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1. Introduction. In answering a question, posed by Lusin, in connection with the
representation of measurable functions, Men’Sov [2, 8] proved that for any finite
almost everywhere (abbreviated a.e.) measurable function f on 7T=[0,2x], there
exists a trigonometric series convergent to f a.e.. Bary [2] pointed out such a trigono-
metric series can be obtained from the term-by-term differentiation of the Fourier
series of a primitive for the function f. ‘

The representation of measurable functions of two variables by double trig-
onometric series was first studied by Dzhavarsheishvili [6]. Subsequently various
representation problems for functions of several variables by multiple series were
discussed by Dzagnidze ([4] and [5]) and Topuriya [9]. But their results are far from
pointwise convergent representation. In connection with the Men’Sov and Bary resuit
for functions of several variables, it is natural to ask whether every finite a.e.
measurable function f on 7" can be represented by an n-fold trigonometric series
convergent to f a.e., summed either by squares or by rectangles [10].

In our previous work [3], we proved that any finite a.e. measurable function f on
T" can be represented by an n-fold trigonometric series convergent to f(x) a.e.
summed by squares. In the present article we show that any such a function can be
represented by an n-fold trigonometric series convergent to the given function a.e.
summed by rectangles.

Even for the case of a single variable, this result is quite deep since even for an
integrable function the Fourier series may fail at every point to converge to the
function. The result is much deeper in the case of functions of several variables
because of the existence of functions continuous on 7” such that the rectangular
partial sums of their n-tuple Fourier series diverge everywhere [7]. Neither of the
proofs given by Men’Sov and Bary can be extended to functions of several variables.
We need to develop some fundamental tools. Several of the basic ideas for our main
results are taken from our previous work [3]. For convenience and for notational
simplicity, we give the proof of our theorem explicitly for functions on 72.

2. Preliminaries and notations. By the 2-dimensional torus we mean the set of
points x=(x;,x;) from T?=10,27] x [0,27]. Let m=(m,, my) be an integer
lattice point of R2. Then for an integrable function F on 72 the Fourier series for Fis
Slx; F1=X,, F,,e™ ™, where F,,=1/(27)? [ 2F(x)e ™™ *dx with m-x = m, x| + m,x;
and dx=dx; dx,.

To each Fourier series S[x; F], there corresponds a trigonometric series S'[x; F] =
— ¥, (mymy F, e™*) obtained by term-by-term mixed differentiation of S[x; F].
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By a rectangular sum for S[x; F] or S’[x; F] we mean a partial sum S,] L [x; F] or
S,’l 1, [x; F] with

Shlz [x;F] = E ﬁmeim.x

Im =1,
S 1, [x; F1 = o ;[ (mymy E, ™).
m,| <l

We shall make use of the standard equalities

1
Sy 6 F1 = — | FOVD, (1 =x1) Dy (02 =) dy,

1 aD — X aD —X
S, [x; F] = — Srz F(y) 1, (1 1) 12(y2 5) dy

ay 0y, ’
where
sin(/, +1) (x,)
D = 2 = :
1, (%) Tsin(x/2) (r=1,2)

The following notations are adopted in this article.

C(T"): the class of continuous functions on 77,

CPL(T): the class of functions continuous and piecewiselinear on 7=[0,2x],

un: the n-dimensional Lebesgue measure in R”.

Also, for any bounded function F on T", we write |F|=sup{|F(x)|:x€ T"}.

In the following sections, we shall use the letter A for an absolute constant which
may be different from case to case.

3. Fundamental lemmas. Several fundamental tools are needed for the proof of
our main theorem. The following lemma is due to Men’Sov [1]:

LEMMA 1. Let [a, b] be any subinterval of T=[0,2x], v be any real number, € be
any positive number and v>8 be any natural number.,
Then there exist a function ¥ (x) and a closed set D such that

(3.1) Y (x)e CPL(T) and ¥ (x)=0 outside [a, b],
3.2) |¥ll=2»|v],
(3.3) |f§v(x)dx|<ein 0= =2m,

B.4) Y¥(x)=vyinD,
where DC [a, b] with p, (D) > (b—a)(1—(5/v)),

(3.5) the Fourier series of Y converges uniformly, and |S;[x; ¥1| <Amin{k?e, v|v|}
fork=1and xeT.

Proof. The proof of this lemma is essentially the same as in [1, pp. 488-504].

