact linear operators on E. Inasmuch as W(E)/K(E) is a radical algebra, it follows from Proposition 2.1 that W(E) is a purely primitive Banach algebra which is not topologically simple. It is readily seen that there are no commutative examples.

3. Basic theory. We turn to a consideration of a semi-simple topological ring A (of course the topology could be the discrete topology). For a subset W of A let L(W) (R(W)) denote the left (right) annihilator of W in A. Let K be an ideal in A. By [3, p. 462], L(K) = R(K). We set $K^a = L(K) = R(K)$. As in [11, p. 308] we say that the ideal K is dual if $K = K^{aa}$ and note that K^a is always dual. A dual ideal $I \neq (0)$ is called *minimally dual* if no non-zero ideal $K = K^a = L(K)$ of $K = K^a = L(K)$ is always dual.

LEMMA 3.1. If P is a prime ideal in A and $P^a \neq (0)$, then P^a is minimally dual and P is dual.

Proof. In fact, if $K \neq (0)$ is an ideal of A, $K \subset P^a$, then $K^a = P$. First observe that $K \not\subset P$ and so $K^a \subset P$. But $K^a \supset P^{aa}$. Thus $P^{aa} \subset K^a \subset P \subset P^{aa}$.

LEMMA 3.2. The intersection of any number of dual ideals of A is a dual ideal. *Proof.* For if $\{I_{\beta}\}$ is a family of dual ideals,

$$\bigcap I_{\beta} \subset (\bigcap I_{\beta})^{aa} \subset \bigcap I_{\beta}^{aa} = \bigcap I_{\beta}.$$

LEMMA 3.3. If $P_1 \neq P_2$ are two prime ideals of A then $P_1^a \cap P_2^a = (0)$.

Proof. We may suppose $P_1^a \neq (0)$ and $P_2^a \neq (0)$. By Lemmas 3.1 and 3.2, either $P_1^a \cap P_2^a = (0)$ or else $P_1^a \cap P_2^a = P_1^a = P_2^a$. But in the latter case, $P_1^{aa} = P_2^{aa}$ so that $P_1 = P_2$ by Lemma 3.1, which is contrary to our hypotheses.

The only prime ideals of concern here are primitive ideals.

LEMMA 3.4. Let $W \neq (0)$ be an ideal in A where W is a primitive ring. Then there is a unique primitive ideal P of A with $W \subset P^a$. Also $W \subset Q$ for any primitive ideal $Q \neq P$ and $Q^a \neq (0)$.

Proof. By [7, p. 206, Proposition 2] there exists a primitive ideal P of A such that $P \cap W = (0)$. Therefore $W \subset P^a$. The uniqueness of P is given by Lemma 3.3. If $Q \neq P$ is a primitive ideal and $Q^a \neq (0)$ then $W \cap Q^a = (0)$ so that $W \subset Q^{aa} = Q$.

LEMMA 3.5. The direct sum $\sum P^a$ of the ideals $P^a \neq (0)$, where P is a primitive ideal, is the smallest ideal of A which contains every ideal of A which is itself a primitive ring.

Proof. In view of Lemma 3.4 it is sufficient to see that each of the $P^u \neq (0)$ is a primitive ring. Let π be the natural homomorphism of A onto A/P. Then $\pi(P^u)$ is an isomorphic image of P^u and, being an ideal in the primitive ring A/P, is itself a primitive ring.

Consider the structure space (space of primitive ideals) $\mathfrak{P}(A)$ in the hull-kernel topology. For a set \mathfrak{S} in $\mathfrak{P}(A)$ let $k(\mathfrak{S})$, the kernel of \mathfrak{S} , be the intersection of the primitive ideals P in \mathfrak{S} . For each primitive ideal P let W(P) be the kernel of the $Q \in \mathfrak{P}(A)$, $Q \neq P$. Inasmuch as A is semi-simple we always have $W(P) \subset P^a$. Note that P is an isolated point of $\mathfrak{P}(A)$ if and only if $P \not\supset W(P)$. As $W(P) \subset P^a$, P is an isolated point if and only if $W(P) \neq (0)$. Suppose $W(P) \neq (0)$. We see from [7, Proposition 2, p. 206] that W(P) is a purely primitive ring.

