DEFICIENT POINTS OF MAPS ON MANIFOLDS

P. T. Church and J. G. Timourian

1. INTRODUCTION

The primary goal of this paper is the proof of the following theorem.

THEOREM 1.1. Suppose M" and N" are oriented connected n-manifolds and
f:M" — N" is a proper map with degree deg f # 0. Let A, be the set of points
y € N" for which f " (y) has less than |deg f| points.

(1) Then dim Ar=n —1and A, contains no closed (in N™) subset of dimension
n—1,

(2) If f is discrete (i.e. each f~*(y) is discrete), then dim A f=n—2
Walsh (4.3) has constructed a (nondiscrete) example with dim z_l, = n.

Definitions 1.2. A point y € N" is called deficient if the number of points
# f'(y) < |deg f|, and its deficiency 5,(y) = |deg f| — # f ' (); for a nondeficient
point 8,(y) is defined to be 0. The set of deficient points is denoted by A,. Hopf
defined deficient points and proved the following result:

THEOREM 1.3. (Hopf [11, Anhang II]; see also [12, Section 1]). Let M” and
N? be closed, connected oriented manifolds, and let f : M*> — N? be continuous
with deg f # 0. Then

D By):y € N*} = |deg fIx (N®) — x (M),

Here x(M?) is the Euler characteristic, and, in particular, A, is discrete for
dimension n = 2. Earlier H. Kneser [16] had shown that

0 =< |deg f| x(N?) — x (M?),

and Hopf used Kneser’s result in his proof. The Hurwitz-Riemann formula for
complex analytic functions (cf. [12, p. 274]) shows that Hopf’s inequality is sharp.
(See also [6] and its references and [33, p. 18, (3.14)].)

Background 1.4. For dimension n = 1 it is easy to see that there are no
deficient points (5.8), i.e. A, = @. For dimensions n > 2 Hopf restricted his atten-
tion to simplicial maps “um Komplikationen zu vermeiden” [12, p. 280]. In case f
is simplicial it is easy to see that A, is an at most (n — 2)-dimensional subcomplex
and Hopf and others discussed its further structure (cf., (3.11)).
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For arbitrary continuous functions with n > 2 Hocking and Young in their
text [13, p. 270], (cf., also [32, p. 366]) asked whether there need exist any
nondeficient points, and Honkapohja [9] showed that the set of nondeficient points
is dense; thus dim A, = n — 1 [1, p. 14, (4.9)(a)]. In the special cases where
fis a C®> map (3.11), or is discrete open (2.9), or is a light locally sense preserving
map (3.9), it follows from other work that dim Bf = n — 2. But for an arbitrary
map, dim A, may be n (Walsh [28], cf., (4.3)).

Definition 1.5. Shepardson [23] called y € N" component-wise deficient if
the number k() of components of f~*(y) is less than |deg f|, called the number
|deg f| — k(y) the deficiency d/(y) of y, and denoted the set of deficient points
by D,. He proved the following generalization of Hopf’s theorem:

THEOREM 1.6. (Shepardson [23]) Let M? and N? be closed connected oriented
2-manifolds and let f: M> — N? be continuous with deg f # 0. Then

E{df(y) :y € D;} + rank imag i* < |deg f|x (N?) — x (M?),

where t* is the homomorphism in cohomology in dimension one induced by the
inclusion map i : f~'(D;) - M>.

If M? and N? are not necessarily closed, but f is proper, then D, is still discrete
[24, p. 22].

Remark 1.7. In general, A, C D;, but for n = 3 D, may be n-dimensional:
D. C. Wilson {31, p. 107, Theorem 2] constructed for n = 3 maps f: S" —» S”
which are monotone (each f~*(y) is connected and nonempty) of arbitrary degree.
Thus the analog of (1.1) (1) with A, replaced by Dy is false, and this fact makes
the proof of (1.1) more subtle. For other examples see Section 4. While A, need
not be closed in N” (4.6), it is a G, set (3.6).

Remark 1.8. In case the manifolds in (1.1) are not necessarily orientable, an
absolute degree A(f) was defined by Hopf and others (cf., Section 5), and in
Section 5 we prove that Theorem (1.1), Hopf’s theorem (1.3) and Shepardson’s
theorem (1.6) are still true for |deg f| replaced by A(f) ((5.13), (5.16), (5.17)).

Conventions 1.9. Except where otherwise specified, the following conventions
hold throughout this paper. Manifolds are assumed to be without boundary,
separable, and connected. Maps are continuous functions and are proper (i.e. the
inverse image of a compact set is compact), and f will always refer to a proper
map f[:M"— N". Except in Section 5, manifolds are oriented and the
degree deg f # 0.

The cohomology used is Alexander-Spanier cohomology with compact supports
and with coefficients in the integers Z (see [25, pp. 320-323] and [1, p. 1ff]).
The homomorphism on cohomology induced by f is denoted by f¥, and that on
the fundamental group =, by f,.

For a finite set B, #B is its number of elements.

Remark 1.10. For locally compact finite dimensional separable metric spaces_
X the usual definitions of dim X [14] agree with dim,X, the cohomological
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dimension with Z (integer) coefficients: dim,X =< n if and only if H? "' (U;Z) =
for every open U C X [1, p. 6, (1.2)]. To see this, let the one point compactification
of X be denoted by X*, let C = X — U, note that H**' (X — C;Z) = H*"'(X*,C*;Z)
[25, p. 321, (11)], and apply [14, p. 152].

