PSEUDO-LINEAR SPHERES

Wolf Iberkleid

INTRODUCTION

This work has been motivated by an analysis made on the pseudo-free actions
constructed by Montgomery and Yang [10]. More generally, we study pseudo-linear
S! spheres; that is, circle actions on cohomology spheres such that the fixed point
set associated with each subgroup of S* is again a cohomology sphere.

Section 1 provides our main tool which is a refinement of a theorem of Atiyah
and Segal. This result is interesting in its own right. It essentially says that
K*(X X EG) = 0 for a compact connected Lie group G acting on a space X which
has K'(X) = 0. This generalizes the well known fact that K* (BG) = 0. In sections
2 and 3 we define an equivariant Euler characteristic geometrically on the pseudo-
linear spheres and show that this class determines, and is determined by the
algebraic and homotopical structure of these spaces. Theorem 2.5 is the central
result that allows one to work with this invariant. We show in particular that
a nontrivial S* map between pseudo-linear spheres implies divisibility of the Euler
characteristics and this in turn has immediate geometrical consequences. In section
4 we show that twice the tangent bundle of a smooth pseudo-linear sphere is
equivariantly stably trivial. Also, as a consequence of the algebraic machinery
developed, we prove in section 5 a conjecture of Ted Petrie on homotopy complex
projective spaces in a restricted situation [11].

I wish to thank Ted Petrie for having motivated this work and for the
conversations I had with him.

1. COMPLETION

Let G be a compact Lie group and X a locally compact G space. K (X) denotes
complex equivariant K-theory with compact support and R (G) = K (point) is the
complex representation ring of G [15].

Atiyah and Segal [3,(5.1)] proved that if K¢(X) is finitely generated over
R(G) and K*(X) = 0 then K% (X) = 0, where A denotes completion with respect
to the ideal I of all elements in R(G) of virtual dimension zero:

) KEX)
K% (X) = lim—————
< (I¢)"K%(X)
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A stronger statement holds if we assume that G is connected.

THEOREM 1.1. Let G be a compact connected Lie group and X a locally
compact G space such that K§(X) is finitely generated over R(G). If K(X) =0
then K;(X) = 0. '

Before proving this theorem we mention two special cases having noteworthy
properties and a counterexample if connectedness is omitted.

(1.2) If G=S" then under the assumption of Theorem 1.1 the following
stronger statement holds: K (X) = 0 if and only if the forgetful homomorphism
K; (X) —» K(X) is trivial.

(1.3) Let G be a compact connected Lie group and X a compact space with
K'(X) = 0. Given an action of G on X with a finite number of isotropy subgroups
it follows from Theorem 1.1 that Ké X) = KG (X X R) = 0. Let Z* denote inverse
limit K-theory. From [3] we have

X X EG) =RL(X)=0

This is a generalization of the well-known fact that .7 (BG) = 0.

(1.4) If G is not connected then the theorem need not hold. For consider the-
nontrivial actionl of Z, on the real numbers R. Then K(R) =0, K7 (R) is finite
over R(Z,) but Kzz([R) # 0.

We recall some facts on localization and completion which will be needed in
the proof of Theorem 1.1.

(1.5) NAKAYAMA’S LEMMA [2;(2.5)] . Let R be a ring, 1 an ideal of R
and M a finitely generated R module. If IM = M then (1 + 1) 7'M = 0.

If G is a compact Lie group let I; be the kernel of the augmentation homomor-
phism R(G) — Z; that is, the ideal of all elements of virtual dimension zero. If
M is an R (G) module let M denote completion with respect to I ; and S ™ M localization
with respect to the multiplicatively closed set S = 1 + I;. Since R(G) is Noetherian
we have

A LEMMA 1.6 [2,(10.17)]. Let M be a finitely generated R(G) module. Then
M=0ifand only if ST'M = 0.

Proof of Theorem 1.1. We shall first prove the theorem for a torus by induction
on its dimension. For this we construct an exact sequence relating different
dimensional torii. The general case will follow from a Weyl group argument.

Let T denote a torus of dimension n = 0 and V the complex one-dimensional
S' X T module on which T acts trivially and S' acts as complex multiplication.
V will be identified with the complex numbers and the set S(V) of unit vectors
with S'. V represents the element t € R(S* X T) = R(T)[t,t '] and its Euler class
isl—te R(ES'xTD.

