ABSOLUTE VALUES OF HYPONORMAL OPERATORS
WITH ASYMMETRIC SPECTRA

C. R. Putnam

1. Let H be an infinite dimensional, separable Hilbert space. Let the bounded
operator T on H, with the Cartesian representation 7= A+ iB, be completely
hyponormal, so that

(1.1) T*T—TT*=D, equivalently, AB—BA=-1iD, D3>0,

and 7 has no nontrivial reducing subspace on which it is normal. In addition, it
will henceforth be supposed that 7" has a polar factorization

(1.2) T=UP, U unitary and P=|T|=(T*T)"2

Such a factorization exists (and is unique) if and only if 0 is not in the point spec-
trum of 7*; see [9], p. 277.

Let A be a selfadjoint operator with the spectral family { E,;}. The set of vec-
tors x in H for which || E,x||? is an absolutely continuous function of # is a sub-
space, H,(A), and the operator A is said to be absolutely continuous in case
H=H,(A). (See, e.g., Kato [2], p. 516.) Similar concepts can be defined for a
unitary operator.

If T is completely hyponormal then its real and imaginary parts are absolutely
continuous; further, if 7 has a factorization (1.2) then U is also absolutely con-
tinuous. (See [3], p. 42; [8], p. 193.) Simple examples show, however, that the
absolute value of T, that is P=|T|= (T*T)" 2 need not be absolutely continu-
ous or even have an absolutely continuous part. In fact, it has recently been
shown ([1]) that any nonnegative operator P for which ¢( P) contains at least two
points, O¢UP(P), and for which neither max ¢(P) nor mino(P) belongs to
o, (P) with a finite multiplicity, is the absolute value of some completely hypo-
normal operator 7 with a factorization (1.2).

In case T is completely hyponormal and if the spectrum of |T'|= (T*T)"? has
Lebesgue linear measure zero (and whether or not 7 has a factorization (1.2))
then o(T) is radially symmetric. In fact, o (7) is the closure of a countable num-
ber, finite or infinite, of pairwise disjoint open annuli centered at the origin; see
[6], p. 426. On the other hand, if T is completely hyponormal and if there exists
some open wedge

(1.3) W={z:z=re", r>0, —-r<a<t<b<r)

which does not intersect ¢ (7T"), then necessarily |T'| is absolutely continuous. This
follows from [6], p. 424, since, in the above case where WNo(T) is empty,
necessarily 7" has a factorization (1.2). This last assertion follows from the fact
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that 0 cannot belong to o, (7*); see Radjabalipour [11], p. 385, Lemma 4. If T is
completely hyponormal and if 7 has a polar factorization (1.2) then, even if
every set W of (1.3) intersects o(7), one may, under certain circumstances, still
conclude that |T'| is absolutely continuous, or at least has an absolutely continu-
ous part (H,(|T|) #{0}); see [9], [10].

The above results suggest that there is a close correlation between the radial
asymmetry of the spectrum of a completely hyponormal 7" and the existence of
an absolutely continuous part for the absolute value |7°|. It may be noted, how-
ever, that in all of the above results, the sufficiency conditions on ¢(7") which
assure the existence of an absolutely continuous part of |7'| involve hypotheses
which, for instance, preclude the existence of an open connected set contained
in o(T)N{z:|z|>0} and separating 0 from oo, for example, an annulus
{z:0<r <|z|<r} lying in (7). The hypothesis of the following result, on the
contrary, does not preclude this possibility.

THEOREM 1. Let T be completely hyponormal with the polar factorization
(1.2), where

o0

(1.4) u=| e"dG, and |TR=pP?=| taF.
. 0

Suppose that
(1.5) r>0, réo(T) and z €o(T), z;#r, |z|="r.

Suppose that there exists a Borel subset o of (—=, w) for which

(1.6) St“zdt<oo and G(a)=1.

o

Then there exists an open interval A containing r? with the property that

(1.7) (0} F(A)H C H,(P?).

