ZEROS OF SUCCESSIVE DERIVATIVES OF FUNCTIONS
ANALYTIC IN A NEIGHBORHOOD OF A SINGLE POLE

J. K. Shaw and C. L. Prather

1. Introduction. Pdlya [10] defines the final set of a meromorphic function f to be
the set S=S(f) consisting of all points z such that every disc centered at z contains
zeros of infinitely many derivatives of f. In other words, z is in S if and only if
z=limy_ o, (zx), where {z;){° is a sequence such that f(")(z;) =0, n, <nm, <nz < ---.
The final set determines, roughly speaking, the final position of the zeros of the
derivatives of f. Pdolya gave a complete description of the final set of an arbitrary
meromorphic function in the following remarkable theorem ([9, Theorem 3], [10,
p. 180]).

THEOREM. Let f be meromorphic. If f has two or more poles, then z€ S if and
only if z is equidistant from the two poles which are nearest to it. If f has one pole,
the final set is empty.

If 7, is a pole of f, call the set of points in_the plane which are closer to z; than to
any other pole the ‘“‘domain’’ of z;. The common boundary of the domains of two
poles consists of the perpendicular bisector of the line segment joining them. The
poles thus can be thought of as repellers of equal strength of the zeros of the deriva-
tives of f.

For proofs of Poélya’s Theorem and related material, see [2, p. 98], [7, Theorem
3.6], [11], [12], [14, pp. 32-38].

The main result of the present paper deals with zero-free neighborhoods of the
origin of derivatives of functions of the form

a_, a_, 2
(1.1 F(z)=—z—+A(z)=—z—+a0+alz+azz + -,
where a_; #0, and where A(z) is analytic in a neighborhood of z=0 and possibly
entire. It is clear that there corresponds to each derivative F{*) a certain disc about
z=0 where F" is zero-free. We prove several results about these zero-free regions
which complement Polya’s Theorem and which are, in a certain sense, stronger.

THEOREM 1. Let F(z) be given by (1.1).

(a) If A(z) is analytic in |z|<R and a<1, then for all n sufficiently large F ™ (z)
has no zero in |z|<aR. The constant L is best possible.

(b) If A(z) is entire, and of exponential type T or less, if ¢, denotes the unique real
(positive) root of the equation xe'**=1, and if c<c,, then for all n sufficiently
large F™(z) has no zero in |z|<cT~'(n+1). The constant ¢, is best possible
(co=.27846, approximately).

(c) If A(z) is entire and of order p and type T (0<p, <) and y< [2(ep7)!/?]17],
then for all n sufficiently large F"™ (z) has no zero in|z|<y(n+1)e.
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To see that % cannot be replaced by a larger constant in (a), it is enough to consider
the function Fy (z) =z ! — (1—2z%")~!, where N is a positive integer. Here R=1. By
Poélya’s Theorem the final set consists of a regular N-sided polygon circumscribing
the circle |z|=1, together with rays extending from the vertices. A disc about z=0 of
radius r<% will contain at most a finite number of zeros of derivatives of Fn(z), and
discs of radius r>% contain infinitely many such zeros. For ever increasing N, the
domain of the point z=0 of Fy approaches the disc |z|<3. To some extent, then,
part (a) is an asymptotic version of Polya’s Theorem.

Note that no assumption is made concerning the other singularities of F(z) in (a).
In particular, F may have essential singularities on |z|=R, or |z|=R could even be a
natural boundary. This situation, of course, is beyond the range of Po6lya’s Theorem.

It is worth emphasizing that the results of Theorem 1 hold for all derivatives past a
certain point, while Pélya’s Theorem deals only with the behavior of an infinite
sequence of derivatives.

Concerning (b), each odd-order derivative of the function z ~!+e? has a unique
real root z,, where z, satisfies the asymptotic formula z, ~cy(n+1), n—> o. Thus
the constant c, is best possible. The constant [2(ep7)!/?]1~! of (c) is apparently not
best possible; determination of the correct constant is left as an open problem.

There are several parallels between the results of Theorem 1 and the Whittaker-
Goncarov theory of zeros of successive derivatives of entire functions and analytic
functions in |z| <R. We refer the reader to [4], [5], [6], [13].