Outline of the paper 1.11. In Section 2 we give preliminaries on degree and
local degree, define an essential point x € M" as one at which the local degree
is nonzero, and define E, as the set of y € N" for which f () has less than
|deg f| essential points. Thus A, C E,, and the lemmas in Sections 2 and 3 involve
E,rather than A,. In the concluding lemma (2.6) of Section 2 we obtain by restriction
of [/ maps f; such that the set X, of essential points is mapped by f; homeomorphically
onto E,, thus (in (3.1)) reducmg our problem to a more tractable special case.
In Section 3 we use (2.6) to prove (1.1) for E, in place of A;, and thus deduce
(1.1) as a corollary. We also note that A, is a Gzs set (3.6), although it need not
be closed (4.6), and we consider A, for various special maps.

In Section 4 we consider various examples which show that (1.1) is generally
sharp, except for one question (4.5), and we give some partial generalizations.
As noted in (1.8), we prove in Section 5 generalizations to absolute degree A (f)
of Theorem (1.1) and Shepardson’s theorem (and thus Hopf’s theorem). After
preliminaries, the proofs are developed in a series of lemmas, involving the three
casesin which A ( f) # 0, and many of these lemmas are used for both the generalized
(1.1) and for the generalized Shepardson’s theorem.

2. LOCAL DEGREE, ESSENTIAL POINTS, AND THE DEFICIENT SET A,

Remember that M"” and N" are connected, oriented n-manifolds and f refers
to a proper map f: M" — N" with deg f # 0.

Background 2.1. The orientation of M" is a distinguished generator
a, € H}(M") = Z, and the degree of f (written deg f) is the unique integer
defined by f*(ay) = (deg f) - oy Since f is proper, f(M") is closed in N7
if f(M") # N", then H, (f(M™)) = 0 [1, pp. 11-12, (4.3) (1)]. Thus if f is not
onto, deg f = 0.

If U C N"isa connected nonempty open subset, {V_:a € &} are the components
of f7'(U), and f, : V, — U are the restrictions of f, then f, is not onto for all
but a finite number of «. Each V_ inherits an orientation from M" [1, pp. 11-12,

(413) (2)], deg £, = 0 for all but a finite number of o, and deg f = 2 deg f..

Definitions 2.2. Consider y € N” with £~!(y) discrete; since fis proper, f " (y)
is finite, consisting of x,, x,, ..., x;. Choose a connected open neighborhood U
of y sufficiently small that the x; are in distinct components V, of f~*(U). For
f; : V; > U defined by restriction of f, deg f; is independent of the choice of such

a U, and is called the local degree of f at x,. Note that 2 deg f; = deg f.

If the local degree of f at x; is nonzero, we say that x; is an essential point
of f, and the set of essential points of f is denoted by X,. In the formula
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2 deg f, = deg f only the essential points x; need be counted. A point y € N"

is called essentially deficient if f~'(y) is discrete and has fewer than |deg f|
essential points. The set of essentially deficient points is denoted by E,. Clearly
A, C E (1.2).

LEMMA 2.3. Suppose T is open in N*, y € T with f *(y) discrete, and f " (y)
has m essential points x; (I = 1,2,...,m). Then there exists a connected open
neighborhood U C T of y and components V, (i = 1,2,....m) of f (U) with
f ) NV, = (x;} such that, if f, : V, - U is restriction of f, then deg f, # 0,

(V) = U, and deg f = > deg f,.

The proof is immediate from (2.1) and (2.2).

LEMMA 2.4. For each y € N" with f~'(y) discrete, f *(y) has at least one
essential point.

The proof is immediate from (2.3).
LEMMA 2.5. If f is discrete, then E, is closed.

Proof. Let y € N™ — E,, so that f™'(y) has m essential points with
m = |deg f|. Let f; : V;, - U (i = 1,2,...,m) be as given by (2.3) for T = N”,
andlet z € U. From (2.4) applied to f,and 2, f~'(z) N V. has at least one essential
point, so that f~'(z) has at least m essential points. Thus U C N — E;, so E,
is closed.

LEMMA 2.6. Let T be open in N”, and let A C E, N T be nonempty. Then
there exist y € A such that the following properties hold for the U C T, V, and
[; given by (2.3):

(1) V,Nn X, N f1(A4) is closed in {1 (U N A),
@ F:V,Nn X, NFf A =Un A4,

@ X,nfwnacld v,aend

(4) deg f; # 0 (i = 1,2,..,m < |deg f|) and > deg f; = deg f.

Proof. Foreachy € A, f~'(y) is discrete and has m (y) essential points, where
m(y) < |deg f|. Choose y such that m(y) is maximal, say m, and let U, V,,
and f; be as given by (2.3); thus (4) holds. Apply (2.4) to z € U N A and f;
to conclude that f~'(z) N V, has at least one essential point. By the maximality
property of y, each f '(z) N V, has exactly one essential point, i.e. point of X/,

and (3) X, N fffAnUcC U V;. Thus (a) the function of (2) is continuous,

injective, and surjective; let g be its inverse.

We will prove: (b) if z,, 2z € U N A and z; = 2, then g(z;) — g(2). Let
W C V,; be any open neighborhood of g(z), and let D C U be an open connect-
ed neighborhood of z sufficiently small that the component V of f~'(z) contain-



DEFICIENT POINTS ON MAPS ON MANIFOLDS 325

ing g(z) is contained in W [29, p. 131, (4.41)] and has no other point of
f ' (2). Since g(2) is essential, f : V — D has nonzero degree, so that f(V) = D.
Since z; € D for all j greater than some oJ, by (2.4) there is an essential point
x; in f_l(zj) N V C V;by(a) x; = g(2), so g(z;) € V C W for all j greater
than o also. Since W has arbitrary, g(z;) — g£(2), and (b) results. Conclusion (2)
follows from (a) and (b).

