SOME INEQUALITIES FOR THE MODULI
OF CURVE FAMILIES

Matti Vuorinen

1. Introduction. The modulus of a curve family is a basic tool in the theory of
quasiconformal and quasiregular mappings in R". The numerical value of the
modulus is known only for a few curve families. Therefore good estimates are of
importance. Several estimates are given in the literature ([1], [2], [4], [7], [9]).
However, the known estimates are not adequate in all those cases which are rele-
vant to the theory of quasiconformal and quasiregular mappings.

Let E, FCR" be non-empty sets and let Agr=A(E,F) be the family of all
closed curves which join E to F in R”. In this paper we shall study the problem of
finding estimates for the modulus M(Agr) in terms of the ‘sizes’ of E and F, in
particular, when E and F are ‘small.” We list some well-known estimates.

(a) E and F are connected (cf. Gehring [1], [2], and Vdisdld [9, pp. 27-40]). In
this case M(Agr) has a lower bound, which depends on the dimension # and the
spherical diameters g(F) and g(F’).

(b) E is connected and cap F'>0 (i.e., F is of positive conformal capacity). In
this case M(Agr) has a lower bound, which depends on g(E), F, and n (cf.
Martio, Rickman, and Viisila [4, 3.11]).

(c) cap E>0 and cap F>0. In this case M(Agr) has a lower bound depending
only on E, F, and n (cf. Nakki [7]).

The lower bound in (a) is an increasing function of min{q(E), g(F)}. It seems
that in the cases (b) and (c) the dependence of the lower bound on the ‘sizes’ of
E and F is more complicated and that a further study of this dependence is
desirable. The condition of being of positive capacity in (b) and (c) measures the
local structure of the set rather than its global size. In order to achieve a quanti-
tative lower bound for M(Agr) also in cases (b) and (c) we introduce a set func-
tion c(-) with the following properties.

1.1 THEOREM. There exists a set function c(-) in R" with the properties

(1) ¢(E) =c(hE) whenever h: R"— R" is a spherically isometric Mobius
transformation.

(2) c(-) is a quasiadditive (for definition cf. 3.20) outer measure with 0 <
c(E)<c(R") <o,

(3) c(E)>0if and only if cap E>0.

(4) If E is connected, then c(E) = a,q(E), where ay is a positive number de-
pending only on n.

(5) M(Agp)ZBmin{c(E), c(F)} where 3 is a positive number depending only
on n.
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6) Ifq(E,F)=1t>0, then there exists a positive number o depending only on
n and t such that M(Agrr) <amin{c(E), c(F)}.

As a corollary we get a quantitative lower bound in each of the above cases
(a)-(c) with a simple dependence on the sizes c(E) and c(F') of E and F. It should
be emphasized that the main interest of Theorem 1.1 lies in the inequalities (5)
and (6) when E and F are disconnected sets of positive capacity.

The proof of the theorem is based on a comparison principle for the modulus,
which was first used in [4] and [7]. In order to give the reader some idea about
the set function c(£), we note that by Remark 3.12(2) below

(1.2) c(E) ~max{M(A(S"7'(2), E))), M(A(S"7(3), E2)))

where E,=ENB", E,=F\E, and where ~ indicates that the ratio of the left and
right sides of (1.2) is bounded from above and below by numbers depending only
on n. We shall apply Theorem 1.1 to prove a new distortion theorem for quasi-
regular mappings.

2. Preliminary results.

2.1 NOTATION. Throughout the paper we shall assume that » is a fixed
integer and n>2. We denote the n-dimensional Euclidean space by R" and
its one-point compactification by R"=R"U{o]. All topological operations
are performed with respect to R" unless otherwise mentioned. Balls and
spheres centered at x € R" and with radius r>0 are denoted, respectively, by
B"(x,r)=(z€R": |z—x|<r}, 8" !(x,r)=3B"(x,r). We employ the abbrevi-
ations B"(r)=B"(0,r), B"=B"(1), S" (r)=8""1(0,r), and $""'=5""'(1).
The standard unit coordinate vectors are ey, ..., e,.