If, instead of (1.1), one considers functions of the form

(1.2) Fz) =S+ + =L+ A2, a_y#0,

then a result similar to Theorem 1 holds. We indicate its precise version below. It is
crucial for the present setting, however, that the singularity at z=0 be only a pole.
The case where F is of the form

oo
F(z) =anz+---+az+ L a2z

is the subject of [3] and [13]. The authors hope to study the analogous problem for
doubly infinite Laurent series in a future paper.
The foregoing results are proved with the aid of the differential operator given by

0=z1+”—dd?. The iterates of operators and those of derivatives are related by a

formula (6"f)(z) = (D"g)(w), for g(w)=f(z) and an appropriate change of vari-
able w=w(z).

We now state the main result for the operator §=z!*? ‘% Let {Ry }¢=, be a posi-
tive, nondecreasing sequence, let E(s) = L5, (s/Rg41)**! and let c(E) denote the
radius of convergence of E(R; <c(E) <oo). Let the function

(1.3) fRRY=a_z+aqy+aqz ' +az i+

satisfy the condition
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(1.4) limsup R, |a,|/ "D = 1.
)

Note that f(z) =F(1/z), where F(z) is given by (1.1), and that the specific choices
R,=R, Rpy1=T"'(n)V*D and R, = (n/epr)"/? lead respectively to cases (a), (b)
and (c) of Theorem 1.

oo

THEOREM 1’. Let p = 1. Then there is a positive sequence {r,}{" satisfying
r,—> c(E) (n—> o) such that if 0<e<1, then

(1.5) 0"f)(z) #0  for |z|7!'< (1 —€)min{r,,R,,,/2},
and for all n sufficiently large.

We obtain Theorem 1 as a direct result of Theorem 1’. Our proof of Theorem 1 is
based on a method suggested by [9] (also see [14, pp. 33-34]) except that we use
power series techniques for the most part. One can prove Theorem 1 directly by using
the method, although this does not seem to have been done. The advantages of using
the more general approach provided by 6 and {R;} are that (a), (b) and (c) of
Theorem 1 are reduced to essentially one proof, and that we can also obtain results
for classes of functions other than (1.1). Specifically, we find zero-free regions for
generalized power series given by

(1.6) h(w) =a_j0 P +ay + a1 0?7 + ay0®P + - -
and for Dirichlet series of type
a.mn g(w) =a_ e +ay+aje ®+ae % +--
This is done in §3.
2. A differential operator. Let p be a nonnegative number, and let § be the opera-

tor defined by §=z!* sz—. The iterates of § onto the various powers of z are given by

0" (z¥) = (k) (k + D) (k +2p) -+ (k+ (n— 1)p)z**+™

2.1
= Cpnz*t"; n=1,2,3,...; k=0,=%1, £2,....

For k=1 and n=1, clearly we have

(2.2) 0=<Cy, =k™(1 +np)", and |C_k, n|l = Cin-
Also, G, =0.
Let R>0 and let the function f be given by
i 1
2.3 = -k >
2.3) Sy = ¥ az™ 2>
Then

(0" (z) = k::z-:—l akﬂ”(z‘k) = k=E—1 akc_k,nz—k+np

2.4) i} 1
— 1+np C —-k—1 >
V4 k=E_1 ayC_p n2 » |zl 7
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We will express (8"f)(z) in another way. Let G, (w) be the function defined by
Gn(w) =kElC—k,nW—k_l9 n=1’2)3’--

By (2.2), we see that the series for G, (w) converges in the range |w|>1, and in fact
G, (w) is analytic there. Fix a number r, 0<r<R, let|t|=rand|z|>r~!>R ~!. Then

C—l,n C—Z,n

and it follows from the Cauchy Integral Formula that

(2.5) C_inz ¥ 1= (2mi)~! S,”:an(zt)t"dt, |z|>%, k=—-1,0,1,2,....
Substituting this into (2.4) yields

2.6) @@ =2 ¥ a(2mi)”" ], Ontanttat,

valid over the ranges indicated by (2.5). In what follows, a prime will indicate that
the term corresponding to k=0 is omitted from a sum. Interchanging integration and
summation in (2.6), justified by uniform convergence, we obtain