We will now prove (1). Let x; € V, N X, N f'(A), let x € f(U N A),
and let x; — x. Since f(x;) — f(x), it follows from (b) that g(f(x;)) — g(f(x)).
Since g(f(x;)) = x;, x = g(f(x)), sox € V, N X, N f~1(A), and (1) results.

PROPOSITION 2.7. dimE;=n—1,s0dimA,=n — 1.

Proof. Suppose dim E, = n. Then [1, p. 14, (4.9) (b)] there is a connected
nonempty open D C E,. Apply (2.6) to f with T'= A = D; it follows that

(1) V; N X, is closed in V, for each i, and
2 f:V,nX,=U.

From (2) and the theorem on invariance of domain [14, pp. 95-96] V; N X, is
open in V; and from (1) it is closed; since V; is connected, V; N X, = V. From
(2) f; is a homeomorphism, so deg f; = +1. Thus there are at least deg f components
V., contradicting D C E,.

Remark 2.8. In [9] Honkapohja proved that the set of points for which £ (y)
has at least |[deg f| points is dense in N”, i.e. dim A, = n — 1 [14, p. 46]. His
argument yields dim E, = n — 1.

Actually (2.7) is a special case of (3.3), and is not used in its proof. However,
all the preceding lemmas are used for (3.3), and since the proof of (2.7) is so
short and instructive, we have included it.

Remark 2.9. For a not necessarily proper map f: M" — N” define the branch
set B C M™ to be the set of points at which f fails to be a local homeomorphism.
According to [3] (based on [26] and [27]) if f is a discrete (not necessarily
proper) map, then dim B, = dim f(B;) = n — 1, and dim B, = dim f(By)) =n — 2 if
and only if f is open.

Now suppose f is proper and discrete. Clearly A, C f(B,), and since B; is
closed, f(B;) is also closed. Thus dim A, = n — 1 for a discrete map, and
dim Ef = n — 2 for a discrete open map. (The first conclusion also follows from
(2.5) and (2.7).) Indeed, for a (proper) discrete open map, A, = E, = f(B,). The
authors were thus motivated by [3] to study deficient points of discrete maps,
and to obtain (1.1) (2).

3. THE PROOF OF THEOREM (1.1)

LEMMA 3.1. Suppose E, contains a closed subset F of dimension n — 1. Then
there exist a connected open set U C N", a component V of f ' (U), the restriction
map g : V— U, and a nonempty setI' C U N F and closed in U such that:

(1) |deg g| > 1;
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(2T CE,;

(3) & A =T, where A = g7'(I') N X, and is closed in V;

(4) there is a component Wof U ~ T with® #T = bdy,Wand U ¢ W;
(56) for every open set D withI’' N D # @,dim (' N D) =n — 1.

Proof. By [1, p. 14, (4.9) (b)] (and (1.10)) F separates N” locally at some
point, so there exist y € F and a connected open neighborhood 7' C N" of
y such that T' — F is not connected. Let P be a component of T' — F, let
@ = int P, and let S = bdy, Q. Since P C @ C P, @ is connected; also § = P
and (*) @ #S C bdy(T — Q).

Apply (2.6) to f, T, and A = S to obtain U C T, V,, and f; with:
(@ V.n X, N f(S) closed in f (U N 8);
(b) £,:V.N Xfﬁf_l(S)z Uuns;

© X,nf*wns clJ v;and

(d) deg f; # 0 (i = 1,2,..,m < |deg f|) and deg f = > deg ..

Since @ # U N S C E, it follows from (c) that [deg f;| > 1 for some i; from
(b) it follows that UN SC E,. Let V =V, and let g = f;; then conclusion (1)
results. Let W be a component of U N @, and let I’ = bdy,W. Since I' C U N S,
conclusion (2) results; conclusion (3) follows from (a) and (b); conclusion (4)
follows from (*); and (5) follows from (*) and [1, p. 14, (4.9) (b)].

LEMMA 3.2. Suppose that g satisfies the conclusion of (3.1). Then
dim(g™'T) —A)=n—- 1.

Proof. Suppose, on the contrary, that dim(g ') — A) # n — 1. Since
I' C E, by (3.1) (2) the map of g~ M — A into I is discrete (2.2); since
dim T = n — 1 by (3.1) (5), dim (g_l(l‘) A)=n -1 [14, pp. 91-92]. From
the contrary supposition, dim (g '(I) — A) = n — 2.

Since the cohomology dimension dim,(g ' () — A) = dim (g™ (') — A) (1.10),
H (g7*(T) — A) = 0 for j = n — 1. From the cohomology sequence inclusion
induces an isomorphism H?™'(g '(I)) = H? *(A), and since g maps A homeo-
morphically onto I, g* : H> ' () = H' ‘(g ' ().

Consider the diagram

H ' (g7 'T) = H(g7*(W) — H'(g (W)
g*1= T&* )

3y

H* () - HZ(W) — H (W)

induced by g. From (3.1) (4) W # U and from (3.1) (1) g(V) = U, so
g '(W) # V. Thus H>*(W)=0=H(g *(W)) [1, p. 11, 4.3) ()], so 3, and
9, are epimorphisms. Since g*3, = 3,g*, which is an epimorphism, g* is an



DEFICIENT POINTS ON MAPS ON MANIFOLDS 327

epimorphism. Since Wis a nonempty connected open set in an orientable n-manifold,
HM(W) =Z [1, pp. 11-12, (4.3) (2)], so H*(g~*(W)) is an image of Z. Since each
component of g ~* (W) is orientable, g ' (W) is connected and g* is an isomorphism.
It follows that deg g = +1, contradicting (3.1) (1). Thus dim(g ™' T) — A) = n — 1.

LEMMA 3.3. There is no map f for which E, contains a closed subset A of
dimension n — 1.