The next lemma is a generalization of Lemma 1 to 7?2, somewhat different from
our previous work [3].
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LEMMA 2. Let [ay, b,] X [a,, b,] be any rectangle in T?, and let v, € and v be given
as in Lemma 1.
Then there exist a function ¥ (x;,x,) and a closed set A such that

(3.6) Y (x1,x2)=¥1(x1)¥2(x2),

where y;(x;) is the function constructed as in Lemma 1 except that [a, b] and v are
replaced by la;, b;]1 and =~ vyl , respectively, with the minus sign for y,(x;) if
v<0;

G7  Wl=42vl,
(G.8) 0. expom ¥ (X)dx|<e?in0=<§, n=<2m,

(3.9) Y(x1,x)=7in A,
where A C [ay, b] X [a3, by]1 and py(A) > (by —ay) (by —ay) (1 —(10/v)),

(3.10) the rectangular partial sums of S[x;y] converge uniformly, and for each
x€ T2,
Av?lyl for I, L, =0
1Sy, 1691 < AvNIyl Be for =1, L =0
AvVliyl Be for L =1, [, =0.

Proof. Let ¢;(x;) and D, be the function and set, constructed as in Lemma 1,
corresponding to [a;, b1, VIyl , € », while ¥,(x,) and D, correspond to [a,, b,],
=1yl (with the minus sign if y<0), ¢, ».

Let ¥ (x1,x) =v¥(x)¥2(x;) and A=D, X D,. Then it is easy to see that ¥ (x;, x3)
and A have the desired properties (3.6)-(3.10).

For y € C(T?) we can assign F, e C(T?) as follows:

Fy(x1,%,) = S Y ()dy — g(x) S v (y)dy

[0,x1]1 X% [0,x;] [0,27] X {0,x;]

3.11) ~g(x) | VOV + g (g () | vO)dy,

[0,x,] X [0,27]
where (x;,X;) € T? and g is a monotonic function continuous on T such that
g(0) =0, g(27«) =1 and g is constant in all intervals contiguous to some perfect set of
measure zero in T and limnﬁmjg"e"'"’a’g(t)=0, see [2; pp.-406-410]. It follows
from the proof of a theorem in [2; pp. 366-367] that the Fourier-Stieltjes series of g
converges to zero almost everywhere. We shall fix such a function in this article.
The following lemma repeated here for convenience from [3], is one of the most

important tools for the proof of our main theorem.

LEMMA 3. Let Y € C(T?), and let F, € C(T?) be defined as in (3.11). Then we
have

(3.12) F,(x)=0 on the boundary of T* and

v(x)dx

|Fy| < 4 sup{

S :0<¢, 9= 27r}, and also
[0,£]1 % [0,4]
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(3.13) if the rectangular partial sums of S[x;V{] converge uniformly, then the
rectangular partial sums of S'[x; Fy] converge to y(x) for a.e. x€ T2

Proof. The conclusions in (3.12) follow immediately from the definition of F,. It
remains to prove (3.13).
Observe that

0D, (y1 —x1) 9Dy (y, —x,) dy

4 . — 1
ShplaFyl =— | Fn =0 i

1
2

“72 YDy, () —x1) Dy, (v, — X2 )dy

= [ Dy —x)dg ) | Y 0ID, 02 —x)dy

T2

~ STD,Z(yZ—xZ)dg()’z) S ¥ () Dy (3 —x1)dy

T2
+| Dyor—xdg ) | D2 —x)dg (7)) | wy)dy].
T T T

From the uniform convergence of S[x;y] it is easy to deduce that

STZI#(y)Dz,(y, = X;)dy

also converges uniformly.
So the conclusion follows from the fact that the Fourier-Stieltjes series of g
converges to 0 a.e..

REMARK. If Yy (x)=¢,(x1)¥1(x;), where the y; are CPL(T) functions, then the
conclusions of Lemma 3 follow readily. We shall apply the above lemma for this
class of functions in the proof of our main theorem.

We also need to make use of the Egoroff theorem for a multiple sequence of
functions convergent in the sense of Pringsheim [10, p. 68] (i.e. by unrestricted
rectangular convergence):

If {f;} is an n-tuple sequence of finite a.e. measurable functions, and if {f;}
converges to f a.e. on 77, then for each 6 > 0, there exists a set EC T" with
p, (T"~ E) <6 such that {f;} converges to f uniformly on E.