Obviously, the existence of an absolutely continuous part for P2 is equivalent
to the existence of such a part for P. Further, the role of the direction determined
by the ray argz=0 in the hypotheses (1.5) and (1.6) above could be played by
any direction determined by arg z= ¢ (= const), where —7 < c< 7, and (1.5) and
(1.6) are replaced by corresponding hypotheses. This is clear if one substitutes
e“T and e’“U for T and U in (1.2).

2. Proof of Theorem 1. In view of (1.1) and (1.2),

2.1) P?—UP?U*=D>0.
If
(2.2) G,=G({(—=,—1/n)U(1/n,7]), n=1,2,...,

then it may be supposed that G, # 0 for all n. (In fact, otherwise, some open wedge
W of (1.3) does not intersect o(T), and, as noted earlier, | 7| is absolutely contin-
uous.) A multiplication by G, on the left and right of each side of (2.1) yields
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2.3 G,P2G,-UG,(G,P*G,)U*G, = G,DG,.

If one regards the selfadjoint operators G,P*G, and G,DG,, as well as the uni-
tary operator U, = UG,, as acting on the space G, H (# {0}), then it is clear that
1€ 0(U,) and hence the Cayley transform

(2.4) A,=i(1+U,)(1-U,)"!, where U,=UG,,

is bounded. A straightforward calculation (cf. [3], p. 16) shows that
2.5) AnPR—PiA, = 5i(Ap +i)(G,DG,) (A, — 1),
where (A, +i)(G,DG,)(A,—i) =0, P, >0and

(2.6) P2=G,P%G, = S: tdF?.
Let 0 <a < b and suppose that (cf. (1.5))
(2.7) [aV2, bY21No(T) is empty, r € (a'/?, b1/?) ,
(that is, r> € A=(a, b)) and a'/%,b"?> ¢0,(P) (thatis, a,b¢&o,(P?)).
A multiplication on the left and right of each side of (2.5) by F"(A) leads to
(F"(A)A,F"(A))(F"(A)PF)— (F"(A)PE)(F"(A)A,F"(A))

(2.8)
=JIF"(A)(A, +i)G,DG,(A,—i)F"(A).
If '
(2.9) S,=P2+iA, and S2=F"(A)P2+iF"(A)A,F"(A),

then both S,, (as an operator on G,H) and S2 (as an operator on F"(A)G,H =
F"(A)H) are completely hyponormal. In fact, that the assumed complete hypo-
normality of T=UP (on H) implies that of U,P, (on G,H), where P, =
(G, P%*G,)\?, is essentially contained in the proof of Lemma 8 of [4]. The com-
plete hyponormality of S3 (on F"(A)H) then follows from Lemma 5 of [4]. In
addition, by Theorem 3 of [4], one has ¢(S2) Co(S,); in fact, by [5], p. 695,

(2.10) a(82)N{z:Re(z) EA}=0(S,)N{z: Re(z) EA}.
Next, it will be shown that
(2.11) |SA|| Sconst<oo (n=1,2,...),

where ‘‘const’’ is independent of n. To see this, note that if (2.11) is false then
there exist points z, of ¢(S2) belonging to the closure of the open strip
{z:Re(z) € A} and satisfying |Im(z,)| — o as n —> oo. Since each S2 is com-
pletely hyponormal then any nonempty intersection of ¢(SA) with an open disk
has positive Lebesgue (area) measure ([4], Theorem 4) and, consequently, it can
be assumed that Re(z,) belongs to the open interval A. Further (cf. (2.10)) it can
clearly be supposed that each z, = a, +ib, lies in the boundary of the set ¢(S,).