Proof. Suppose such an f exists, and let g : V — U, T, and A be as given
by (3.1).

Suppose that there exists x € A and an open neighborhood 7' C V of x such
that dim(T' N (g (") — A)) = n — 2. Let D be a connected open neighborhood
of f(x) in U sufficiently small that the component K of g~ (D) containing x is
contained in 7. It follows from (3.1) (3) that ' N D C E, x and from (3.1) (4)
that dim(I' N D) = n — 1. Apply (3.1) again to g|K: K> Dand F=T N D
to obtainamap g’ : V' — U’ and sets '’ and A’. Since V' C T,

dim((g’)'T’') - A')=n-2,

contradicting (3.2).
Thus (1) for every x € A and open neighborhood T of x,

dm(TN (g7 —A)=n—-1.

Let g, = g, I, =T, and A, = A. We will define a sequence by induction.
Suppose that there exist maps g; : V; — U, satisfying the conclusions of (3.1) with
8+, a restriction of g, I',,;, C I;, and A;,;, C A, ¢ = 0,1,...,m), as well as
mutually disjoint compact sets &; ¢ = 1,2,...,m) with ¢, C g;},T,_,) — A,_, and
I'; C gi_1(d,) N U;. Thus g($;) C g(d;_,).

Let x € A,, let T C V, be an open neighborhood of x sufficiently small
that it is disjoint from the compact set U ¢;, and let D C U,, be a connected

i=1

open neighborhood of f(x) sufficiently small that the component K of g_'(D)
containing x is contained in 7. Since K N (g,;1 (',,) — A,,) is the countable union
of compact sets, it follows from (1) that it contains a compact subset ¢,,,, with
dim ¢,,, = n — 1. Since I, C E, by 3.1) (2), g,lg,' [,) is discrete
(2.2), so dim(g,,(d,,,,)) =n—-1 [14, pp. 91-92]; since g, (b,.,) C T, and
dimI,, = n — 1 (by (3.1) (5)), dim g,,(¢,,,,) = n — 1. Apply (3.1) to g, with
F = g, (b,,.,) to define a restriction map g,,., : V,,,, > U,,.,, with T, ,, C T,
and A,,,, C A,,.

The inductive hypotheses are satisfied, so there exists a sequence of disjoint
compact sets ¢, (m = 1,2,..) in g '([) — A with g(d,,,) C g(d,). Since

M g(b,) #P, it contains a point y with f7*(y) infinite. But each

g(,) C T C E, and for each y € E,, g '(y) C f'(y) is discrete and (since
f is proper) thus finite. A contradiction results, so there is no such map.

COROLLARY 3.4. If f is discrete, then dim E, = n — 2.
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Proof. Since E, is closed (2.5), the corollary results from (3.3).

Proof of (1.1) 3.5. Since A, C E; (2.2), conc_lusion (1) follows from ((2.7) and)
(3.3). In case f is discrete, E; is closed (2.5) so A, C E, and conclusion (2) results
from (3.4).

PROPOSITION 3.6. A,is a G set.

A G, set is defined to be the countable intersection of open sets. In (4.6) we
observe that A, need not be closed.

Proof. Let k= |deg f| # 0. For each m (m = 1,2,...) let &7, be a countable
cover of M" by compact subsets such that each A € .o, has diam A = 1/m.
Let %, be the collection of all those subsets {A,,A,,...,A,} C ., consisting
o£ precisely 2 mutually disjoint elements A;. For each {A,,...,A,} € %Z,,

ﬂ f(A;) is a compact subset of N” — A, and the union I' over all elements
i=1

of %, and all m is a countable union of closed subsets of N”, ie. I is an F,
setandI' C N” — A,.

Now let y € N" — A,. Then f '(y) contains distinct points x,,...,x,; choose

m (m = 1,2,...) such that dist(x;,x;) > 2/m for { # j (i,j = 1,2,...,k). Since

&, is a cover of M", there exist A, € &, with x, € A, ( = 1,2,...,k). Thus
kR

yE n f(4;), which is one of the sets of I'. Hence N* — A, C T, so they are

i=1
equal. Since N” — A, is an F, set, A, is a G, set.
We now consider some special maps.
COROLLARY 3.7. If f is open, then A is closed and dim A, = n — 2.

Proof. Lety € N" — A, let x; (i = 1,2,...,|deg f|) be some of the points
of f7'(y), and let V, C M”" be mutually disjoint open sets with x, € V,. Then

n f(V;) is open and y € ﬂ f(V,), so n f(V;) C N" —A,. Thus A, is closed

ir; N”. That dim A, < n — 2 follows from (lfl) (1).

In case f is discrete open this conclusion was given in (2.9), but we are not
assuming each f~'(y) is discrete here.

Definition 3.8. The map f is locally sense preserving if, for every y € N”,
every component Q of f~'(y), every sufficiently small connected open neighborhood
U of y in N, and V the component of f~'(U) containing Q, the map 2 : V—> U
defined by restriction of f has positive degree.

Definition 3.9. A map h:X— Y is light if h7'(y) is totally disconnected
for each y € N".

Remark 3.10. Titus and Young considered locally sense preserving maps (cf.
[32]) and proved: a) if f is light and locally sense preserving, then it is discrete
and open. b) Moreover, if M" and N™ are compact, then the set of y € N" with
#f'(y) = |deg f| is dense in N” (thus dim A, = n — 1). From a) and (3.7)
(or [26]) follows: if f is light and locally sense pre§erving, then dim B, =n — 2.
However, if the hypothesis “light” is removed, dim A, may be n [28] (cf. (4.3)).
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Remark (Hopf [12]) 3.11. If f is simplicial, then A, is an at most (n — 2)-
dimensional polyhedron. Hopf studied its homology, as did others ([20], [8], and,
in effect, others who studied branched coverings).