2.2 THE SPHERICAL METRIC. The stereographic projection
fiR"—>S8"(ey11,3) CR™!
is defined by

X—€pt
JX) =g+ ot
|x—ep41]

The spherical (chordal) distance between two points @, »€R" is the number

g(a,b)=|f(a)—f(b)|. If a#co#b, then
g(a,b)=|a—b|(1+]|a|®)""* (1 +|b|*)~"*

and g(a, 00)=(l-i—|a|2)"”2. It is clear that g(a, b) <min{l,|a—b|} holds for

a,beR". ForxeR", t€(0,1), let Q(x,t)={z€R": q(z,x)<t]}.

2.3 THE MODULUS OF A CURVE FAMILY. A curve is a non-constant map-
ping y: A — R" where ACR s an interval. The set yA will be denoted by |vy/|. Let
I' be a family of curves in R”. The modulus of T is defined by

2.4) M(I‘)=inf§ o™ dm

p “R7
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where m is the n-dimensional Lebesgue measure and the infimum is taken over
all non-negative Borel-functions p: R” = R'U [0}, with §4 pds>1 for all locally
rectifiable v €I'. For the properties of the modulus the reader is referred
to [9]. If E,F,GCR", we denote by A(E, F; G) the family of all closed paths
v: [a,b] = R" such that y(¢) €G for ¢ € (a, b), and one of the points y(a), y(b)
belongs to E and the other to F. We also denote A(E,F)=A(E,F;R"). Let
u€R" and b>a>0 and let T" be a curve family such that |y|NS" " (u,a) = @ =
|v|NS"~'(u, b) for every v €T. Then

1—n
(2.5) M(I‘)sw,,_l(log %)

holds (cf. [9, 7.5]) where w,_, is the (n—1)-dimensional surface area of "',

Given ECR”, t>r>0, and x €R" we denote
2.6) M(E,r,x)=M(A(S" (x,t), B"(x,r)NE; R"))
' M(E, r,x)=M,,(E,r,X).

If £>s>r>0, then it follows from [6, 2.7] that

log(t/r)

2.7 M(E,r,x) <My (E,r,x) < (log(s/r)

n—1
) M (E, r,x)(.

An important property of the modulus is the conformal invariance

(2.8) M) =M(fT)

whenever f: G — G’is a conformal mapping and I is a curve family in G and fT°
is its image under f (cf. [9, 8.2]).

2.9 THE CAPACITY OF A CONDENSER. A condenser in R” is a pair (A4, C)
where A is open in R” and C is a compact non-empty subset of 4. The capacity
of E=(A, C) is defined by

(2.10) cap E=inf | |vu|" dm
u YR%
where u runs through all C*-functions with compact support in 4 and u(x) =1
for x€ C. It follows from a result of Ziemer [14] that
(2.11) cap E=M(A(C,3A4; R")=M(A(C, 0A4; A)).

For bounded A, (2.11) was proved in [14], and the general case follows from it
by a simple limiting argument. Let G be a domain in R”, let f: G — R" be a con-
tinuous open mapping, and let (A, C)=FE be a condenser with ACG. Then
SJE=(fA, fC) is a condenser as well. If f is conformal, it follows from (2.8) and
(2.11) that

(2.12) cap E=cap fE.

A compact set CCR” is said to be of capacity zero, denoted cap C=0, if
cap(A,C)=0 for some bounded open ACR". Otherwise C is of positive
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capacity, cap C>0. The notion of a condenser can be readily extended to the
case where A is an open subset of R” with 34 # @, and where CC A4 is compact.
If (A, C) is a condenser in R", we define cap(A4, C) =M(A(C,3A4; R")). A com-
pact set CCR” is said to be of capacity zero, if cap(A4, C)=0 for some open
ACR" with A =R". It is well known that the definition of capacity zero does not
depend on the open set A; this fact will also follow from the results in this paper.
Sets of capacity zero have zero Hausdorff dimension (cf. [8, p. 72]).

We shall first list some well-known lemmas. The next result is a simple corol-
lary to the spherical cap-inequality (cf. [9, 10.12]) and it was proved in [12, 1.10].

2.13 LEMMA. Let ECR", t>r>0, and let E.C ENB"(r) be connected. Then

2t+d(E,)
2t—d(E})

where c,, is the positive constant in [9, 10.12].