LEMMA 3.6. Let $K \neq (0)$ be an ideal of A which is a purely primitive ring. Then there is a unique primitive ideal P of A so that $K \subset W(P)$.

Proof. Take the primitive ideal P so that $K \subset P^a$ as given by Lemma 3.4. Let $Q \neq P$ be a primitive ideal of A. Suppose that $K \not\subset Q$. Then $K \cap Q$ is a primitive ideal of K and so $K \cap Q = (0)$. Hence $K \subset Q^a$, which is impossible by Lemma 3.3. Thus $K \subset W(P)$.

We characterize the $W(P) \neq (0)$ intrinsically.

LEMMA 3.7. The ideals $W(P) \neq (0)$ are the non-zero ideals of A which are purely primitive rings and properly contained in no ideal which is a purely primitive ring.

The following is a counterpart to Lemma 3.5.

LEMMA 3.8. The direct sum $\sum W(P)$ of the $W(P) \neq (0)$ is the smallest ideal of A which contains every ideal of A which is a purely primitive ring.

It should be noted that one can have $W(P) \neq P^a$. For let A be the algebra of all bounded linear operators on l_2 . P = (0) is a primitive ideal with W(P) all the compact linear operators on l_2 and $P^a = A$.

This direct sum $N = \sum W(P)$, $P \in \Im(A)$, plays an important role in our theory. (We take N = (0) if $\Im(A)$ is empty.)

THEOREM 3.9. (1) The ideals of A which are in $\mathfrak{F}(A)$ are precisely the annihilators of those non-zero ideals of A which are purely primitive rings. (2) The closure of $\mathfrak{F}(A)$ in $\mathfrak{P}(A)$ is the hull of N^a .

Proof. As noted above, $P \in \mathfrak{J}(A)$ if and only if $W(P) \neq (0)$. Let $K \neq (0)$ be any ideal of A which is a purely primitive ring. By Lemma 3.6, $K \subset W(P)$ for some $P \in \mathfrak{J}(A)$. Also $K^a = P$ by the calculation of Lemma 3.1. Conversely, if $P \in \mathfrak{J}(A)$, then $W(P) \neq (0)$ and $P = (W(P))^a$ where W(P) is a purely primitive ring.

Since the sum $N = \sum W(P)$, $P \in \Im(A)$, is a direct sum we have

$$N^a = \bigcap \{ (W(P))^a : P \in \Im(A) \}.$$

Inasmuch as $(W(P))^a = P$ for these P, we get $N^a = k(\Im(A))$.

Clearly $\Im(A)$ is in one-to-one correspondence with the set of ideals $W(P) \neq (0)$. The ideals W(P) are closed if the primitive ideals of A are all closed ideals. If these primitive ideals need not be closed the matter is obscure. One case is easy.

LEMMA 3.10. Suppose that $P_0 \in \mathfrak{P}(A)$ and $P_0^a \neq (0)$. If $\{P_0\}$ is a closed point of $\mathfrak{P}(A)$, then $W(P_0) = P_0^a$.

Proof. We have $W(P_0) \subset P_0^a$. If $P \in \mathfrak{P}(A)$, $P \neq P_0$, then P cannot contain P_0 by hypothesis. Therefore $P \supset P_0^a$, so $P_0^a \subset W(P_0)$.

For a set \mathfrak{S} in $\mathfrak{P}(A)$ let $Int(\mathfrak{S})$ denote the interior of \mathfrak{S} . For $P \in \mathfrak{P}(A)$ let [P] denote the closure of the point P.

LEMMA 3.11. For P, Q in $\mathfrak{P}(A)$, $Q \in Int([P])$ if and only if $Q \supset P^a$.

Proof. Consider any $Q \in \mathcal{P}(A)$ where $Q \notin [P]$. As $Q \not\supset P$ we have $Q \supset P^a$. Thus $P^a \subset K$ where K is the kernel of the complement of [P]. On the other hand P = k([P]) so that, by semi-simplicity, $K \cap P = (0)$ or $K \subset P^a$. Hence $K = P^a$.

From this we see that $Q \supset P^a$ if and only if Q is in the complement of the closure of the complement of [P] which is Int([P]).

LEMMA 3.12. $P_0^a \neq (0)$ if and only if $P_0 \in \text{Int}([P_0])$. If $P_0^a \neq (0)$ the mapping $Q \rightarrow Q \cap P_0^a$ is a homeomorphism of $\text{Int}([P_0])$ onto $\mathfrak{P}(P_0^a)$.