4. Representation theorem on T2. In this section we apply the tools developed in
Section 3 to prove our representation theorem on 772.

THEOREM 1. For any finite a.e. measurable function f on T2, there exists
Fe C(T?) such that the rectangular partial sums of the double trigonometric series
— Y, (mymyF, e™*) converge unrestrictedly to f(x) for a.e. x€ T?, that is
limy, ;0 Sf 1, [X; F1=f(x) for a.e. x€ T>.

Proof. Let us assume that
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1

(41) Ukz“—[IOWsz_*_z] ’

vi = [10722%+2] + 1.

By induction we can obtain:

(a) two sequences of positive numbers {q,}, {&],

(b) two strictly increasing sequences of natural numbers {n;}, {e;},

(c) three sequences of continuous functions {«;}, {¥,}, {F;}, and a sequence of
step functions {8},

(d) a sequence of real numbers {v,},

(e) five sequences of closed sets { Yy ), {As}, {Pr), [E} and {X}},
such that for e,_; <s <g¢; the following hold:

€k—1

(4.2) oy =f— ‘El Y, in Y,
j=

where p,(Y;) >47%— (1/2%) and ¢, =0,

(4.3) |log|| =gy and g4 =1 for each k,

€k
(@4 Br= ¥ 7vsxa, with [IBcll = llo| and [IBx —oxll = %4,

Ek___] +1
4.5) ! with n 1
. cCc==—m——m— =1,
S 2°n2qyvy :

4.6) ¥.(x1,x) =¢§1 (x1)¥52(x2), where ¥,(x,x,) is a function as in (3.6) Lemma
2 corresponding to A; = [ag, bs1] X [ag, bsa1, s, €, and vy,

@D sl =4vilvsl,
4.8) |§10,61x (0, ¥s(¥)dX| <€} in 0<§, n <2m,

4.9) Yo(x1,x) =7, in A,
where A; C [ag, by ] X [ag,, byy] and py (Ag) > pp (Ag) (1= (107w)),

(4.10) the rectangular partial sums of S[x; V] converge uniformly, and for each
x€ T2,
Avilyy| for I, L =0
18,5, %3951 <=3 AneNTy, T Beg for 4 =1, =0
ANyl Be, for L=1, =1

(4.11) F(x)=F, (x) =0 on the boundary of 72, and ||F;| <4eZ,

(4.12) lim; ;o S/;, [x; F] =y,(x) for a.e. x€ T?,

(4.13) | X5 (S0, [x;5 F] —¥;(x)}| < (1/s) asly, , = n,,, and x € E, where E;C T?
and p, (E;) >472— (1/s2),

€k
(4.14) Pk= Yk N < U As) with #Z(Pk) > 471'2 -

1
ek_1+1 2k 1
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ex

@19 0 = L 40

3 .
S 0k41 N Py,

4.16) X, C Py, pp(Xi) >4n?— (172571, and for x= (x, x;) € X

2
Ok+1

STD,r(y,——x,)dg(y,) < if L =zn,4, and |8/, [x;Fl| <Aooy,

Qk+1
whenever /;, h, =n,, | and e, <j<eg .

Let us sketch how to obtain the above sequences. First, by the Lusin theorem there
exists a; € C(7?) such that

(4.2") o (x)=f(x) in Y,,
where Y| is a closed subset of 72 and u,(Y;) >47*—1.

Since «; € C(T?) there exist a positive number q; =1 and a step function 8; =
YL ¥sXa, such that

“.3") et =a1,

@4.4") [Bil=lley]] and [|B; —e;fl =03
where Ay, Ay, ..., A, are nonoverlapping rectangles with U?L, A; = T2,

Set As = [as, bs1 ] X a5, bsy].
Let 1=ny <ny<:-- <n, <n 4 be a finite sequence of natural numbers which

will be defined inductively, see (4.13’) and (4.16’). Assume that

1
“4.5") es=m for 1 =s=e.

On the basis of Lemma 2, in which we suppose that [a;, b;] X [a;, D] =
[ag, by ] X [ag, by, Y="7s, »=v»; and e=¢,, we can find ¥,(x) € C(T?) and closed
set A, such that (4.5)-(4.10) hold for s=1, 2,...,e, and k=1.

Let Fy=F, asin (3.11). Then (4.11)-(4.12) hold for 1 <s <e,.