We assume the theorem proved for T and wish to prove it for S' X T. Let
X be a locally compact S* X T space such that K%, . (X) is finite over R(S* X T)

m, i
and K (X) = 0. Denoteby X’ the S* X T actionon X inducedbyS* X T — T— S* x T.
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There is then an S* X T homeomorphism S (V) X X’ — S(V) X X given by
' (z,X) > (2,2 'x), z€ S(V)=8', x€e X' =X.

Consider the exact sequence associated with the complex S*' X T vector bundle
VXX—-X

*

Sl><T (V >< X) ‘—‘—'—9 Ksle (X)

(1.7) \ /

K51r (8(V) X X)

By the Thom isomorphism theorem K, . (V X X) = K%, (X) and i* becomes
multiplication by the Euler class 1 — t. Also

K&ir (8(V) X X) = K1, (8(V) X X') = K} (X)

[15]. The action of T on X in the right hand term of the equation is‘given by
the inclusion T C S' X T. w* then becomes the forgetful homomorphism, thus
1.7 translates into

1—t
K§1,0r (X) —— K10 (X)

(1.8) \81 /8

K1 (X)

We have assumed that K, (X) is finite over R(S* X T). Now from (1.8) it
follows that K f (X) i is also finite over R (T) so we may apply our induction hypothesis.
We thus have that KX (X) =

Recall that localization is an exact functor and notethat 1 + (1 —t) C 1 + I,
in R(S* X T), and ST'KX(X) = (1 + Igir) 'K (X). Here we view K (X) as an
R(S* X T) module via the inclusion T C S' X T. If we apply S~ to (1.8) we have

(1 —t)S ' Kgi,p(X) =S *Kgi,r (X) if and only if

1.9

(1.9) ST'e: ST K1 r (X) > ST'K(X) s trivial.

By induction and Lemma 1.6, ST 'K (X) =0 so S '¢ is trivial. Now applying
(1.5) and (1.6) to (1.9) gives that KSIXT(X) = (0. This proves the theorem for the
torus. We prove now the general case. Let T C G be a maximal torus and assume
that K§ (X) is finite over R(G). From [15] one sees that the inclusion i:T— G
induces an injection

i*

(1.10) K& X)— K1 (X)
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making K 1 (X) a finitely generated module over K (X). Therefore K ¥ (X) is finite
over R(G), hence over R(T). Let « € S} and a* = H oca € S; where W denotes

oEw

the Weyl group. Now, if ai*x = 0 for some x € K (X) then a*x = 0. Hence

ST'K 4 (X) = 0.

2. PSEUDO-LINEAR SPHERES

In this section we study pseudo-linear spheres, the main object being to relate
geometrical and algebraic information. We shall be working in a finite G-CW
category [6] so that obstruction theory can be done. It is known that all compact
smooth actions are G-homotopy equivalent to finite G-CW-complexes.

To begin with, we need the following fact due to Atiyah.
LEMMA 2.1. Let G be a compact abelian Lie group, H a closed subgroup

13
andX a finite G-CW-complex. Then the projection G'— G /H induces an isomorphism
of R(G) modules

*: Kg/u X") Ogia/m R(G) > KE(XT)

Sketch of proof. The idea is to compare two cohomology theories. First one
has to show that R(G) is a flat R(G/H) module so that K& () ®y¢ s R(G)
is a cohomology theory. To prove this one induces on the orders of G and H
and uses the induction properties of flatness [2, pp. 29-35]. Next one has to
show that w* is an isomorphism for spaces of the form G/K where H =K = G.
This is immediate from [1, p.79]. This isomorphism extends to all finite G-CW-
complexes.

Definition. A finite G-CW-complex X will be called a pseudo-linear G sphere
if for every closed subgroup H =< G, the fixed point set =" is a cohomology sphere.

Examples. (i) If M is an orthogonal representation of G then the sphere S (M)
is called a linear sphere; clearly SM™ =smMY).

(ii) Free and semi-free (free outside the fixed point set) circle actions on spheres.

(iii) The most interesting examples are the pseudo-free spheres constructed
by Montgomery and Yang [9], [10]. An action of S* on a homotopy sphere is
pseudo-free if the orbit space has only a finite number of singularities and for
each nontrivial subgroup of S* the fixed point set is empty or has dimension
1.

(iv) Nondifferentiable examples are produced by taking joins of the above.
If X, Y are G spaces then the join X * Yis X X I X Y U X U Y with identification
x,0,y) ~x, (x, 1, y) ~ y. In particular we define SX = S° » X to be the (unreduced)
suspension of X.
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(v) The spheres Z () constructed in [7, p. 126] are not T? pseudo-linear spheres.
This can be seen by proving that the conclusion of proposition 2.3 below is not
satisfied.