Remark 3.12. If fis C* differentiable, then dim Zf =n- 2

Proof. Let R, (f) be the set of points at which the Jacobian matrix has rank
at most q. According to [4, p. 1037] if f is C” where r is he maximum of
n — q and 1, then dim (f(R,)) = q. According to [2, p. 186, (1.3)] if fis C?, then
A, C f(R,_5(f)). Since R, _,(f) is closed and f is proper, f(R,_,(f)) is closed,
50 af - f(Rn—2(f))‘

4. GENERALIZATIONS AND COUNTEREXAMPLES

First we consider some examples related to Theorem (1.1).

Examples 4.1. Generally, the conclusions in (1.1) (1) and (2) are sharp. The
example of the complex analytic function 2¢ (d > 1) shows that n — 2 is the
best possible din_lension restriction for dim Z\f in (1.1) (2) and [5, p. 968, (5.6)]
shows that dimA, may be less than n — 2 even though A, # @ and A, = E,.
In general A, need not be closed (4.6) even for a discrete map, although it is
a G, set (3.6). As noted in (1.7), A, in (1.1) cannot be replaced by D, because
of an example of Wilson [31, p. 107, Theorem 2]. While dim A, = n — 1,
dim A, may equal n, by (4.3) below.

Definition 4.2. The map f is monotone if f~'(y) is connected and nonempty
for every y € N".

THEOREM 4.3. (Walsh [28]) For any k (k = 2,3, ...) there exists a monotone
map [ : 8" — 8" of degree k such that the set A, of points y € S™ with f~'(y)
a single point is dense in S" (n = 3).

This result is a generalization of Wilson’s example [31], and is the answer
to a question Church posed to Walsh.

Remark 4.4. For every natural number n there is a subspace X C R"** such
that dim X = n but X is totally disconnected, and thus every compact subset
A C X has dimension 0 ([15, p. 241], [19]). Thus (1.1) (1) does not imply that
dim A, = n — 2. An affirmative answer to the following question would show
that (1.1) (1) is sharp as stated.

Question 4.5. Does there exist a monotone map f : S" - S” (n = 3) with
deg f = 2, 3, ... such that the set A, of points y € S" with f~'(y) a single
point has dimension » — 1? (By (1.1) (1) A,can contain no closed subset of dimension
n—1)

Example 4.6. For n = 3 A, need not be closed, even for a discrete map.

Proof. Define f: R® - R® by f(u + iv,t) = ((u + iv)%t), so deg f = 2 and
A,=E,= f(B,) = {(0,0)) x R. Define g : R® — R® by

gu,v,t) = (W’ + tu® + ¢/ u,v,t),
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so deg g = 1, and define 2 = gf, so deg h = 2. Since g is surjective,
A, C g(8) = {(0,0)) X R.

In fact, (0,0,¢) € A, if and only if g(u,v,t) = (0,0,¢) has at most one real solution,
ie. u® + tu + (¢/4) = 0 has no real solution (other than u = 0 if ¢ = 0). This
is true precisely for 0 < ¢ < 1, s0 A, = {(0,0,t) € R>: 0 <t < 1}.

Now we consider generalizations of (1.1).

Definitions 4.7. A point x € M” is essential if there exist arbitrarily small
connected open neighborhoods U of f(x) with components V of f~*(U) containing
x such that f|V: V — U has nonzero degree. (This extends the definition of (2.2),
which applied only in case f~'(y) is discrete.) Let X'f C M" be the set of essential
points, and let E’, be the set of y € N” such that f~'(y) is totally disconnected
and the number of essential points of f*(y) is less than |deg f]. (For E,; (2.2)
we required that f~'(y) be discrete.)

Remark 4.8. The following results of Sections 2 and 3 are true for E, replaced
by E,and “f ' (y) discrete” replaced by “f ~*(y) totally disconnected,” with substan-
tially the same proofs: (2.3) [but replace

“FHy) N V,={x} by N0 XN V,={x},

(2.4), (2.5) [If f is light (3.9), then E, is closed], (2.6), (2.7), (3.1) and (3.2). The
proof of (3.3) does not carry over to E,, although statement (1) in its proof is
still correct. As a result we obtain (from (2.5) and (2.7)):

Remark 4.9. If f is light, then dim A, < n — 1.
The authors do not know whether dim A, =< n — 2 in this case.

Remark 4.10. Theorem (1.1) is true for (oriented) “n-manifold” replaced by
(oriented) “cohomology n-manifold over Z” (n — cm, or “generalized n-manifold”;
cf. [1, Chapter I]). With this change the proof of each of the lemmas used in
the proof of (1.1) is still valid; in particular, invariance of domain (used in (2.7))
is valid for n — c¢ms [18, p. 110, (2.1)]. We use n — cms to prove the following
result about manifolds (4.12).

Definitions 4.11. A Z-acyclic set is one which has the cohomology of a point.
Let Q,be the set of points y € N” for which f ~!(y) has less than |[deg f| components
and each component is Z-acyclic.

COROLLARY 4.12. (1) dim Q, = n — 1 and £, contains no closed (in N")
subset of dimension n — 1.

(2) Assume that for each y € N”, f ~!(y) has a finite number of components
and each is Z-acyclic; then dim Q, < n — 2.