Proof. Let $P = Q = P_0$ in Lemma 3.11, where $P \supset P^a$ if and only if $P^a \neq (0)$. The homeomorphism follows from [7, p. 206].

If the point P is closed in $\mathfrak{P}(A)$, P is an isolated point if and only if $P^a \neq (0)$. As the example following Lemma 3.8 shows, an isolated point need not be closed in $\mathfrak{P}(A)$.

While $P^a \neq (0)$ for every isolated point P, we have no example of $P \in \mathfrak{P}(A)$ where $P^a \neq (0)$ and P is not an isolated point. But at least for the closure of $\mathfrak{F}(A)$ we can be definite.

THEOREM 3.13. For P in the closure of $\Im(A)$, $P \in \Im(A)$ if $P^a \neq (0)$.

Proof. Take P in the closure of $\Im(A)$, $P^a \neq (0)$. By Lemma 3.12, $P \in \operatorname{Int}([P])$. Hence there exists $Q \in \Im(A)$ with $Q \in \operatorname{Int}([P])$. Since $Q \in \Im(A)$, $Q^a \neq (0)$. As $Q \in [P]$, we have $P \subset Q$. It follows from [11, Lemma 2.1] that P = Q.

We now give characterizations for $\Im(A) = \Psi(A)$ and for $\Im(A)$ to be dense in $\Psi(A)$.

THEOREM 3.14. The following are equivalent.

- (1) $\Im(A) = \Psi(A)$.
- (2) $P^a \neq (0)$ for all $P \in \mathfrak{P}(A)$.
- (3) A/N is a radical ring.

Proof. As noted earlier $P^a \neq (0)$ for all $P \in \mathfrak{F}(A)$, so (1) implies (2). Suppose (2) and that $P_1 \neq P_2$ are in $\mathfrak{P}(A)$. It follows from [11, Lemma 2.1] that $P_1 \not\subset P_2$. Hence $\{P_1\}$ is a closed point of $\mathfrak{P}(A)$, so $P_1^a = W(P_1)$ by Lemma 3.10. Clearly no $Q \in \mathfrak{P}(A)$ contains every P^a and therefore does not contain the ideal N. Hence A/N is a radical ring.

Suppose (3) and let $Q \in \mathfrak{P}(A)$. Since Q fails to contain N, there is $P \in \mathfrak{P}(A)$ so that $Q \supset W(P)$. Since W(P) is a purely primitive ring we have $W(P) \cap Q = (0)$ and $Q \subset (W(P))^a = P$ by Lemma 3.1. Since $Q^a \neq (0)$ we have Q = P by [11, Lemma 2.1]. Therefore $W(Q) \neq (0)$ so that $Q \in \mathfrak{F}(A)$.

THEOREM 3.15. The following are equivalent.

- (1) $\Im(A)$ is dense in $\Psi(A)$.
- (2) $N^a = (0)$.
- (3) Every closed ideal $K \neq (0)$ of A contains a non-zero ideal of A which is a purely primitive ring.

Proof. By semi-simplicity a subset \mathfrak{S} of $\mathfrak{P}(A)$ is dense in $\mathfrak{P}(A)$ if and only if $k(\mathfrak{S}) = (0)$. By Theorem 3.9, $N^a = k(\mathfrak{F}(A))$. Hence (1) and (2) are equivalent.

Assume (2). Let $K \neq (0)$ be a closed ideal of A. There exists $P \in \Im(A)$ so that $KW(P) \neq (0)$. Inasmuch as any ideal of a purely primitive ring is purely primitive by [7, p. 206, Proposition 2], we see that (2) implies (3).

Assume (3). If $N^a \neq (0)$ then the closed ideal N^a contains an ideal $J \neq (0)$ of A which is a purely primitive ring. By Lemma 3.6, $J \subset W(P)$ for some $P \in \mathfrak{P}(A)$. But then $J \subset N$, which is impossible.

COROLLARY 3.16. Let K be an ideal of A. If $\mathfrak{F}(A)$ is dense in $\mathfrak{P}(A)$, then $\mathfrak{F}(K)$ is dense in $\mathfrak{P}(K)$.