M,(E,r,0)2c, log

The next result will be called the comparison principle for the modulus. It
originates from a result of Martio, Rickman and Vdisila [4, 3.11] and N&kki [7].
The formulation differs from [7, 3.1] because we allow four sets instead of three,
but with obvious modifications the proof given in [7] remains valid in the present
case as well.

2.14 LEMMA. Let G be a domain in R", let F;CG, j=1,2,3,4, and let T;; =
A(F;, F;;G), 1<i,j<4. Then

M(T'3) 237" min{M(T3), M(T2s), inf M(A(|13], |v24]; G)))
where the infimum is taken over all rectifiable curves vy 3 €13 and 4 € T'y4.

2.15 COROLLARY. Let F\,F,,F;,F,CR" and let T;;=A(F;,F;), 1<i,j<4.
Then
M(T3) 237" min{M(T';3), M(Ty,), 6,(r))

where r=min{q(F,, F3), q(F,, F4)} and
(2.16) 0,(r)=inf M(A(F,F*))

where the infimum is taken over all continua F and F* in R" with q(F) =r,
qg(F*)=r.

It was proved by Vidisdld [9, §12] (cf. also Gehring [2]) that the number
6,(r)y>0 for r>0and §,,(0) =0. We shall give here a different proof of this fact,
which is based on the following corollary to 2.14.

_2.17 COROLLARY. Let 0<a<b, u€R" and let F,F,CB"(u,a), F;C
R"\B"(u,b). Then

M(T;p) 237" min{M(FB)sM(FB),Cn log %}

Proof. The proof follows from 2.14 and [9, 10.12]. O
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2.18 LEMMA. (1) Let E,FCB"(u) be connected sets with d(E),d(F) > tu.
Then M(A(E,F))2d, t, where d, is a positive constant depending only on n.

(2) Let E,FCR" be connected sets with q(E),q(F)2a. Then M(A(E,F))>
8, (a) = Da where D is a positive number depending only on n.

Proof. (1) Apply 2.13 and 2.17 with F\=F, F,=E, and F3=S"“(2u) to get
the desired estimate with d;=3""c,(log 2)/2.

(2) By performing a preliminary spherically isometric Mébius transformation
(cf. [9, 12.2]) if necessary we may assume by (2.8) that —re; €E and re, €F.
Since g(B")=1 we may assume that r € [0, 1]. It follows that each of the sets
B"(2)NE and B"(2) N F must contain a component E; and F,, respectively, with

d(E;))2q(E;) 2 min{a,q(S"~",8""12))} =a/V10

and similarly for F,. The proof follows now from part (1) with D=d,/(2~/10 ).
O

The next result is the Main lemma.

2.19 LEMMA. Let ECB" and let G,=U,cg Q(x,t) for t€(0,1), and let
r€ (1, ). The following estimate holds, if t is so small that q(G,, S (r))=t,
M(A(E, 8G,)) <a(t)M(A(E, S"~!(r))),

where a(t) is a positive number depending only on n, r, and t.

Proof. Fixr>1and t € (0, 1) with ¢(G,,S"~!(r)) =t. Set F,=E, F,=8""Y(r),
and F;=0G,=F,. It follows from 2.15 and 2.18(2) that
(2.20) M(Tyy) 237" min{M(T'j3), M(T3), Dt }

where I';; are as in 2.15. We shall first find a lower bound for M(TI'3). It is easy to
show that F; contains a continuum of Euclidean diameter at least V2. Hence we
obtain, by 2.13 and [9, 6.2],

2r+tv2 t t
2.21 M(I'y3)2c,log ———= 2 log2)—2D—.
2.21) (I3) 2 ¢y log 7= > (cn log 2) p
Here D is the number in 2.18(2) and (2.20). Next observe that d(|y|) =2 q(|v|) >¢
and |y|CB"(r) for every v €T'j3, and thus we get the following upper bound by
[9, 7.1], M(T'}3) <, r"/t" where Q,=m(B"). Now (2.20) and (2.21) yield