N =+ f:'l a4, 1%G, (at) dt

l=r k="
2.7)
= !+ (2mi) ! j, P/ —a)Gy(anat,
tl=r
and this is valid for [z|>1/r and n=1,2,3,.... If we replace z by a new variable,
(2.8) x =G/ Cypz,

and factor out the quantity C,, (2.7) becomes

- ’ C-—k,n Clnx frl

(0"f) (2) = Cpz' ¥ (2mi) ~! S
2.9)

whenever z and x are related by (2.8) and |x|<C,,r/Cy,, n=1,2,3,.... The integral
in (2.9) times the factor (2i)~! will be denoted by 7, (x),

L C_p o [CxTH!
In(x)=(21ri)_l§|t|=r(f(l/t)_a"){g‘:l Clk [Clzx] }dt’

lt|=r

and so we can write
(2.10) (0"1)(z) = C1, 2 t"L(x), |Cpuz ™| =|Cinx| < Copr.

The following lemma pertains to the asymptotic behavior of the sequence {7,(x)}.



ZEROS OF SUCCESSIVE DERIVATIVES 115

LEMMA 2.1. The quotient (C,,/C,,) converges to 0 as n—> o, For each fixed
k=1,2,3,... the sequence S_y, , defined by

S_tn=(C_pn/Cp)[Ca/Con)¥*, n=1,2,3,...
is convergent to 0.

Proof. Recall the following properties of the gamma function I' [1, pp. 256-258]

(2.11) 1+2)2+2)--(n—-14+2F(1 +2)=T(n+2),
(2.12) I'(l —2)I'(z) = wcsc(nz),
and
r
(2.13) }iﬁn;n“ﬂ%} =1.
By (2.11)

Cn=M)A+p)A+2p)---(1+ (n—-1)p)
=p"'A+p HQR+p - (n=14+p7h
=p" T(n+p ")/ T +p~h)

Similarly, |
C,=2p""'1+2p H2+2p™H.--(n=1+2p7H
=2p" " IT(n+2p /T +2p~ ).
Consequently,

Cin/Con ={T(1+2p~")/2T(1 +p~")}T'(n+p~")/T(n+2p~"),

and this tends to 0 with order n ~'/? by (2.13).
Using the same idea on C_; ,, now along with (2.12),

Cotn=(=k)p" 'T(n—kp )y/T(1 —kp~")
= (=k)p" '#7'I'(n — kp V)T (kp ~V)sin(kx/p).

Then we can write

C_k n : i\ Tkp DT (n — kp~1)
2.14 —50 = (- (1 !
(2.14) Co (—=k/m)sin(kn/p)T(1 +p~°") T+ p0)
In view of (2.13) again, this tends to O for fixed k at the rate n ~ ¥ +1/P_ Therefore
S_x » tends to 0 at the rate n ~2(+1D/P_which completes the proof. w|

The functions I,(x) are analytic in x for |x|<Cy;'C,,r. By Lemma 2.1, the
sequence {1, (x)]} - converges uniformly on compact sets to the constant function
a_;. This leads to the following result.

THEOREM 2.1. Let f be given by (2.3) and let 3 >0 be an arbitrary constant. Then
Jor all n sufficiently large, (0"f)(z) has no zero which satisfies |z|= C,,/ Cy, 8.
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Proof. On the contrary, suppose there exists a subsequence of points Zp, for which
(0"kf) (2n,) =0 and |2, | = Cyy, / C1n, B, k=1,2,3.... Put x, =C[;}Cy, 2, ", s0 that
lxnk|sB. By (2.8) and (2.10), I,, (x,,) =0. Thus a subsequence of {x,,k} must con-
verge to a point x, where the limit function, the constant a_,, vanishes. This contra-
diction proves the theorem. ]

3. Main proofs and applications. We require some technical results concerning the
sequence r,, of Theorem 1’.

Define the sequence 8, for n=1,2,3,... by 8,=max;<x<(n-1)p]|C=k n/Cinls
where [7] denotes the greatest integer not exceeding 7.