Proof. Consider any non-zero ideal L of K. That L contains a non-zero ideal J of A is seen by [7, p. 65]. We apply Theorem 3.15 to A in the discrete topology to see that J contains a non-zero ideal of A which is a purely primitive ring. Then, by Theorem 3.15 again, $\Im(K)$ is dense in $\Re(K)$.

We apply our results to B^* -algebras. Note that a B^* -algebra B is purely primitive if and only if it is topologically simple. For if $K \neq (0)$ is a closed ideal and

 $K \neq B$ then, as B/K is semi-simple, there is a primitive ideal of B containing K. Here the ideals W(P) are all closed. Thus (see Lemma 3.6), the ideals $W(P) \neq (0)$, $P \in \mathcal{P}(B)$, are the minimal closed ideals of B.

COROLLARY 3.17. For a B^* -algebra B, the elements of $\mathfrak{J}(B)$ are the annihilators of the minimal closed ideals of B. Also $\mathfrak{J}(B)$ is dense in $\mathfrak{P}(B)$ if and only if every closed ideal $K \neq (0)$ of B contains a minimal closed ideal of B.

4. Discrete structure spaces. Let A be a semi-simple topological ring or algebra. The hypothesis that no non-zero continuous homomorphic image of A is a radical ring occurs in Theorem 4.1 and elsewhere below. This hypothesis is equivalent to the statement that every proper closed ideal of A is contained in a primitive ideal of A. It is satisfied by B^* -algebras and by any A for which no proper closed ideal contains every non-zero idempotent. Let B be a semi-simple Banach algebra which has pointwise bounded left approximate units (see [4, p. 50] for definitions). It follows from [4, Proposition 11.6] that B also satisfies the above hypothesis. In particular this holds for L(G) where G is a locally compact group. In §2 above we gave examples of semi-simple Banach algebras which fail to satisfy the hypothesis.

THEOREM 4.1. All the primitive ideals of A are closed in A and A is the direct topological sum of its minimal closed ideals if and only if A has discrete structure space, and no non-zero continuous homomorphic image of A is a radical ring.

Proof. Suppose all $P \in \mathfrak{P}(A)$ are closed and A is the direct topological sum of its minimal closed ideals. Let $P \in \mathfrak{P}(A)$. There is a minimal closed ideal K such that $P \not\supset K$. Then $K \subset P^a$ and A has discrete structure space by Theorem 3.14. Consider a proper closed ideal J of A. If A/J is a radical ring, then no primitive ideal of A contains J. For any $P \in \mathfrak{P}(A)$, we have $J^a \subset P$. Therefore $J^a = (0)$ so that $J \cap K = K$ for every minimal closed ideal K. This makes J = A which is impossible. Thus A/J is not a radical ring.

Suppose $\mathfrak{P}(A) = \mathfrak{F}(A)$ and the homomorphic image requirement. Inasmuch as $P^a \neq (0)$ for all $P \in \mathfrak{P}(A)$ we see that each $P \in \mathfrak{P}(A)$ is dual and therefore closed by Lemma 3.1. Let R be a proper closed ideal of A. Then there exists a primitive ideal Q containing R. Inasmuch as $Q^a \neq (0)$ we have also $R^a \neq (0)$. That A is the direct topological sum of its minimal closed ideals now follows from [11, Theorem 2.6].

Let $e \neq 0$ be an idempotent in A. We say that e is a purely primitive idempotent if eAe is a purely primitive ring.

LEMMA 4.2. If e is a purely primitive idempotent, $e \neq 0$, then e lies in exactly one P^a , $P \in \mathfrak{P}(A)$. If $j \neq 0$ is an idempotent in P^a , where P is a closed point of $\mathfrak{P}(A)$, then j is a purely primitive idempotent.

Proof. Consider a purely primitive idempotent $e \neq 0$. Let Q be any primitive ideal of A. If $Q \supset eAe$ then $e \in Q$. Otherwise $Q \cap eAe$ is a primitive ideal of eAe by [7, Proposition 4, p. 206]. In that case $Q \cap eAe = (0)$ so that eQe = (0). Then by semi-simplicity eQ = (0) or $e \in Q^a$. Hence either $e \in Q$ or $e \in Q^a$.