K t”+l

M) 23 "min{M(I'3),Dt/r}=z37" min[M(I‘m), — 77 M(I‘B)}

Qnrn+]
>37"M(Ty3) min{1, Dt"*'/(Q,r"* Y} =M (T3)/a(t). 0
2.22 REMARKS. (1) Let EC B" be a compact set of positive capacity and G, =
Usere Q(x,t), t€(0,1). It follows from a result of J. Viisdla [11] that
M(A(E, 8G,))/M(A(E, S"~1(2))) >

as ¢ = 0. Therefore the function a(#) in 2.19 must be unbounded whenever
cap E>0.
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(2) Choosing E=Uy-; S""'(1—27%) in 2.19 one can show by [9, 6.7 and 7.5]
that a(¢) = const. t!""log(1/¢) for this choice of E. The rate of growth of the
upper bound for a(¢), which can be obtained from the proof of 2.19, is probably
not the best possible.

The following subadditivity property of the modulus will be applied in what
follows. The proof follows directly from [9, 6.2].

2.23 REMARK. Let E=FE,UE, and F=F,UF, be sets in R”, and let T|=
A(EF), T=A(E,, F,), Iy=A(E\, F,), I'y=A(E,, F}). Then

M(A(E,F)) <4max{M(I}):j=1,2,3,4}.

3. The construction of c¢(E). Throughout this section we shall identify R” with
the Riemann sphere S"(e, 1, %) via the stereographic projection 2.2. Let X=
—x/|x|* for x€R"\{0} and 0=c0, ®=0. Then f(x) and f(X¥) are antipodal
points on the Riemann sphere, i.e. g(x,X)=1, where f is the stereographic
projection 2.2. The spherical balls Q(x,r) are convex for r€ (0,1/V2);
R"\Q(x,r)=0(%,\1—r?) is convex for r € [1/V2,1). Moreover, fO(x, 1/V2)
is a hemisphere of the Riemann sphere centered at f(x). For each x €R”" there
exists a Mobius transformation 4, : R” — R” such that

hy(x)=0
3.1
-0 {Q(hx(Z),hx(y))=CI(z,y)

for all Z,yER" (cf. [9, 12.2]). Further, 4, Q(x,r) = B"(r/\1—r?) for any
x€R" and r€ (0,1) and h,Q(x,1/V2) = B" by the Pythagorean theorem,

q(0, )’ +q(y, ©)*=1.
For ECR", x€R", 0<r<t<1, denote

- my(E, r,x) =M(A(3Q(x, 1), ENQ(x, 1))
) m(E,x)=m,(E,1/V2,x) where t=(V3)/2.
3.3 DEFINITION. We define

{c(E,x)=max1m<E,x),m<E,xn,

(3.4) c(E)=inf{c(E,x): xER"}.

3.5 REMARK. We shall now find an upper bound for the numbers in (3.2).
Since the modulus is invariant under conformal mappings (2.8) it follows that

m(E,r,x)=M(A(S" ' (¢/\1=12), (h EYNB"(r/\1—r2),0))

(3.6) ¢t [1=r2 \\'7"
ol )

by (2.5), where 4, is as in (3.1). In particular,

3.7 m(E,x) <m(R", x) <w,_;(logV3)'~".
If FCQ(x,r), where r € (0,1/V2], it follows from (3.6) that
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(3.8) m(F,x) <w,_;(log((V3/r)\/1—r2))' ="
In particular, ¢(F,x) >0 as g(F) —0. |
3.9 LEMMA. There exists a positive number b, depending only on n such that

for ECR", n>2, ¢(E,x)<b,c(E,y) whenever x,y €R" and c(E) < c(E,2) <
b,c(E) for all z€ER".
Proof. Observe first that we obtain from (3.6) the following equality:
M(A(3Q(x,V3/2),0Q(x, 1/V2))) = M(A(3Q(x,1/V2),30(x,1/2)))
(3.10) 1-n
=wn,1(log\/§) =d.

Let x, y € R". In what follows we shall assume that
(3.11) c(E,x)y=m(E,Xx).