By the Egoroff theorem, for 1 <s<e, —1, there are closed sets E, C T? and
natural numbers n,.; > n, such that p, (E;) >4x>— (1/s?) and

S 1, .
(4.13") .El {Sl’llz [x; F;] — \bj(x)} <5 I Eg if 5, b =ng,,.
j:
Set
4.147) P = ( U A)

Then P, is closed, u,(Py) >47>—1 since p,(Y;) >4x*—1 and
€
Vs (Ag) > 472 (1 — (10/vy)) > 4w — (1/2).
I

From (4.27)-(4.4") and (4.9) we have
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4.15%) <03 in P,.

€
S(x) — S)___Zl ¥s(x)

Since P, is closed, there exists >0 such that the set G={x€ T?:d(x, P,)>é} is
open and p,(G) > (1 —(1/47%23)) pu(T?~Py).
We can find nonoverlapping closed rectangles AZ 415 -+ A in G such that
ki 1 )
AN > ({1 — —— T~ Py).
Therefore T2~ U‘_,1 +1 4/ can be covered by nonoverlapping rectangles Afigtseees A,
Let fi=f— XL, ¥s. There exists g, =1 such that

(T =g @21 N AL > pa(AD(1 —0,) for e <s < k.

Now we can select a natural number »n, ,; >n, and closed sets X, E,, such that

2
@16 || D0p—x)dg 0) [< - foreach x=(x, %) € X,
T 2
and
€] 1 .
@.13") L (Sl Fl =)< - in B,
s=1

where X, CP;, py(X,)>4n*—1, ,uz(Eel)>47r —(1/et) and 1, 1, =N 41

Now observe that pz(u’;l'+1ﬁ—1[—q2, @I NA)>p, (T?~Py) — (1/22) and
w (it —03, 31 N (T2~ ue i, A)))=uy(P;). Hence, for each s=e, +1,...,k,
there exist &, € C(T?) and closed set Y C A/ such that &(x)=0 for x¢ A/ and

las| = G, € <s=k{
s O'% k],<S5k1,

as(x) =fi(x) in Yj,

where #2(Ue 1 YO >4xt—(1/22).
Set Yz—Ue +1 Ysand o= Ee'+10‘s Then

(4.27) ;€ C(T?) and oy (x) =f;(x) =f(x) = L, ¥s(x) in Ys.
4.3")  |eall=qs
@4.14")  py(Yy)>4w2— (1/2%).

Now for each e, <s <k, there exists a step function 3s= Ej:sz 1 YsiXay; such that

18l =< |l & | and ||BS — & || <03, where Ay, ... » Ag;, are nonoverlapping rectangles
such that Uf:] —'A and if A - [asjls s;l] X [as12v s12] then
5 sin(8/2V2)

max { (b — ay) :r = 1,2} <
q>

for each ¢ <s=<ékjand 1 <j=<j.
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The rectangles A;;, e; <s=<k; and 1 <j=</; are enumerated in the order
Be 415 -+ Ay for ey <s=kj, and in the order A, 4,,..., A, for k{ <s=k,.

We may rewrite the sum of the step function g, as

ky oo )
(4°4”) 62 = E :35 = E "YSXAS’
e;+1 e;+1

and therefore [|B;] < |lez| and ||B; —a, || <03.

Next, by the same procedure as above for the step function 3,, we can define: a
finite sequence of natural numbers n, ,; <--- <n,,, a finite sequence of positive
numbers

{ : }ez
€& = 552 ’
2°ns qyv; ey +1

two sequences of continuous functions {y, 2 1 {Fs}‘g +1» and two sequences of
closed sets {A)22, , {Es}gf;} such that for each s=e;+1,...,e, and k=2, the
properties (4.6)-(4.13) hold.
Now set
€2
“4.147) P,=Y,N ( U AS>.
€l+1
Then P, is closed with u,(P,) >4n*— (1/2), and
() €y
4.15") 'f(X) - El Ys(x) | = ‘fl(x) - Z+Il Vs(x)| =03 in P,
S= €1

Finally, we show that for each x=(x;,x;) € X,
“4.16") |Si1, [x; Fs]| < Ao, whenever e <s=<e and [, =n, +1.

