ON TWO NOTIONS OF THE LOCAL SPECTRUM FOR SEVERAL COMMUTING OPERATORS

Jörg Eschmeier

S. Frunză and E. Albrecht initiated the study of spectral decompositions for finite systems $a = (a_1, ..., a_N)$ of commuting operators on a Banach space X. S. Frunză used the results of J. L. Taylor [8; 9] concerning the spectrum and the analytic functional calculus to develop his concept of decomposable N-tuples. He proved in [6] that a spectral capacity E of an N-tuple a is necessarily of the form

(1)
$$E(F) = \{x \in X; \sigma_a(x) \subset F\},$$

where $\sigma_a(x)$ is the so-called local spectrum of a in x, i.e. the complement of the union of all open sets $U \subset \mathbb{C}^N$ on which there is a solution of

$$xs_1 \wedge \cdots \wedge s_N = (\bar{\partial} \oplus \alpha) \psi.$$

Earlier E. Albrecht had suggested another definition of the local spectrum, now called the local analytic spectrum $\gamma_a(x)$ of a in x. In [1] he defined $\gamma_a(x)$ to be the complement of the union of all open sets $U \subset \mathbb{C}^N$ on which there are analytic functions $f_i \colon U \to X$ satisfying

$$x = \sum_{i=1}^{N} (z_i - a_i) f_i(z), \quad z \in U.$$

S. Frunză has shown in [6] that $\sigma_a(x) \subset \gamma_a(x)$, that equality holds for decomposable N-tuples and in [7] that $\gamma_a(x)$ is contained in the spectral hull of $\sigma_a(x)$.

The aim of this paper is to prove that $\sigma_a(x) = \gamma_a(x)$ holds for each $x \in X$. This enables us to give a very simple proof of Equation (1) for decomposable N-tuples.

Equality of the local spectra. Let X be a complex Banach space and $a = (a_1, \ldots, a_N)$ a system of commuting continuous linear operators on X. For an open set $U \subset \mathbb{C}^N$ we denote by $\mathcal{O}(U, X)$ the space of all analytic functions and by $C^{\infty}(U, X)$ the space of all C^{∞} -functions on U with values in X. If B is a K-module let $A_p(\mathbb{C}^N, B)$ be the K-module of all forms with degree p over \mathbb{C}^N and coefficients in B. Special 1-forms needed are

$$\alpha(z) = (z_1 - a_1)s_1 + \dots + (z_N - a_N)s_N, \qquad \alpha = (z_1 - a_1)s_1 + \dots + (z_N - a_N)s_N,$$

$$\bar{\partial} = (\partial/\partial \bar{z}_1)d\bar{z}_1 + \dots + (\partial/\partial \bar{z}_N)d\bar{z}_N \quad \text{and}$$

$$\bar{\partial} \oplus \alpha = (\partial/\partial \bar{z}_1)d\bar{z}_1 + \dots + (\partial/\partial \bar{z}_N)d\bar{z}_N + (z_1 - a_1)s_1 + \dots + (z_N - a_N)s_N.$$

Received April 6, 1983.

Michigan Math. J. 30 (1983).

The first three operate by left exterior multiplication on $A_p(\mathbb{C}^N, B)$, where B is one of the spaces X, $\mathcal{O}(U, X)$, $C^{\infty}(U, X)$ and the last one operates on $A(\mathbb{C}^{2N}, C^{\infty}(U, X))$. The Taylor spectrum of a is by definition

$$\sigma(a,X) = \{z \in \mathbb{C}^N; 0 \to X \xrightarrow{\alpha(z)} \cdots \xrightarrow{\alpha(z)} A_N(\mathbb{C}^N,X) \to 0 \text{ is non exact} \},$$

and the local spectrum of a in $x \in X$ in the sense of S. Frunză $\sigma_a(x)$ is the complement of the union of all open sets $U \subset \mathbb{C}^N$ on which there is a form $\psi \in A_{N-1}(\mathbb{C}^{2N}, \mathbb{C}^{\infty}(U, X))$ satisfying

$$(2) xs_1 \wedge \cdots \wedge s_N = (\bar{\partial} \oplus \alpha) \psi$$

(see [6]). Let the local analytic spectrum $\gamma_a(x)$ of a in $x \in X$ in the sense of E. Albrecht ([1]) be defined as above. In [6] S. Frunză observed that $\sigma_a(x) \subset \gamma_a(x) \subset \sigma(a, X)$: If $z^0 \notin \gamma_a(x)$ there are analytic functions $f_1, \ldots, f_N \in \mathcal{O}(U, X)$ on an open neighbourhood U of z^0 satisfying $x = \sum_{i=1}^N (z_i - a_i) f_i(z)$, $z \in U$. But then clearly $\psi = \sum_{i=1}^N (-1)^{i-1} f_i s_1 \wedge \cdots \wedge \hat{s_i} \wedge \cdots \wedge s_N$ is a C^{∞} -form satisfying (2) on U. If $z^0 \notin \sigma(a, X)$ there is an open polydisc D contained in $\mathbb{C}^N - \sigma(a, X)$ with center z^0 . On D