Now e cannot lie in every primitive ideal so there exists $P \in \mathfrak{P}(A)$ where $e \notin P$. Then $e \in P^a$. The uniqueness of P follows from Lemma 3.3.

Now let $j \neq 0$ be an idempotent in P^a where P is a closed point of $\mathfrak{P}(A)$. By [7, Proposition 4, p. 206], (0) is a closed point in $\mathfrak{P}(jAj)$. Hence (0) is the only primitive ideal of jAj.

THEOREM 4.3. Suppose that A has discrete structure space. Then the idempotents of A are the finite sums of mutually orthogonal purely primitive idempotents of A.

Proof. Theorem 3.14 shows that A/N is a radical ring, so that every idempotent of A must lie in N. For such an idempotent $p \neq 0$ we can write $p = x_1 + \cdots + x_n$ where each $x_k \in P_k^a$, $P_k \in \mathfrak{P}(A)$, and $P_i^a \cap P_j^a = (0)$ if $i \neq j$ (see Lemma 3.3). It follows that each x_k is an idempotent and so is a purely primitive idempotent by Lemma 4.2.

It follows readily that if A has discrete structure space and has an identity, then A is the direct sum of a finite number of simple rings with identity.

THEOREM 4.4. Suppose that A has discrete structure space and is strongly semi-simple. Then every primitive ideal is a modular maximal ideal.

Proof. Suppose P is a primitive ideal which is not a modular maximal ideal. For each modular maximal ideal M, $P^a \cap M^a = (0)$ by Lemma 3.3. Let K be the direct sum of the M^a as M runs over the set of modular maximal ideals. Now $M = M^{aa}$ for each M so that K^a is the intersection of the modular maximal ideals or $K^a = (0)$. But then $P^a = (0)$, which is absurd.

5. $\Im(A)$ dense in $\Psi(A)$. We treat semi-simple topological rings A for which $\Im(A)$ is dense in $\Psi(A)$. We saw earlier, in Corollary 3.16, that if K is an ideal of A then $\Im(K)$ is dense in $\Psi(K)$. We now examine the quotient ring A/K.

THEOREM 5.1. Let K be an ideal in A, $K = K^{aa}$. Suppose $\mathfrak{F}(A)$ is dense in $\mathfrak{P}(A)$. Then A/K is semi-simple and $\mathfrak{F}(A/K)$ is dense in $\mathfrak{P}(A/K)$.

Proof. Let $\mathcal{L} = \{P \in \mathfrak{J}(A) : P \supset K\}$ and \mathcal{L}' be the complement of \mathcal{L} in $\mathfrak{J}(A)$. If $Q \in \mathcal{L}'$ then $K \not\subset Q$, so that $K^a \subset Q$ and therefore $Q^a \subset K$ as K is dual. By Lemma 3.3 the algebraic sum $\sum Q^a$, for $Q \in \mathcal{L}'$, is a direct sum. Then

$$\sum Q^a \subset K \subset k(\mathcal{L})$$

where $k(\mathcal{L})$, the kernel of \mathcal{L} , is the intersection of the $P \in \mathcal{L}$. Now by Lemma 3.1, each $Q \in \mathcal{L}'$ is dual. Taking annihilators of the ideals in the formula displayed above we obtain $k(\mathcal{L}') \supset K^a \supset [k(\mathcal{L})]^a$.

Since $\mathfrak{J}(A)$ is dense and $\mathfrak{J}(A) = \mathscr{L} \cup \mathscr{L}'$ we see that $k(\mathscr{L})k(\mathscr{L}') = (0)$ or $[k(\mathscr{L})]^a \supset k(\mathscr{L}')$. Therefore $k(\mathscr{L}') = K^a = [k(\mathscr{L})]^a$. Then

$$K = K^{aa} = [k(\mathcal{L})]^{aa} \supset k(\mathcal{L}) \supset K.$$

Therefore $K = k(\mathcal{L})$ and K is the intersection of the primitive ideals of A containing K. This shows that A/K is semi-simple.

The mapping $\tau: P \to P + K$ is a homeomorphism of $\{P \in \mathfrak{P}(A): P \supset K\}$ onto $\mathfrak{P}(A/K)$ by [7, Proposition 1, p. 205] and \mathcal{L} is in the domain of definition of τ . Inasmuch as $k(\mathcal{L}) = K$, we see $\tau(\mathcal{L})$ is dense in $\mathfrak{P}(A/K)$. Since the point P of \mathcal{L} is an open set in $\mathfrak{P}(A)$ we see that $\tau(P)$ is an isolated point in $\mathfrak{P}(A/K)$. Therefore $\mathfrak{F}(A/K)$ is dense in $\mathfrak{P}(A/K)$.