Let T denote a torus and £ a prime ideal of R(T). Then there is a unique
subgroup H of T such that £ is the inverse image via the restriction R(T) — R(H)
of some prime ideal of R(H) and H is minimal with respect to this property.
If M is an R(T) module we let M,; denote M localized at a fixed but arbitrary
prime ideal of R(T) associated to the subgroup H. Thus by M,; = N, we mean
M, = N for each & associated with H.

According to [15] we have that the inclusion X" C X induces an isomorphism
(2.2) KiX)y= K;(XH)H

for every locally compact T space X and every closed subgroup H of T.

PROPOSITION 2.3. Let X be a pseudo-linear G sphere where G is a compact
connected Lie group. If 3 is even-dimensional then K (Z) = 0. If = is odd-dimen-
stonal then projection onto a point induces an epimorphism R(G) - K (Z).

Proof. Assume first that = is even dimensional and note that by (1.10) it
suffices to prove the proposition for G =T a torus. Also, it is enough to show
it for effective actions, for if H is the principal isotropy group of = then by (2.1)

K1(@) =K¥/uE) O R(T)

where T/H is again a torus. Moreover we may induce on the number of isotropy
subgroups. Hence by (2.2)

Ki)u=KiCEHu=0

for H nontrivial. Since K'(Z) = 0, we have by Theorem 1.1 that ST'Ki(Z)=0.
If #is a prime ideal of R(T) associated to the trivial subgroup e, then

(1+1) N 2=g.

Hence K1(2), = 0. But then K1 (2), = 0 for every prime ideal & of R(T), and
Ki(Z) =0.

If = is an odd-dimensional G sphere then K (S2) = 0 by the above argument.
The proposition now follows from the cofibration £ — p— SZ.

Let = be a pseudo-linear S* sphere and H a closed subgroup of S'. Since the
Euler characteristic x (£) = x (Esl) and since (EH)sl = 3% we have that

dim =¥ — dim =5’
is even. Here we let dim § = —1. Dimension is cohomology dimension. Note that

dim =¥ — dim =% is always nonnegative [4, p.375]. Denote by ¢, € Z[t] the n-th
cyclotomic polynomial in t. Since R(S*) =Z [t,t™'] we may define an invariant
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of 3 in terms of the cyclotomic polynomials and the dimensions of X at the

various fixed point sets.

Definition. Let2vy = dim =¥ _ dim =5 and define the invariant ® =) € R(ESYH
by

o =[] @wm)™
H<s!
where |H| denotes the order of H.

Note that ® is multiplicative with respect to joins:
(2.4) OPEZT)=P () T)

In particular it is stable: ® (SX) = & (Z).

Example. If X is a smooth pseudo-linear S* sphere with nonempty fixed point
set, let N denote the normal bundle of the fixed point set restricted to some fixed
point. N then admits a complex structure as an S' module and ® () = A, N
up to a unit of R(S'). Here A _;N = Z(—1)" A 'N is the Euler class of N.

If =% is not empty then an orientation on =8 gives the following identification
[15]

K23 =K% )®R(SY) =Z®R(S') =R(SY)

where n = dim = = dim =% mod 2. As the main application of Theorem 1.1 we
have the following algebraic interpretation of ®:

THEOREM 2.5. Let = be a pseudo-linear S* sphere of dimension n. Then:

G If =8 = @, then K3, (Z) = 0 and the projection S — point induces an exact
sequence

0— (®(X) >R(S')— K2, (5)— 0.
" i
(i) If 5" 4 @, then 271(2) = 0 and the inclusion %' S induces on injection

3k

N 17 _ 1
KL —-KL(E%)=R(ESYH

onto the ideal (® (2)) C R(SY).

Proof. Assume first that X is even-dimensional (hence sS'£ g ). By Lemma
2.3 K1, (2) = 0 thus the exact sequence (1.8) is reduced to

(2.6) 05Ku(®) — K3 >K(E) -0
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where KC)=Z.Letg € K 1 (Z) denote an element with e(g) a generator of K(Z).
Multiplication by g induces a homomorphism g: R(S*')— K. (). Putting this
together with the above exact sequence gives a commutative diagram of exact
sequences ‘

1-t
ker g —_— ker g —_— 0
! ) )
1-t¢t
0— R(S") ———> RESY —m— Z-50
J ! J
- 1—-t - € -
0— Kgi(Z) ——— Ka(®) — KE)>» 0
) J !
1—-t¢
cokerg — > cokerg —— 0

By Nacayama’s lemma S 'ker g = S™'coker g = 0, and so S ' g is an isomorphism.
This implies that

2.7) g..R(8Y ,—» K (3),

is an isomcrphism. In particular Ksl(z)e is torsion free‘~ We can use induction
on the dimension of the sphere and (2.1) to show that K. (2)y is torsion free
for all e < H < S'. But this means that K1 () is torsion free.