The case c(E, x)=m(E,X) can be dealt with exactly in_the same way; even the
constants will be the same in this case. Let Ef=ENQ(x, 1/V2)NO(y, 1/V2),
Ef=(E\E})NQO(x,1/V2). It follows from [9, 6.2] and (3.11) that either

M(AQ(x,V3/2),Ef)) 2c(E,x)/2 or M(AQ(x,V3/2),E$)) 2c(E,x)/2.

In the first case denote Fy=E}, F,=980(y,V3/2), F;=00(x,V3/2), and
F,=00(y,1/V2). In the second case denote Fj=E3}, F,=34Q(y,1/V2), F;=
d0Q(x,V3/2), and F;,=3Q(y,V3/2). In both cases

—  min{q(F},F3),q(F, F4)} 2q(3Q(x,V3/2),3Q(x, 1/V2))
=q(8"7'(V3),5" )= (V3—1)/V8=6.
Hence we obtain, by 2.15, 2.18(2) and (3.10), (3.7):
c(E,y)2M(T2) 237" min{M(T'3), M(T), D5}
23" min{c(E,x)/2,a,D6}=3""min{c(E,x)/2,D5}
?b,;'lc(E,x);b;'=3‘"min{%,D6M}.

Wp—1

.3.12 REMARKS. (1) The set functions ¢(+, x) are usually not invariant under
spherically isometric Mobius transformations while c(-) has this invariance
property. This fact motivates the infimum in (3.4) (supremum would lead to an
essentially similar notion by 3.9). However, c¢(-) is not invariant under stretch-
ings (cf. (3.6)).

(2) Lemma 3.9 provides the following simple estimate for c(E). It follows
from (2.7) and (3.2) that

log 2
log V3

where u =V3. Next let & = h, be the mapping (3.1), i.e. h(x)=x/|x|* for
x€R'\{0}, A(0)=0c0, h(©)=0. Define a(E)=max{M(E,1,0), M(hE,1,0)}.

n—1
M(E,1,0)<m(E,1/\/§,0)=Mu(E,1,0)S( ) M(E,1,0),
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Then the preceding inequality, together with (2.8), yields the following estimate:

log2 \"~!
a(E)<c(E,o><(log ﬁ) a(E)

and further, by 3.9,

log2 \"~!
a(E)/b, <c(E) < ( o3 ) b, a(E).

This inequality reduces the calculation of ¢(E) to the calculation of a(E), which
clearly is a much simpler task.

It follows from (3.8) and 3.9 that ¢(E) = 0 as g(£) — 0. For connected sets
the converse also holds true, as the following result shows.

3.13 COROLLARY. There exists a positive number a, depending only on n
such that c(F) = a, q(F) whenever F is a connected set in R".

Proof. Since both sides of the inequality are invariant under spherically iso-
metric Mobius transformations, we may assume 0 € F. Then FNB" contains a
connected component F; with

d(F))2q(Fy) 2 min{1/V2, g(F)} > q(F)/V2.
By 2.13 and (3.6) we get

2V3+q(F)V2
F,0)2M#z(F1,1,0)2c, ]
c(F,0)2My;(F )2c¢, log Vi—a(F)/V3
V2c,
2 F).
73 q(F)
The proof follows now from 3.9. O

3.14 THEOREM. There exists a positive number (3 depending only on n such
that for E,FCR" we have M(A(E, F)) 2B min{c(E), c(F)}.
Proof. Fix x€R". If m(E,x)=c(E, x) let
Fi=ENQ(x,1/V2), F;=080(x,V3/2).
Otherwise m(E,X)=c(E,x) and then we set
Fi=ENQ(x,1/V2), F3=00(%,V3/2).

The sets F and F, are defined in the same way as follows. If m(F, x) =c(F, x) let
F,=FNQ(x,1/V2), F;=30Q(x,V3/2). Otherwise m(F,X)=c(F,x) and then
set F,=FNQ(X,1/V2) and F;=00Q(%,V3/2). In any case

V3—1

73 =J.

min{g(Fy, F3),q(F2, F4)}2q(S"~'(V3),8" )=

Set I';; =A(F;, F;). It follows from 2.15 and 2.18(2) that
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M(A(E,F))2M(T'\;) 237" min{c(E, x), c(F,x),Dd}
ZB min{c(E, x),c(F,x)}

where 8=3""min{1, Dé(log V3)"~"/w,_1}>0 and the last inequality follows
from (3.7). Since x € R" was arbitrary, the proof follows. O

3.15 THEOREM. Let E, FCR" be sets with q(E,F)>t>0. Then
M(A(E,F)) <amin{c(E), c(F)}
where « is a positive number depehding only on n and t.