Proof. Let A C N" be a closed subset and suppose that for eachy € A f™'(y)
has a finite number of components and each component is Z-acyclic. Consider
the upper semicontinuous decomposition [29, p. 122] of M" whose elements
are the points in M" — f '(A) and the components of f~'(y) for y € A.
Let the quotient space be K, let g : M" — K be the quotient map, and define
h: K— Nby h(x) = f(g ' (x)), so that f = hg.
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Then K is a locally compact separable metric space [29, pp. 122-125]. Since
f'(A) is closed in M", h™'(A) is closed in K by the definition of the quo-
tient topology. Since A~ '(y) is discrete for each y € A and dim A = n,
dim 271 (4) =< n [14, pp. 91-92]; since

g:M—-f'A)=K-h'4), dm((K-h""A) =n

also. Thus dim K = n. Now g is an acyclic map, so K is an orientable
n—cm over Z by [30, pp. 21-22] (cf. also [17, pp. 138-139] and [22]),
and g:H (K)=HJ(M") (the Vietoris mapping theorem [25, p. 346]).
Thus deg h = deg f.

For conclusion (1) suppose A C  is closed in N” with dim A = n — 1,
and let f = hg be the factorization given above for this A. Then A C A,, contradict-
ing (4.10) (1) @G.e. (1.1) (1) for n — cms) applied to A. For conclusion (2) let
A = N" and let f = hg be the corresponding factorization (this is the monotone-light
factorization of f [29, p. 141]). Thus A, = Q,, and (2) results from (4.10) (2).

The acyclic hypothesis is needed: see (1.7) and (4.3). We could have obtained
(4.12) by modifying the proof of (1.1): define “essential components” of £~ '(y)
in place of “essential points,” and in place of the homeomorphism in (2.6) (2)
use the Vietoris mapping theorem to obtain an isomorphism in cohomology.

5. ABSOLUTE DEGREE

In this section manifolds are allowed to be nonorientable. Hopf defined [11]
the Absolutgrad of a (proper) map f: M" — N”", Olum defined [21] the group-ring
degree, and Epstein defined [7] the absolute degree A(f). The absolute value
of the group-ring degree agrees with the other two functions. In (5.3)-(5.5) we
summarize Epstein’s treatment and generally follow his notation, and the interested

reader may consult [7] for details. In particular, N no longer refers to the closure
of N.

The goal of this section is to prove analogs of Theorem (1.1), Hopf’s theorem
(1.3), and Shepardson’s theorem (1.6) for maps on not necessarily orientable
manifolds ((5.13), (5.16), (5.17)).

Definition 5.1. If f, : w,(M,m) — w,(N,n) is the homomorphism on the funda-
mental group induced by f, the index of f [12, p. 278] is defined to be the
index of the subgroup f, (7w, (M,m)) in =, (N,n).

Definition 5.2. The mod 2 degree of f is defined to be 0 or 1 according as
[f*:H(N";Z,)—> H](M",Z,) is the zero homomorphism or is nonzero.
2

Definition of absolute degree A(f) 5.3. We construct the commutative diagram
below, and for simplicity omit reference to base points.
P
—.)

M M
\f fl\
N 8 r

- N - N
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Let r be the covering map (unique up to covering transformation) such that
imag r, = imag f,, and let f be the unique map (lifting) with f = rf. Then r
is an (index f)-to-1 covering map, and f, is onto. Let p be the identity if M
is orientable, and the orientable double covering of M if M is nonorientable. Let
s be the covering with imag (fp), = imag s,, and let f be the unique lift-
ing with fp = sf. Thus f, is onto.

The absolute degree A (f) is defined to be 0 except in the following three
cases:

(1) Index f is finite, and M and N are orientable. Then f = f, and we define
A(f) = (index f) - |deg f|.

(2) Index f is finite, M and N are nonorientable, and N is orientable. Define
A(f) = (index f) - |deg f| again.

(3) Index £ is finite, M is nonorientable, s is the identity, and the mod 2 degree
of f is nonzero. Define A (f) = index f.

THEOREM 5.4. (cf. [7]) If M and N are orientable, then A(f) = |deg f|.
In any case A(f) is congruent mod 2 to the mod 2 degree of f. If f and g are
properly homotopic, A(f) = A(g).

A theorem of Hopf gives geometric content to the notion of absolute degree.

THEOREM (Hopf [10], [11]; cf. [7]) 5.5. Given a (proper) map f: M" — N",
there exists a properly homotopic proper map g : M™ — N” (thus A(f) = A(g))
and an n-cell D C N" such that g (D) has A(f) components, each an n-cell
mapped homeomorphically by g onto D. Furthermore there is no such n-cell D’
for which g~ (D') has fewer components.

This suggests considering the notion of deficiency for the absolute degree.

Definition 5.6. For f: M" —» N" with M" and N" not necessarily orientable,
define deficient point, deficiency 3,(y), and deficient set A, as in (1.2) with |deg f|
replaced by A (f). Similarly the componentwise notions of (1.5) may be defined.

PROPOSITION 5.7. If A(f) # O, then the number of components of f*(y)
is at least index f, for each y € N”. Thus8,(y) = d,(y) = A(f) — index f.

Hopf [12, p. 278] gives the orientable case.

Proof. Use the diagram in (5.3). Since r is an (index f)-to-1 covering map
and f = rf, it suffices to prove that f is onto in cases (1), (2) and (3) of (5.3).
If £ is not onto, then f is not onto; thus in cases (1) and (2) deg f = O, and
in case (3) the degree mod 2 of f is 0, contradicting the assumption that

A(f) #0.

While the following result for A, is a special case of (1.1) (1), a direct proof
is easy, and the conclusion for D; is new.

COROLLARY 5.8. Iff: M > N* with A(f) #0 (i.e.n = 1 and deg f # 0),
then A, = D, = Q.