Write S/, [x; F1 = (1/7%) [L}-1 W;(x) ], where

Wi (x) = Lz Vs (D) Dy, 01 — %) Dy, (0, — %) dy,
Wa(x) = = | Dy (i —x) dg () §T2 V() Dy, (32 — X2) dy,

W (x) = — LD’z 2 — X2) dg (¥,) §T2 U () Dy, (0 — %) dy,

and

2
W) = | v dy TT | D0, —x) dg ().

Set A, = [ay,, by, ] X [ag,, by, ]. Since d(X;,A;) >dass=e; +1,...,e{, hence either
x, € [ag — (8/V2), by + (8/V2)] or x¢ [ap — (8/V2), by + (8/V2)].
It suffices to consider the case x; € [a,; — (8/V2), by +(8/V2)]. Now
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| Wi (x)] = AvVly

S s, ) Dy () — x1) Ay

s

vyVi
=< AN I'Ys 2(5/?.;;/_) (b1 — a51)
s 1 03 sin (8/2v2)
-—-AVZI'YSI :
sin (6/2v2) q>
< A0'2,

since || < g, [see (4.37), (4.4")].

By (4.16") it is easy to see [ W;(x)| <Aooy, (j=2,3,4). As for el <s<e2, we have
| Wi (x)] <A1%|'ys| <Avio3 <A02, (i=1,2,3), |Wu(x)|<Adje? <Ao,. So the
1nequahty (4.16") is proved.

Continuing the above process, we obtain the sequences (a)-(e) satisfying required
conditions (4. 1)—(4. 16).

Let F(x)=X2,F.(x), x€T% It follows from (4.11) that ¥ ,F, converges
uniformly on T2 and so F€ C(T?). Therefore, Sii,[x;s F1=YX521 8/, [x; Fs] for
each /;, , =0 and x€ T2

Suppose @ =limy_ o Ex Nlimy_ o Xr. Then p,(Q) =472, since p,(E;) >
47%— (1/k?) and py (X)) >47w2— (1/2%71) for any k= 1.

We shall prove that
4.17) 1 lim S/, [x; F] = f(x) foreach x€(.

1=
Now for each x € , there exists jy such that x € E;, N X} if k=j,. So x€ Py if k = j,.
Observing (4.15) and noting that at most one term of the sum E‘ch_l +1¥s(x) is
nonzero, we obtain f(x) = Y2, ¥,(x) in . Given >0, there exists k; such that
ko—1=jo, 1/(ko—1) <e, and j>e; _y, then | B ;¥ (x)| <e.

We want to show that

(4.18) |8/, [x; F1 — f(x)| = Ae whenever 1, , > My -

If /i, L >”£’ko’ then either /, =/, >nek0 or [} =/, >nek0. Only the case /, =/, >n€k0
need be treated. For this case there exist natural numbers %, j such that k =k, —1,
(% <j$€k+1 and n; </ =hjq

o=}

| 87,1, [x; F1 — f(x)| = E {1, [x; Fs] — E s (x)

Jj—1

< }:1 (Sf 1, [x; F] —ws(x>}‘+ 1S, [x; F|
S=

+ S/

[x; Fs]| + e,

1
<J'——‘_'—T+A0'k+1 +
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[see (4.13), (4.16)].
Write S}, [x;F]=(1/7%)[Efo) Wy (x)] (s=j+1). If ¢ <s=<e;, then

| W (x)| < AvpVIy T Ieg  [see(4.10)]
1 A

<
2’n52qj'vj: 25

= AVJ" V I’YSI 112

’

A
| W (X)| = AvpNlygl e = —

o (1=2,3)

Hence X524 |S,"],2 [x; Fs]| <A X541 (1/2°) < Ae, so that the inequality (4.18) is

proved, and consequently the existence of the limit in (4.17), and thus the proof of
Theorem 1 is complete. O

5. Representation theorem on 7. The basic ideas for proving Theorem 1 in the
preceding section are the lemmas stated in Section 3. It is easy to extend these lemmas
to higher dimensions. Therefore, parallel to the proof for Theorem 1, we have the
following representation theorem on 7.

THEOREM 2. For any finite a.e. measurable function f on T", there exists
Fe C(T") such that the rectangular partial sums of the n-tuple trigonometric series
()" (mymy...m,)EF,e™* converge to f(x) for a.e. x€ T", where m=
(my,my,...,m,) is an integer lattice point of R", and F, is the m-th Fourier
coefficient of F.

Finally, we remark that it is still an open question whether our representation
theorem holds in the sense of spherical summation.
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