Proof. Fix x€R". Let E;=ENQO(x,1/V2), Ey=E\E,, F;=FNQ(x,1/V2),
F,=F\F. LetI'=A(E\, F\), [3=A(E}, F;), T3=A(Ey, F), and Iy =A(E3, ).
It follows from 2.23 that

M(A(E,F))<4max{M(I}):j=1,2,3,4}.

Without loss of generality we may assume that the maximum on the right side
of this inequality is equal to M(I';), because the proof is similar in the other
cases. Let

=U(Q(xst/2):XEEl}s F.{:U{Q(x,t/z):xEFZ]
If v €T, then clearly |y|NAE] # @ #|y|NdF;, and hence by [9, 6.4]
(3.16) iM(A(E,F)) <M(T,) < min{ M(A(E;, 3E{)), M(A(F,, 3F3))}.

We shall next find an upper bound for M(A(E,, dE!)). By performing an auxili-
ary spherically isometric Mobius transformation if necessary we may assume
x=0. We shall apply 2.19 with r=v3. First observe that g(E;,S" '(V3))=s
whenever s € (0, §/2), where 6=¢(S"~!,8"~!(V3)). Next fix s=¢8/2. Then we
obtain, by 2.19 and [9, 6.4]:

M(A(E,, 9E{)) < M(A(E,, EY)) sa(s)M(A(S”“(ﬁ),E.)),
a(s)=3"(min{1, D(£86/2)"*'/(Q,,(V3)"TH)).

A similar estimate holds for M(A(F,, dF3)) as well. In conclusion, we get by
(3.16) and 3.9

M(A(E, F)) <4a(s) min{c(E, x), c(F, x))
<4b,a(s) min{c(E), c(F)}.
3.17 COROLLARY. Let E, FCR" be sets with q(E,F)>t>0. Then
M(A(E,F)) <dy,
where d, depends only on n and t.
Proof. The proof follows from 3.15 and (3.7). a

3.18 COROLLARY. Let GCB" be a domain, ECG a compact set with
d(E,dG)2t. Then there is a number 3 depending only on n and a number o
depending only on n and t such that Bc(E) < cap(G, E) <ac(E).
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Proof. Because GC B”" it follows that g(E,3G) 2t/3. Hence it follows from
(2.11) and (3.15) that

cap(G, E)=M(A(E,R"\G)) <amin{c(E),c(R"\G)}.
Because R"\B" = Q(o0,1/V2) CR"\G it follows that
c(R"\G) =c(R") =w,_,(log V3)' ™"
(cf. (3.7)). In particular ¢(E) < c(R"\G). Hence we get the desired upper bound,
cap(G,E) <ac(E).
The proof of the lower bound follows from 3.14. a

3.19 COROLLARY. A compact set ECR" is of capacity zero if and only if
c(E)=0.

Proof. The proof follows from 3.18 and (2.12). 0

3.20 DEFINITION. Let p be a non-negative set function defined in pot(R") =
(E: ECR"}. Then p is said to be a quasiadditive outer measure if it has the
following properties: (a) u(@)=0; (b) AC BCR”" implies u(A4) <u(B); (c) there
exists a positive number A>0 such that u(UjZ, E;) <\ L%, u(E;) whenever
E,CR", j=1,2,....

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. (1) follows directly from (3.4).

(2) 1t is clear by (3.7) that c(-) is bounded. It remains to prove that c(-) is a
quasiadditive outer measure. The properties (a) and (b) in 3.20 are obvious (cf.
[9, 6.2]). In order to prove (c), choose sets EjCI-I", Jj=1,2,.... We obtain, by
3.9 and by the fact that the modulus is subadditive [9, 6.2(3)],

c( U Ej><b,,c( U Ej,0> <b, Y c(E;,0) <b? Y c(E;).
i=1 j=1 i=1 j=1
The proofs of (3), (4), (5) and (6) follow, respectively, from 3.19, 3.13, 3.14 and
3.15. O

4. Applications to quasiregular mappings. In this section we shall give an
application of Theorem 1.1 to quasiregular and quasimeromorphic mappings.
For the definitions and basic properties of these mappings the reader is referred
to [3]1-[51, [8], [10], and [13].