LEMMA 3.1. The sequence 8,,n'’? is bounded as n—> o; in order-of-magnitude
notation, 8,=0 (n~1?), n— oo,

Proof. We use the representation (2.14), where 1 <k <[(n—1)p]. Consider the
term I'(kp V)T (n—kp~!). Let y(x) =T (x)T'(n—x), 0<x<n. Note that p~! <
kp '<[(n—=1)plp~'<n—1, for 1<sk<[(n—1)p], so that the values k/p fall
within the domain of y(x). Now y'(x) =I'"(x)I'(n—x) —T'(x)I''(n—x), and this is

14

negative if and only if I‘T (x) < LP—(n—‘x) , that is, Y (x) <y (n—x) where ¢ is the

“Digamma’’ function ¢ =I"'/T" [1, pg. 258]. Since ¥ (x) is increasing, we must have
y’(x) <0 if and only if 0<x<n/2. Therefore, y(x) is decreasing on (0,n/2) and
increasing on (n/2,n). By symmetry, if A <B and B is nearer to 1 than A4 is to 0,
then y(A) <y(B). Let ky be the first integer (independent of #n) such that ky/p=
| (kg/p) —0|=n—(n—1)=1. Then y(ko/p) <y(n—1). Also y(k/p) <y(n—1) for
ko<k=<[(n—1)p]l. Thusif kg<k=<[(n—1)p], then (2.14) and the above discussion
give

< (n/m)T(1+p~YHyk/p)/T(n+p~h)

< (/m)T(1+p Hy(n-—1)/T(n+p~ ")

={rx T +p HT' )} (n - 1)/T(n+p~ ).
Noting (2.13), we see that

3.1) |C_tn/ Crn| = mon =P, kg <k < [(n—1)p],

‘ C—k, n
Cln

where m, is a constant independent of k. Now for fixed k, 1 <k =<k,, the proof of

Lemma 2.1 shows that |C_; ,/Cy,|<myn~%+*DP<pmn =27 where m, is an abso-

lute constant. Considering (3.1) and the definition of §,,, this completes the proof.
a

Let f be given by (1.3), suppose (1.4) holds, and let 0<e<1, L=(1—¢)~!. Then
there is a constant M=M{(/, €¢) such that

(3.2) |akISM(L/Rk+1)k+1, k=0,1,2,....
Define the sequence r,=r, (f, M, {R;}{", ¢) by the formula
(3.3) r, =sup(s|0<s<c(E), 6,ME(s) <|a_;|/2}, n=1,2,3....

Since 6, — 0, clearly r, — ¢(E) as n—> oo,
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LEMMA 3.2. If n is sufficiently large, r, =R, (1 —25,M|a_,|™"). If for some p>0,
R, /n'? has a finite and positive limit as n—> o, then r,=\(Inn)"*) for all n
sufficiently large, where A\>0 is a constant.

Proof. We have 8, ME(s) <8,M Y-, (s/R)**! =6, M(1 — sk ") Ya_,|/2if
s <R;(—28,M|a_,|~"). This proves the first part. If 0<lim,_.(R,/n'/?)<oo,
then E(s) is an entire function of order p. Thus E(s) <Kexp(s®*¢), for a con-
stant K, and the result follows on taking logarithms and noting the asymptotic form
of §,. a

Proof of Theorem 1’. We are given 0<e<1 and an f(z) which satisfies (1.3), (1.4)
and (3.2). Let r, be defined by (3.3). By (2.8) and (2.10), (6"f)(z) #0 if and only if
I, (x) #0. Using the power series for f(z) and integrating, we find that

(3.4) L(x)=a_,; + k); @ (C_p n/Crp)z %L

We will show that I,,(x) #0 for appropriately restricted z.

We break the sum in (3.4) into two parts at the point k=[(n—1)p]l, square
brackets denoting the greatest integer function. If k=[(n—1)p]l+1, then k>
(n—1)p=n—1, since p=1, so k=n in this range. Also for k=[(n—1)p]+1 and
p=l,

C_ k, n
Cln

k! (K)k=p)---(k=(n=1)p) (1)(2) -+~ (n)
n! (k—n)!  (kY(k—=1)---(k—(n—=1)) (1)(1+p):---(1+(n—1)p)

k! k
< — =
~ n!(k—n)! (n)’

the binomial coefficient. Using (3.2) and the fact that {R,,} is decreasing, there follows

oo

© rk
> | (C_p n/Cr)z % =M ¥ ( >|L/sz+l|k+l
[(n=1)p]+1 k=n \N

6 = F (F) @Rl

=M(L/R,;1]2])" (1 = (L/R, 4, |2|) ~ (" +D).