Next we show that, in fe}ct, K1 (2) is free of rank 1 over R(S'). Since K (3)
is torsion free and K4, (Z° ) = R(S') is torsion free, it follows from (2.2) with
H = S', that the inclusion £° C = induces an injection of R(S') modules

K (2) C R(SY)

so that K (Z) can be thought of as an ideal of R(S'). It follows from (2~.7) that
K1 (), is a principal ideal of R(S?'),. Also, by induction we have that K, ) u
is principal for ¢ < H = S’, but then it is free of rank 1.

To finish the proof of the theorem in i:hel even dimensional case it remains
to identity K:(Z) as a submodule of K, (2%). Let KX (X;Q) = K5 X)® Q. If
K2 (X;Q) is finite over R(S') ® Q there is a natural ring isomorphism

K5 (X;Q) =lim K*(X X 8%7%;;Q)

n

[3] through which 1 —t € Kg:(p, Q) gets identified with the virtual Hopf bundle
in K* (CP%;Q). Completion is taken with respect to the kernel of the forgetful
homomorphism R(S') ® Q — Q. If we define HZ, (X; Q) = lim H* (X X S*7%;Q)

we have a Chern character isomorphism ch: K5 (X;Q) > H% (X;Q) so that 1 — t
goes to the power series 1 — e € H&: (p; Q) in the first Chern class c of the Hopf
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bundle over CP~. It is easy to see that H%, (2) is fgee of rank 1 over HE: (p),
with generator h € H3™*. Similarly let h, € HE>*® genote a generator. The
inclusion i: 5" — X induces a commutative dlagram

" ch )
K& (Z;Q) EE— H&(Z;Q)
i* i*
N - ch

R4H(E;Q) —— x5 0).

If g, g, are the generators of K%, (3) and S (£5') respectively over R(S') then
chg =u,h, chg0 =u,hyand i*h = u;c"h,where 2v = dim X — dim Eslandul,uz,

u, are units in Hsl (p,Q) Since ch(l —t)=1—e“and (1 —e )/c is a unit we
have

chi* g = i* chg =i* (u,;h) = u,u,zc " h,
= (u,u;'uze’ /(1 —e®)’)ch((X - t)"g,),
so i*g=u(l — t)"g, where u is a unit in K (p; Q). It is easy to see that u is
actually in R(S') and is not divisible by 1 — t.

We assume that S' acts effectively on £ and use induction on the dimension
of the sphere. Suppose (i*g), = (®(Z)g,)» up to a unit of R(S'), for every
principal prime ideal 2 C R(S') not associated with the trivial group. But the only
principal prime ideal associated with the trivial group is (1 — t). Since R(S?') is
a U.F.D. we have by the above argument and the definition of ® that

i*g=o(E)g,

up to a unit of R(S'). This proves the theorem in the even-dimensional case.

For the odd-dimensional case assume first that the fixed point set =5 is not
empty and consider the cofibration £ — p — S3. We have a commutative diagram

I

KL () —_— K2, (83
KLES) —— K2 (S=5).

If g, g, are generators of KL, (2), K& (=3") respectively then i*g = ®(SZ)g, up
to a unit of R(S') but by (2.4) ® (Z) = ® (SX) so we are done.

If 25" = @ then the cofibration gives a commutative diagram
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*

0 KL (D) K%(E3) - RE)— K% (D> 0

li* I1
0—>K2%(8=%) > RSE))— >0

Since i* is injective, Eél (2) = 0 and ker w* = (& ()).

As a consequence of theorem. 2.5 we can define an equivariant orientation.
This will turn out to be stable so we may assume =S'£ g A generator g € Kg; (2)
is an S’ orientation for = if i*g = ® () in K&, 5. g depends only on an orienta-
tion on =5'. Since the forgetful homomorphism K%, (Z) — K™ () is surjective by
(2.6), £(g) determines an orientation on X.

COROLLARY 2.8. Let = be a pseudo-linear S* sphere. Then:
(i) An orientation on 5" determines an S! orientation on .

(ii) An S' orientation on = determines an orientation on 3.