$$0 \to X \xrightarrow{\alpha(z)} A_1(\mathbb{C}^N, X) \xrightarrow{\alpha(z)} \cdots \xrightarrow{\alpha(z)} A_N(\mathbb{C}^N, X) \to 0$$

is an analytical parameterized chain complex in the sense of J. L. Taylor. Since it is exact in each $z \in D$, the cohomology groups

$$H^{p}(\mathcal{O}(D,X),\alpha) = \frac{\operatorname{Ker}\{\alpha : A_{p}(\mathbb{C}^{N},\mathcal{O}(D,X)) \to A_{p+1}(\mathbb{C}^{N},\mathcal{O}(D,X))\}}{\operatorname{Im}\{\alpha : A_{p-1}(\mathbb{C}^{N},\mathcal{O}(D,X)) \to A_{p}(\mathbb{C}^{N},\mathcal{O}(D,X))\}}$$

vanish for p=0,...,N (see [8: Theorem 2.2]). In particular each $f \in \mathcal{O}(D,X)$ is of the form $f(z)=(z_1-a_1)f_1(z)+\cdots+(z_N-a_N)f_N(z), z \in D$, with appropriate $f_1,...,f_N \in \mathcal{O}(D,X)$.

Now we are able to prove our main result:

THEOREM 1. For each finite system $a = (a_1, ..., a_N)$ of commuting continuous linear operators on a Banach space X, and for each $x \in X$, the local spectrum of a in x and the local analytic spectrum of a in x coincide; i.e., $\sigma_a(x) = \gamma_a(x)$.

Proof. If $z^0 \notin \sigma_a(x)$ there is an open polydisc D centered at z^0 and a form $\psi \in A_{N-1}(\mathbb{C}^{2N}, \mathbb{C}^{\infty}(D, X))$ such that $xs_1 \wedge \cdots \wedge s_N = (\bar{\partial} \oplus \alpha) \psi$. It is well-known (cf. [8: proof of Lemma 2.3]) that the X-valued $\bar{\partial}$ -sequence

(3)
$$0 \to \mathcal{O}(D, X) \xrightarrow{i} C^{\infty}(D, X) \xrightarrow{\bar{\partial}} A_1(\mathbf{C}^N, C^{\infty}(D, X)) \xrightarrow{\bar{\partial}} \cdots$$
$$\cdots \xrightarrow{\bar{\partial}} A_N(\mathbf{C}^N, C^{\infty}(D, X)) \to 0$$

is exact. ψ can be written as the sum $\psi = \psi_{0,N-1} + \psi_{1,N-2} + \cdots + \psi_{N-1,0}$ of forms $\psi_{p,q}$ of degree p in $d\bar{z}_1, \ldots, d\bar{z}_N$ and degree q in s_1, \ldots, s_N , and $xs_1 \wedge \cdots \wedge s_N = (\bar{\partial} \oplus \alpha) \psi$ is equivalent to

(4)
$$xs_{1} \wedge \cdots \wedge s_{N} = \alpha \psi_{0, N-1},$$

$$0 = \bar{\partial} \psi_{0, N-1} + \alpha \psi_{1, N-2}, \dots,$$

$$0 = \bar{\partial} \psi_{N-2, 1} + \alpha \psi_{N-1, 0},$$

$$0 = \bar{\partial} \psi_{N-1, 0}.$$

Due to the exactness of (3) we can find a form $\varphi_{N-2,0}$ such that $\psi_{N-1,0} = \bar{\partial}\varphi_{N-2,0}$. Replacing this in the next to the last equation of (4) we obtain $\bar{\partial}(\psi_{N-2,1} - \alpha\varphi_{N-2,0}) = 0$. Successively we can choose $\varphi_{N-3,1}, \ldots, \varphi_{0,N-2}$ such that

$$\psi_{N-l,l-1} - \alpha \varphi_{N-l,l-2} = \bar{\partial} \varphi_{N-l-1,l-1} \quad (2 \le l \le N-1).$$

Applying the second equation of (4) to the case l = N-1 we obtain $\bar{\partial}(\psi_{0,N-1} - \alpha \varphi_{0,N-2}) = 0$. Hence $\chi = \psi_{0,N-1} - \alpha \varphi_{0,N-2} \in A_{N-1}(\mathbb{C}^N, \mathfrak{O}(D,X))$ is a form with analytic coefficients which satisfies $xs_1 \wedge \cdots \wedge s_N = \alpha \psi_{0,N-1} = \alpha \chi$. \square