Putting X=(L/R,4,|z]), the above expression is M(X/1—X)"*!. This quantity
tends to 0 as n—> o0 if 0< X< 1/2. Therefore, (3.5) can be made arbitrarily small if
n is sufficiently large and |z| "'< (R,,;/2L) = (1—€)R,;+,/2. Now consider the
terms of (3.4) corresponding to 1<k <[(n—1)p]. We have

[(n=1)p] e [(n=1)p] .
|ax (C_g, n/ C1)2 | =Ms, kgl (L/Ry41|2])

<6,ME(L/|z|) < |a_,|/2
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provided that (L/|z|) <r,, that is |z|"'< (1—¢€)r,. It follows that I,(x)#0 if
|z| ~'< (1 —€)min{r,, R,;/2}), and this completes the proof of Theorem 1. O

Applications. (1) Proof of Theorem 1. Let F(z) be given by (1.1), f(z)=F(1/z2)
by (1.3), and let p=1. Then 6=z27‘é—, and if w=1/z then (8f)(z) = (DF)(w),
(0"1)(z) = (—1)"(D"F(w)). Since p=1, C_; ,=0 for k<n, and so 6, =0 for all n.
In this case r,=c(E) =R, , and so r,, does not figure into condition (1.5). For part
(a) take R, =R. The resulting form of (1.5) is equivalent to (a), with z now replaced
by w=1/z, z satisfying (1.5). For (c) take R, = (n/epr)'/?. Recall the remarks made
just after (1.4). To prove (b) we let R, =T"1(n!)*+1  Condition (1.5) gives
zero-free regions for F{™ (w) which have size approximately |w| < (n+1) /2e. To get
the best constant, let c<c, and pick €>0 so that cL = (1—¢) " le=c’<c,. Next, put
Ry =T 1 (k)Y %+ into the second member of (3.5). Then (3.5) does not exceed

M
— (TL/ |z])"*lexp (TL/ |z|).

If T|w| =(T/|z|) <c(n+1), then (TL/|z|) < ¢’(n+1). In this case (3.5) does not
exceed

M . ,
F (c’(n + 1))n+lec (1.v1+l) <M(e/n)"(n + 1)n+l(clec )n+1
=Me 11+ n~DH"(n+ 1)(c’el*c)yr+1,

This quantity tends to 0 as n —> oo by definition of ¢y and ¢’. Therefore (6"f)(z) #0,
all large n, when |z| "'<T~!c¢(n+1). Thus (D"F)(w)#0 for all large n provided
|w] < T~ 'c(n+1). This completes the proof of Theorem 1. n}

(2) Dirichlet Series. Let p=0 (we do not need Theorem 1’ for this example). The
operator § becomes 0=zdiz, and this corresponds to the change of variable f(z) =

g(Lnz), thatis, (8"f)(z) =g (Lnz) when fand g are so related. If we start with a
function given by the Dirichlet series (1.7), defined for

Re(w) >LnR !(e.g., e“coth(w/2))

then f(z) =g (Lnz) satisfies (2.3). Theorem 2.1 implies that the derivatives of g have
zero-free regions. Since C;,=1 and GC,,=2", the zero-free regions are of the form
Re(w) =nLn(2)—-Ln(B), for all n sufficiently large, where 3 is any fixed constant.

(3) Noninteger Power Series. Let p=1 and 8=z1+P—‘%. Let A (w) be given by
(1.6). Zero-free regions in this example are understood to be intersections of discs
with the cut plane, and w!/? will denote the principle branch of the power function.
Putting w=z"? and f(z) =h(w)=h(z ~P), we can apply Theorem 1’ to f. Note that
(01)(z) = (—p)(Dh)(w), (0"f)(z) =(—p)"(D"h)(w). Therefore, (D"h)(w)#0
for all n sufficiently large when |w| < (1 —€)min{rZ, (R,,,/2)"}. It is of interest that
(by Lemma 3.2) the growth rates of r,, and R, , as n —> oo are compatible, at least in
the two principal cases R, ~R and R, ~n'/?.
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Finally, if F(z) is given by (1.2) instead of (1.1), then the results analogous to

Theorem 1 and Theorem 2.1 are obtained by replacing (n+1) by (n+N)/N and
Cy,/Cyp bY Cny1,n/ Cny» respectively.
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