Proof. Each of M' and N* is either R or S. Since f is proper, M' = R im-
plies N' = R; and since A(f) = deg f # 0, M' = S* implies N' = S*. Thus
M*' = N'. If f: R — R is proper, there is a one-point compactification
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£:(8',0) — (S%,00),

and it has the same degree. Thus we may suppose that M* =N 1= 8% In the
diagram of (5.3) f = rf, so deg r = index f is finite and N = S’; since £, is
onto, deg f = 1. Thus deg f = index f, and the conclusion results from (5.7).

Examples 5.9. We follow the notation of (5.3), case (1) and case (2). Let
g, : S*— S' be the d-to-1 covering map, S(g,) : S* - S* be its suspension, P?
be the real projective plane, and « : S> — P? be the covering map.

Case (1). Let f = S(g,), r = =, and f = rf. Then A(f) = 2d, A, is a single
point y if d > 1, and 3,(y) = 2(d — 1).

_ Case (2). Let d be odd, let f = S(g,), let p = s = m, and define f = f by
fp = sf. Then A(f) = d, A, is a single point y, and 8,(y) = d — 1.

LEMMA 5.10. (i) In case (3) of the diagram of (6.3), A, = D, =Q.

(ii) If, in addition, n = 2 and the manifolds are closed, then
0 =A(f)x(N) — x(M).

Proof. (i) Since (f) = index f, Af = D, = @ results from (5.7).

(ii) Since f, is onto (5.3), it follows that f, : H,(M) — H,(N) is onto, so the
first Betti numbers satisfy B, (M) = B, (). Since M is nonorientable

x(M)=1-8,(M)=<1-B,(N)=x(N).

Now r : N — N is an (index f)-to-1 covering map, so
X (N) = (index f) x(N) = A (f) x (N),

and the second conclusion results.

LEMMA 5.11. In case (2) of the diagram of (5.3) if y € N and T is a component
of f~1(3), then p~*(I') has exactly two components, each mapped homeomorphically
by pontoT.

Proof. Both f, and f, are onto by (5.8). Since p and s are 2-to-1 covering
maps in case (2), imag p, has index 2 in w,(M) and imag s, has index 2 in
7, (N). We may as well suppose that the base point m € M is chosen in T, so
that f(m) = ¥ is the base point of N.

Let D C N be an open n-cell about ¥, and let E be the component of f (D)
containing T'. Each component of p ' (E) is mapped by the 2-to-1 covering map
p onto E, so there are at most two such components. If there are exactly two,
each is mapped by p homeomorphically onto E and the conclusion results. Thus
we may suppose that p ~* (E) is connected, and we will deduce a contradiction.

Let v be a path in p~'(E) joining the base point 2 € M to the other point
of p~'(m). Then pv is a loop whose path class [py] is not in imag p,, and since
imag p, has index 2 in =, (M), [py] and imag p, generate i, (M). Since f, is
onto, imag (fp), and [fpy] generate m,(N). But fpvy is a loop in the n-cell D,
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so that imag (fp), alone generates w,(N). Now fp = sf and imag s, has index
2 in m, (N), so a contradiction results.

LEMMA 5.12. Let a = 1 or 2. In case (a) of (5.3),

(i) ad,(y) = 2 [|deg | — #7—1(21_)] = 2 3;(2;), for any y € A, and Z; the
points of s_l(r‘l(yj)). ’
(i) Thus A, C r(s(A)).
(iii) The analogous statements for d, and D, are also true.

Prgof. (i) We may assume~that A(f) # 0. In cases (1) and (2) of (5.3) M
and N are orientable, so |deg f| is defined, and A (f) = (index f) - |deg f|. Now
r is an (index f)-to-one covering map, so r '(y) = {z, : & = 1,2,...,index f}.
Thus

3 () = A(f) — #f7(y)

= (index f) |deg f| — >, # F ' (z,)
k

= lideg f| — #F )]
k

Let Z; be the points of (rs) " (y). In case (1) p and s are identity maps, so the
Z; are the 2, and conclusion (i) results. In case (2) for y € N and T" a component
of £ *()), p~'(I') has precisely two components, each mapped homeomorphically
by p onto I' (5.11). Thus j = 1, 2, ..., 2 (index f) and (i) results. Conclusion
(ii) is a consequence of (i), and (iii) results from the same proof with “number
of components” in place of “number of points” #.

PROPOSITION 5.18. Theorem (1.1) holds for M™ and N possibly nonorientable
and |deg f| replaced by A(f).

Proof. Since A(f) # 0, we have cases (1), (2), and (3). In case (3) A, = 0
by (5.10), and the conclusion results. In cases (1) and (2) A, C r(s(A;)) by (56.12)
and r and s are covering maps; the conclusion results from (1.1) applied to f.

LEMMA 5.14. Let M? and N? be closed and oriented, and let f : M> — N?
be continuous with deg f # 0. Assume that B C N? is finite and f~'(B) has
a finite number h of components, and define D(B) = (#B)|deg f| — h (this number
may be negative). Let K be the union of the 2-cell components of M> — f*(B)
and let L = K U f*(B). Then

D(B) + rank H* (L) < |deg f| x (N?) — x(M?).

Proof. This is a slight generalization of [23, p. 283, (3.3)], in that the original
version assumed that B was (any finite subset of) D,. The proof is the same

as that of [23, Section 3] with z {D;(y) :y € B} replaced by D(B). (In [23,



DEFICIENT POINTS ON MAPS ON MANIFOLDS 335
bottom of p. 281, (c)] the homotopy should be chosen so that
g(Sy X (—€,0]) C U, — y;.)

LEMMA 5.15. Consider case (2) of the diagram of (5.3), where n = 2 and
M and N are closed 2-manifolds. Let B C N be finite, let B = s '(B), let K
[respectively K] be the union of the 2-cell components of M — f ' (B) [respectively
M- f'B),and let L= KU f'(B) and L = K U f~'(B). Assume that
F ' (B) has a finite number m of components. Then L = p~' (L) and

rank H*(L) = 2 rank H'(L).