For what follows we shall need some facts about the hyperbolic geometry of
B". The hyperbolic metric p is defined by the element of length

dp=2|dx|/(1—|x]?).

For x€B” and M >0 we denote D(x,M)={z€B":p(z,x)<M]}. It is well
known that
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_ x(1-1%)

1= |x|Ae??
_(=|x]*)¢
T 1—|x]??

(4.1) D(x,M)=B"(y,r) t =tanh(M/2).

4.2 THEOREM. Let EC R"” be a compact set of positive capacity, and let
f:B" = R"\E be a quasimeromorphic mapping. Then

I—n
q(f(x), f(¥)c(E)<d(n)K(f) <_1Og tanh @)

holds for x, y € B", where d(n) is a positive number depending only on n.

Proof. We may clearly assume that f is non-constant. Fix x,y € B" and let
J be the geodesic segment in the hyperbolic geometry joining x to y. Denote
I"=A(fJ,E) and let I' be the family of all maximal liftings of the elements
of I starting at J (for more details see [5, 3.11 and 3.12}). Since f is open it
follows that Mn dB"# @& for each y €T (cf. [5, 3.12]). For we B” denote A,, =
A(D(w,p(x,»)/2),dB"; B"). It follows from the conformal invariance of the
modulus (2.8), (2.5), and (4.1) that

1—n
4.3) M(Aw)=M(Ao>=wn-x(—log tanh “‘p('):y))

for all weB”". Next we choose z€J such that JCD(z,p(x, y)/2). It follows
from [9, 6.4 and 7.10] that

4.4) M(T)<M(Ay).

On the other hand, we get by 3.14, 3.13, and (3.7) that

M(I) 2B min{c(E), c(SJ)}
2Bc(E)anq(fI)/ayZ2c(E)q(f(x), f(y)/d

where @, =w,_;(log V3)! ™" and d=a,/(Ba,). Because fT <I" it follows from the
K;-inequality [10, 3.1] and from [9, 6.4] that M(I') <M(fT) <K;(f)M(T).
This inequality, together with (4.3)-(4.5), yields the desired estimate with d(n) =
wy—1d. |

4.6 COROLLARY. Let EC R" be a compact connected set with q(E)>0 and
let f: B" - R"\E be a quasimeromorphic mapping. Then

p(x,y) )“”
4

(4.5)

2, SN a(E) <b(m)Ki(f) (—log tanh

holds for x,y € B", where b(n) is a positive number depending only on n.
Proof. The proof follows from 4.2 and 3.13 with b(n)=d(n)/a,. a

4.7 REMARKS. (1) Corollary 4.6 is a generalization of a result of Gehring [2,
Theorem 1, p. 233] to the case of quasimeromorphic mappings. One can prove a
result somewhat similar to 4.2 by combining the two results [4, 3.1] and [4, 3.11]
of Martio, Rickman, and Viisdali—however, with the following important dif-
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ference. In 4.2 it is made explicit (as in [2, p. 233]) in which way q(f(x), f(»))
depends on the size of the omitted set £, while the result obtainable from [4, 3.1
and 3.11] seems to give only the existence of some bound for q(f(x),f(»))
without quantitative dependence on the size of E.

(2) For small values of p(x, y) one can improve 4.2 and 4.6 as indicated in
[13, §5].

(3) The following twofold invariance property of the estimate in 4.2 should be
observed. Firstly, in view of the invariance properties of p, Theorem 4.2 yields
the same upper bound for g (f(x), f(»y)) and for q(f(g(x)), f(g(y))) whenever
g:B" — B"is a Mdbius self-mapping of B". Secondly, in view of Theorem 1.1(1),
Theorem 4.2 yields the same upper bound for

q(f(x), /() and q(h(f(x)), h(f())))

whenever /: R" — R" is a spherically isometric Mdbius transformation.
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