That the property $\mathfrak{F}(A)$ dense in $\mathfrak{P}(A)$ is preserved under the process of taking direct sums follows from the next result.

THEOREM 5.2. Let R be a semi-simple topological ring which is equal to the topological sum of a given family $\{K_{\lambda}, \lambda \in \Lambda\}$ of its ideals. If $\mathfrak{J}(K_{\lambda})$ is dense in $\mathfrak{P}(K_{\lambda})$ for each $\lambda \in \Lambda$ then $\mathfrak{J}(R)$ is dense in $\mathfrak{P}(R)$.

Proof. We consider the ideal N of R which is the smallest ideal of R containing every ideal of R which is a purely primitive ring (see Lemma 3.8). By Theorem 3.15 it is sufficient to show that $N^a = (0)$.

Let $x_0 \in N^a$ and let V be a non-zero ideal of K_λ which is a purely primitive ring. Now V need not be an ideal of A, but $K_\lambda V K_\lambda$ is a non-zero ideal of A and is a purely primitive ring. Then $x_0 K_\lambda V K_\lambda = (0)$. As K_λ is semi-simple, $x_0 K_\lambda V = (0)$. Therefore $x_0 K_\lambda$ annihilates every ideal of K_λ which is a purely primitive ring. By applying Theorem 3.15 to K_λ we have $x_0 K_\lambda = (0)$. As A is the topological sum of the ideals K_λ and A is semi-simple, $x_0 = 0$.

THEOREM 5.3. Suppose that (1) $\mathfrak{J}(A)$ is dense in $\mathfrak{P}(A)$, (2) each $P \in \mathfrak{J}(A)$ is a closed point of $\mathfrak{P}(A)$, and (3) no non-zero continuous homomorphic image of A is a radical ring. Then every closed ideal $K \neq (0)$ of A contains a minimal closed ideal of A.

Proof. By (1) and Theorem 3.15, K contains the ideal $K \cap W(P) \neq (0)$ for some $P \in \mathfrak{F}(A)$. We show that P is a maximal-closed ideal of A. For if J is a closed ideal of A and $P \subset J \subset A$, $P \neq J$, $J \neq A$, by (3) there must be a primitive ideal of A containing J which is contrary to (2). Then [11, Lemma 2.3] shows that $L = (P^a)^2$ must be a minimal closed ideal of A. We claim that $K \cap L \neq (0)$ so that $K \supset L$. For otherwise we would have $K \subset L^a$. Now $L^a = P$ by Lemma 3.1. But then $K \cap W(P) \subset P \cap P^a$, which is impossible.

A well-known example [9, p. 82] satisfies (1), (2) and (3) with $\Im(A) \neq \Psi(A)$.

REFERENCES

- 1. F. E. Alexander, Compact and finite rank operators on subspaces of l_p , Bull. London Math. Soc. 6 (1974), 341–342.
- 2. B. A. Barnes, *Examples of modular annihilator algebras*, Rocky Mountain J. 1 (1971), 657-665.
- 3. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer, New York, 1973.
- 4. R. S. Doran and J. Wichmann, *Approximate identities and factorization in Banach modules*, Lecture Notes in Math., 768, Springer, Berlin, 1979.

- 5. N. Dunford and B. J. Pettis, *Linear operations on summable functions*, Trans. Amer. Math. Soc. 47 (1940), 323-392.
- 6. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du $type\ C(K)$, Canad. J. Math. 5 (1953), 129–173.
- 7. N. Jacobson, *Structure of rings*, Amer. Math. Soc., Coll. Publ., vol. 37, Providence, R.I., 1956.
- 8. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
- 9. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960.
- 10. B. Yood, Ideals in topological rings, Canad. J. Math. 16 (1964), 28-45.
- 11. ——, Closed prime ideals in topological rings, Proc. London Math. Soc. (3) 24 (1972), 307–323.

Department of Mathematics Pennsylvania State University University Park, Pennsylvania 16802

)