Proof. Let X be a 2-cell component of K; then p (X) is contained in a component
Yof M — f'(B), and p = p|X : X - Y is a covering map. We will prove that
(a) p is a homeomorphism. Suppose not; then p is 2-to-1, and is the orientable
covering of Y. Let S C Y be a circle defining a loop around which the orientation
of Y changes. Then Y — S is connected, while the circle p ' (S) separates the
2-cell X into two nonhomeomorphic components. Since p maps each of these
components homeomorphically onto Y — S, a contradiction results, and a) follows.

If Y is a 2-cell component of M — f '(B), then p~'(Y) consists of two 2-cells,
each mapped by p homeomorphically onto Y, and from a) each 2-cell component
arises in this way. In particular, b) K = p~'(K) and L = p~*(L).

For each 2-cell component X of K, there are closed 2-cells X; such that

X, C int X,,, and |J X;=X. Since X — int X; =~ S* X [0,1), its closure is

J

connected, so bdy X = ﬂ Cl [X-int X;] is connected. Thus c) bdy X is contained

I _ -
in a single component I' of /™' (B), and the analog is true for /' (B).

By hypothesis f'(B) has a finite number m of components, so from (5.11)
f1(B) has 2m components. From c) it follows that L has m components and L
has 2m components. Since L is a subset of the orientable manifold A, and L
is a subset of the nonorientable manifold M, H*(IL) = 0 or Z and H*(L) = 0
or Z,. Thus H’(L) is finitely generated for j # 1, and d) rank H([) is finite
by (5.14). In the cohomology sequence

H>(I,L) < H* (£) < H (i)

imag d is a subgroup of a {ree abelian group and so is freg abelian and finitely
generated by d), and H'(#) is finitely generated since M is closed, so H*([)
is also finitely generated.

Since p: L — L is a 2-to-1 covering map, Z, acts freely on L with orbit space
L. Since H* (L) is finitely ggnerated, it follows from [1, p. 46, (56.3)] that H* (L)
is finitely generated and x (L) = 2x(L). Thus the Betti numbers satisfy

2m — B, (L) + B, (L) = 2(m — B, (L)),
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where B,(L) = 0 or 1. Hence 28, (L) < B, (L), which (with b) above) is the desired
conclusion.

THEOREM 5.16. Let M? and N? be closed manifolds (possibly nonorientable),
and let f: M®> — N? be continuous with A(f) # 0. Then

2 {d;(y):y € D;} + rankimag i* = A(f)x (N?) — x (M?),

where i* is the homomorphism in cohomology (or homology) in dimension one
induced by the inclusion map i : f~* (D)) > M 2,

This is the generalization of Shepardson’s theorem (1.6) to possibly nonorientable
manifolds, and it implies the corresponding generalization of Hopf’s theorem (1.3),

which states that 2 (B3,:y€ A} = A(f)x(N?) — x(M?), as well as Kneser’s

theorem, which states that the right side is nonnegative.

Proof. Since A(f) # 0 the only possibilities are (1), (2), and (3) of (5.3). In
case (3) the conclusion results from (5.10), so we may assume case (a) (« = 1,2).
Thus M and N are orientable, so |deg f| is defined and A (f) = (index f)|deg f|.
Since p and s are a-to-1 covering maps and r is an (index f)-to-1 covering map,
x (M) = ax(M) and x(N) = ax(N) = a(index f) x (N). Thus

@) o [A(f)x(N) — x (M)] = |deg f|x (N) — x (M).

(ii) For each ¥ € N and component I' of £ *(y), p *(I') consists of o components
each mapped homeomorphically by p onto I' — for « = 1 (case (1)) p is a
homeomorphism, and for « = 2 use (5.11). For eachy € D, f ~!(y) has a finite
number of components, so for each Z € s '(r"*(y)), f (%) has a finite number
of components. By (1.6) Dy is finite, so by (5.12) D;is finite also. Thus B = s r7H(Dy)
is finite and 7' (B) has a finite number /4 of components. By (5.14)

(i) [(#B)|deg F| — %] + rank H* (L) < |deg F|x (V) — x (),

where L = K U f'(B) and K is the union of the 2-cell components of
M — f7'(B). From (5.12)

(iv) a(E (d(y):y€ Df}) = (#B)|deg F| — A.
Thus from (i), (iii), and (@iv),

(v) “(2 (d(y):y€ D,}) + rank H' (L) = o [A(f)x (N) = x (M)].

In case a = 1 p is a homeomorphism, so L = L, and in case o = 2,
2 rank H'(L) = rank H* (L)

by (56.15), and it follows from (v) that
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(vi) > (d(y):y € Dy} + rank H' (L) < A(f)x (N) — x (M).

From the diagram

(vii) H'M) - H\(L)

l

- H'(f7'(D;)

with homomorphisms induced by inclusion, rank imag i* =< rank H'(L), and the
desired conclusion results.

Remark 5.17. The generalization of (5.16) to maps f: (M>,0M?) —» (N°,dN?)
on compact 2-manifolds with boundary is true, if we assume that either a)
f1(@N?) = aM? or b) D, N dN? = @. To see this, double the domain and range
to obtain a map F on closed manifolds. Verify that A(¥F) = A(f) (this re-
quires careful checking); in case a) A(3f) = A(f) and by (6.8) D,, = @, so
D, N aN = @ in both cases a) and b). Use (5.16) (vi) for F to deduce (vi) for
[; then use (vii) as above (see [23, p. 283, (3.3) and (3.4)]).

The generalization of (5.13) to maps f: (M",0M") — (N",dN") results easily.
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