S. Frunză has proved in [6] that the condition $H^{N-1}(C^{\infty}(U,X), \bar{\partial} \oplus \alpha) = 0$ for all open sets $U \subset \mathbb{C}^N$ is sufficient to guarantee for each $x \in X$ the existence of a global solution ψ of (2) on the largest possible domain $\rho_a(x) = \mathbb{C}^N - \sigma_a(x)$. Our proof shows in this case that there are analytic solutions $f_1, \ldots, f_N \in \mathcal{O}(U,X)$ of $x = \sum_{i=1}^N (z_i - a_i) f_i(z)$, $z \in U$, on each open set $U \subset \rho_a(x)$ on which the X-valued $\bar{\partial}$ -sequence

$$0 \to \mathcal{O}(U, X) \xrightarrow{i} C^{\infty}(U, X) \xrightarrow{\bar{\partial}} A_1(\mathbb{C}^N, C^{\infty}(U, X)) \xrightarrow{\bar{\partial}} \cdots$$
$$\cdots \xrightarrow{\bar{\partial}} A_N(\mathbb{C}^N, C^{\infty}(U, X)) \to 0$$

is exact. Using tensor product methods it is not hard to show that this is true for every domain of holomorphy $U \subset \mathbb{C}^N$. For this and other related questions see [5].

An application to decomposable N-tuples. Theorem 1 can be used to give a much simpler proof of Equation (1) for decomposable N-tuples. Namely, it is sufficient to prove

$$E(F) = \{x \in X; \gamma_a(x) \subset F\}.$$

For the definition of a decomposable N-tuple we refer the reader to Definition 3.1 in [6].

THEOREM 2. If E is a spectral capacity for $a = (a_1, ..., a_N)$, then for each $x \in X$ we have $\gamma_a(x) = \bigcap (F; F \subset \mathbb{C}^N \text{ closed such that } x \in E(F))$.

Proof. We shall only sketch the proof. Details can be found in [4]. Let us denote the intersection on the right side by $\operatorname{supp}(E,x)$. The inclusion $\gamma_a(x) \subset \operatorname{supp}(E,x)$ is obvious. Conversely, if D is any open polydisc such that $x = \sum_{i=1}^{N} (z_i - a_i) f_i(z)$ has analytic solutions f_i on an open neighbourhood U of \bar{D} , let us choose another open polydisc D' larger than D and such that $\bar{D}' \subset U$. Then X = Y + Z for $Y = E(\mathbb{C}^N - D)$, $Z = E(\bar{D}')$, $\sigma(a, X/Y) = \sigma(a, Z/Y \cap Z) \subset \sigma(a, Z) \cup \sigma(a, Y \cap Z) \subset \bar{D}'$ and

$$(2\pi i)^{N}x/Y = \int_{\Gamma_{1}} \cdots \int_{\Gamma_{N}} \prod_{i=1}^{N} R(z_{i}, a_{i}/Y) \sum_{j=1}^{N} (z_{j} - a_{j}/Y) (f_{j}(z)/Y) dz_{N} \dots dz_{1} = 0$$

for suitably chosen Γ_i and $R(z_i, a_i/Y) = (z_i - a_i/Y)^{-1}$. Hence $D \subset \mathbb{C}^N - \text{supp}(E, x)$. Now the quoted result of S. Frunză is an easy consequence (cf. [6: Theorem 3.3]).

COROLLARY. If $a = (a_1, ..., a_N)$ is decomposable, its spectral capacity is given by $E(F) = \{x \in X; \sigma_a(x) \subset F\}$. In particular, E is uniquely determined and all spaces E(F) are spectral maximal (generalization of [2: Definition 3.1]).

Proof. If $x \in E(F)$ we have $\sigma_a(x) \subset \sigma(a, E(F)) \subset F$. On the other hand, for $\sigma_a(x) \subset F$ it follows by the intersection property of the spectral capacity and the above theorems that $x \in E(\sigma_a(x)) \subset E(F)$.

If Y is any closed a-invariant subspace with $\sigma(a, Y) \subset \sigma(a, E(F))$ it follows that $\sigma_a(y) \subset \sigma(a, Y) \subset F$ for all $y \in Y$, hence $Y \subset E(F)$.

REFERENCES

- 1. E. Albrecht, Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen, Manuscripta Math. 14 (1974), 1-40.
- 2. I. Colojoară and C. Foias, *Theory of generalized spectral operators*, Gordon and Breach, New York, 1968.
- 3. J. Eschmeier, Operator decomposability and weakly continuous representations of locally compact abelian groups, J. Operator Theory 7 (1982), 201-208.
- 4. ——, Spektralzerlegungen und Funktionalkalküle für vertauschende Tupel stetiger und abgeschlossener Operatoren in Banachräumen, Schr. Math. Inst. Univ. Münster (2) No. 20 (1981).
- 5. ——, Local properties of Taylor's analytic functional calculus, Invent. Math. 68 (1982), 103-116.
- 6. S. Frunză, *The Taylor spectrum and spectral decompositions*, J. Functional Analysis 19 (1975), 390-421.
- 7. ——, On the localization of the spectrum for systems of operators, Proc. Amer. Math. Soc. 69 (1978), 233-239.
- 8. J. L. Taylor, *A joint spectrum for several commuting operators*, J. Functional Anal. 6 (1970), 172–191.
- 9. ——, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38.
- 10. F.-H. Vasilescu, *Calcul functional analitic multidimensional*, Editura Academiei R.S.R., Bucharest, 1979.

Mathematisches Institut Universität Münster 4400 Münster, West Germany