92 C. R. PUTNAM

Consequently, for each n=1,2,..., there exist real a, 20 and b,, where
a, €A and |b,| — o, and a sequence of unit vectors {x{,x7,...} satisfying the
(strong) limit relations

(2.12) (P2—a,)xf =0 and (A,—b,)xf =0, as k— oo,
for each fixed n. In view of (2.4), U, = (A, —i)(A4, +i)~! and hence
(2.13) [Up—(1+c,)]xg =0 (k— )

for each fixed n=1,2,..., where ¢, = 0 as n — o, By (2.12) and (2.13), it is seen
that if T, = U, P, (P,=(G,P*G,)"?) then a}*(1+c,) €o(T,). But o(T,)C
o(T) ([8], p. 192) and, since a,, € A and ¢, — 0 as n —> oo, it is clear that the first
condition of (2.7) is violated. This completes the proof of (2.11).

Next, in view of (2.1),

(2.14) | G(8)D'?||* < const|8],

where é denotes any subinterval of [—=, 7]; see [3], pp. 20, 22. Consequently, by
(1.6), |(1=U)"'D'?||2 < const J,|1 —e"|~2dt < const |, t "2 dt < 0, so that

(2.15) AD'? is bounded, where A=i(1+U)(1-U)".

Note that since U is absolutely continuous, then 1 is not in its point spectrum, so
that 4 exists (possibly as an unbounded selfadjoint operator). Since (AD'?)* >
D'V%4 (cf. [12], p. 29) it is clear from (2.15) and (2.5) that AP?’x—P?Ax =
2i(A+i)D(A—i)x holds for all x in D,. Since, by (2.15), |[(A+i)D(A—i)x| <
const|x| for all x in Dy, then (A+i)D(A—i)C M, where M is bounded and,
consequently,

(2.16) AP?’x—P?Ax=4%iMx, x€D,.
Next, it will be shown that
2.17) AF(A) is bounded,

where {F,} is the spectral family of P? and A is defined in (2.7). Since 4 is self-
adjoint, and hence closed, it is sufficient, by the closed graph theorem, to show
that

(2.18) Rpay CDy.
In view of (2.7), one can choose an open interval A; DA™ = [a, b] so that
dist(A;,0(7T))>0 and dist(A{,A)=d>0,

where A§=(—o0,0)—A;. Then AF"(A)=F"(A)AF"(A)+F"(A)AF"(A)
and (cf. (2.9) and (2.11)) |[F"(A)ALF"(A)|| = |F"(A)AF"(A)F (D) <
const. Also, by (2.8) and the estimate of [7], p. 196,

| F"(A)ALF"(A)| < | F"(A)3 (A, +i)G,D2DV2G, (A, —i)F"(A)|| /d.

In view of (2.15), the right side of this relation is majorized by a constant (inde-
pendent of n) and so, since AF"(A)=A,F"(A),
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(2.19) | AF"(A)| < const < oo,

On letting # = o and noting that P? — P? (strongly) and that neither end
point of A belongs to the point spectrum of P? (cf. (2.7)), then F"(A) = F(A)
strongly, a result due to Rellich; see [12], p. 56. It follows from (2.19) that if Nis
any fixed positive integer, and if x € H, then | GNAF"(A)x| = ||AGNF"(A)x|| <
const| x| < oo, where ‘“‘const’’ is independent of both N and n. On first letting
n — oo and N — oo, one obtains (2.18) and, as noted, also (2.17).

It now readily follows from (2.16), (2.17) and (2.18) that

(2.20) L(P?F(A))— (P*F(A))L =3iF(AYMF(A), L=F(A)AF(A),

where L and M are bounded. Since M >0 then F(A)MF(A) 20 and it follows
from (2.20) (cf. (1.1)) that P?F(A)+iL is hyponormal on F(A)H. In order to
prove that P2F(A) is absolutely continuous (that is, (1.7)), it is sufficient to
show that P2F(A)+iL is completely hyponormal on F(A)H (see [3], p. 42).
To this end, let ' be a subspace of F(A)H which reduces P2F(A)+iL, that is,
is invariant under both L and P?F(A), and for which (F(A)MF(A))T' ={0}.
If x€T, then x=F(A)x and |Mx||*= (Mx,x)=0, so that Mx=0. Also,
by (2.17) and (2.16), AP*x=P?Ax. Since T' is invariant under P*F(A) then
T is also invariant under P? and hence, again by (2.17), AP*x = AP?P?x =
P24P%x = P*Ax and, similarly, AP*"x=P*Ax (n=0,1,2,...) for all x in T,
Thus, Af(P*)x = f(P?)Ax, where f(¢) denotes any polynomial. However,
Af(PH)x=Af(PY)F(A)x=AF(A)f(P*)x. Since AF(A) is bounded, one need
only choose a sequence of polynomials {f,(¢)} for which f,(P?) — F(A)
(strongly) to conclude that Ax =AF(A)x=F(A)Ax, that is, I is invariant under
A and hence reduces U. Consequently, I" reduces 7=UP and T | T is normal. In
view of the supposed complete hyponormality of 7" then I' = {0} and, in particu-
lar, P2F(A)+iL is completely hyponormal, and hence P2F(A) is absolutely
continuous, as was to be shown. a

3. In this section there will be given some generalizations of Theorem 1.

THEOREM 2. Let T be completely hyponormal with the polar factorization
(1.2) where (1.4) and (1.5) are assumed. In addition, suppose that (2.15) holds.
Then there exists an open interval A containing r? for which (1.7) holds.

The proof of Theorem 2 follows from that of Theorem 1 if it is noted that the
hypothesis (1.6) of Theorem 1 was used only to establish (2.15) in the proof of
that theorem.

Somewhat more general than Theorem 2 is the following.

THEOREM 3. Let T be completely hyponormal with the polar factorization
(1.2) where (1.4) and (1.5) are assumed. In addition, suppose that (2.19) holds,
where A is the Cayley transform of U, that is, A=i(1+U)(1=U)"!, and where
{F'} is the spectral family of P} of (2.6). Then there exists an open interval A
containing r? for which (1.7) holds.



94 C. R. PUTNAM

Proof of Theorem 3. First, there will be proved a simple

LEMMA. Let A be any selfadjoint operator and let x,, € D,. Suppose that, as
n — o, x, = x (weakly) and Ax, — y (weakly). Then x € D4 and y = Ax.

Proof. Let u€ D,4. Then
(Axp,u) = (y,u) and (Ax,,u)=(x,, Au) = (x,Au),

so that (x, Au) = (y,u) for all u in D4. Hence x € D4+ and, since A = A*, y = Ax
and the Lemma is proved.

It will next be shown that if x is any vector in H, if A is defined as in Theorem
3, and if A is chosen as in (2.7), then F(A)x € D4 and, as n — oo,

(3.1) AF"(A)x = AF(A)x (weakly).

To see this, note that, by (2.19), {AF"(A)x} is a bounded sequence of vectors
and hence AF"k(A)x — limit =y (weakly) for some subsequence {n;} of {n}.
Hence, if u is any vector in the domain of A4, then, as k = o, (AF"(A)x, u) —
(y,u), and (AF"(A)x,u)= (F"(A)x, Au) = (F(A)x, Au), again using (2.7)
and the Rellich result. Consequently, F(A)x € D4 (using A =A*) and AF(A)x =
y. This argument shows that every weakly convergent subsequence of the bounded
sequence {AF"(A)x} must have the same limit (namely, F(A)x), and so (3.1)
follows. (Incidentally, this argument gives another proof of (2.17) as a conse-
quence of (2.19).)
Next, if x € H then an application of (2.5) to F"(A)x yields

(3.2) AF"(A)Pix—PIAF"(A)x=Li(A+i)(G,DG,)(A—i)F"(A)x.

Since P2x — P%x (strongly) then, by an argument similar to that used in proving
(3.1), one sees that AF"(A)P2x — AF(A)P%x (weakly). Also, since the P2 are
selfadjoint, it is clear that the left side of (3.2) converges weakly to

AF(A)P?>x—P*AF (A)x.
Since D is selfadjoint then (3.1) implies that
In=(GyDG)(A—)F"(A)x = y=D(A~i)F(A)x (weakly),
and it follows from (3.2) and the Lemma that y € D4 and that
(A+i)y, = (A+i)y (weakly).
Consequently, if M denotes the operator
(3.3) M= (A+i)D(A-i),

then Rpay C Dys. Thus, both operators AF(A) and MF(A) are bounded and
AF(A)P*—P?AF(A)=1iMF(A). Hence, if L = F(A)AF(A), then

L(P’F(A))— (P*F(A))L =1iF(A)MF(A).
Note that this result corresponds to (2.20), but the present M of (3.3) may not,
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as before, have a bounded extension. The remainder of the proof is similar to
that of Theorem 1 following formula line (2.20) and will be omitted. O

4. THEOREM 4. Let T be completely hyponormal with the polar factorization
(1.2), where (1.4) and (1.5) are assumed. As above, let {F/'} be the spectral
family of P? = G,P*G,. Suppose that A satisfies (2.7) and that the sequence of
operators

4.1) {DY*(A—-I)F"(A)}does not converge strongly to 0 asn — oo,

Then P>F(A), as an operator on F(A)H, contains an absolutely continuous part.
Proof. As proved earlier (see (2.11)), forn=1,2,...,

4.2) |F"(A)AF"(A)|| < const <o (‘‘const’” independent of n).

If L,=F"(A)AF"(A) and B,, =D"*(A—I)F"(A) then (2.8) becomes

(4.3) L,PXF"(A)—P2F"(A)L,=1%iB,*B,.

In view of (4.1) there exists a vector x in A and a subsequence {7n;} of {n}
for which

(4.4) B, x| Zconst>0 (k=1,2,...).

By (4.2), there exists a subsequence {my} of {n;} for which Ly, — limit=L
(weakly) and so, by (4.3), (2.7) and the selfadjointness of P2 and F"(A),

(4.5) | LP*F(A)—P*F(A)L =1iQ,

where B, *B, — Q>0 (weakly). Moreover, Q #0. Otherwise, By, *Bym, >0
(weakly) and 50, |By, x||*= (B, *By,x,X) =0, in contradiction to (4.4). It
now follows from (4.5) and [3], p. 42, that P2F(A) has an absolutely continu-
ous part. O

5. Remarks. We do not know whether (4.1) is actually implied by the
hypotheses (1.4), (1.5) and (2.7) of Theorem 4. In any case, (4.2) must hold. In
the event that (4.2) can be strengthened to (2.19), then, in fact (as a consequence
of the proof of Theorem 3), (4.1) of Theorem 4 follows automatically from (1.4),
(1.5) and (2.7).

In view of the above results, we offer the following

CONIJECTURE. Let T be completely hyponormal with a spectrum o(T) which
is not radially symmetric, so that there exists some circle {z: |z|=r} intersecting
both o(T) and its complement in nonempty sets. In addition, suppose that T has
a polar factorization (1.2). Then H,(|T|) # {0].

If the conjecture is true it would follow, for instance, that if 7 is any com-
pletely hyponormal operator for which

(5.1) o,(T*) is empty,

then 7'+ z has an absolutely continuous part for all complex z except possibly one.
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This would follow from the facts that, by (5.1), T+ z has a polar factorization
for all z (cf. the discussion in Section 1) and that o (7T +z), even for any bounded
T, can be radially symmetric for at most one z.

At present, we do not even have a counterexample to rule out the possibility of
a sharpened form of the above conjecture obtained by omitting the assumption
that 7" has a polar factorization (1.2). If this sharpened conjecture is true then the
hypothesis (5.1) could be omitted in the remarks of the preceding paragraph.
Actually, it is not hard to show that the sharpened version of the conjecture does
hold if 7=V +z, where z # 0 and V is the simple unilateral shift. In fact, |V +z|
is even absolutely continuous for all z #0.
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