3. MAPS OF PSEUDO-LINEAR SPHERES

Maps of pseudo-linear spheres determine strong algebraic and homotopical
relations between the spheres. We define a degree of a map and study its
consequences.

Let f:=— T be an S' map between pseudo-linear spheres, then an S' degree,
degs:f € R(S'), is uniquely defined by f*h = (degg.f) - g where g,h are the
respective S* orientations.

LEMMA 38.1. Letf:2—T be an S' map between pseudo-linear spheres. Then:
@(T')

i) dego:f = (deg ') - ——.
(i) degsg (deg £) )

@
(ii) degf = (degf®') - lim ( ).
=1 (3)

Proof. Consider the commutative diagram

deg '

Kau@rs) ——— K(E5)

f*

deg f
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We have that (degf®')®(I') = (deg f%')i*h = i*f*h = (degs: f) ®(Z). degfS' is
an integer so ®(2)| P (') if deg £ # 0. From the lower part of the diagram we
get deg f - € f* (h) = ¢ (degg.f).

COROLLARY 3.2. Let f:3—T be an S' map between pseudo-linear spheres
and assume that deg £8' # 0. Then:

(i) dim =" < dimI'" forallH < S™.
(1) If dim = = dim T, then degf is a nonzero multiple of deg s,
Proof. This is immediate from Lemma 3.1 and the definition of ®.

COROLLARY 3.3. The degree of an S* map f:3 — T between fixed point free
pseudo-linear spheres depends only on the spaces:

In particular, if dim X = dim I then deg f is nonzero.

Next we construct S* maps between pseudo-linear spheres. But we need that
the fixed point sets at the various subgroups of S* be homotopy spheres.

THEOREM 3.4. Let =, T be pseudo-linear S* spheres with dim =5 = dim %",
Assume that T is a homotopy sphere for all H < S*. Then:

() If ®()|®(T), then any S* map f :35' 5T can be equivariantly extended
to 2.

(ii) Let f,g:Z— T be S* maps with deg£3 #0. Then f5' is homotopic to g5’
if and only if f is S* homotopic to g.

Proof. The obstructions lie in

H*C"/SY, 2,/ m. (T
H+E"/SL24/87m . (T)

[12] for (i) and (ii) respectively. Here =, C =" is the subset of =" olf all point§
whose isotropy group contains H properly. Since ® (2)|® (') and dim =£° = dim I'®
we have that dim =" = dim I'"™ for all H < S, hence

dim CH/S'— 2,/S') <dimT"

and all groups are zero.

COROLLARY 3.5. Let 2, T" be pseudo-linear S* spheres, and =%, T'" homotopy
spheres for all H < S*. If f:3 — T' is an S* map then f is an S' homotopy
equivalence if and only if degg:f = £1.

Let p € = be a fixed point. If the action on X is smooth then

dim(7,%)" =dim=" foralH= S/,
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so that ®(2) = ®(S(r,2)), where 7 denotes the tangent bundle and S the sphere
bundle. This gives «

COROLLARY 3.6. If X is a smooth pseudo-linear S* sphere with >5' £ @ then
there is an S* module V and an S* map £: 2 — S(V) with degg.f = 1. In particular
if =% is a homotopy sphere for all H < S* then f is an S* homotopy equivalence.

Remark. 1f 25" = @ then exotic examples do exist [10].

4. THE TANGENT BUNDLE

We have shown that algebraically and homotopically pseudo-linear S* spheres
behave essentially as linear spheres. The question arises whether they do so from
the differentiable view point. Specifically, is the tangent bundle of a smooth
pseudo-linear sphere stably trivial? (see [13] for cyclic p-groups). In what follows
we show that twice the tangent bundle is stably trivial.

PROPOSITION 4.1. If X is a smooth pseudo-linear G sphere, where G is a
compact connected Lie group then 12 ® C is stably trivial as a G complex vector
bundle.

Proof. Note that it is enough to show the proposition for G =T a torus. If
T is odd-dimensional then by proposition 2.3 we know that every bundle is stably
trivial so we may assume X to be even-dimensional. Also one can generalize the
first part of the proof of theorem 2.5 to show that K. (Z) is a torsion free R(T)
module. But this implies that

1%

K, (5) > K, (E7)

is injective. So it suffices to show that TS ® C|zr=vE"® C® 2" ® C is stably
trivial where v=" denotes the normal bundle of =7 in 3. The right hand summand
is always stably trivial and the left hand summand is stably trivial by [5].

5. COMPLEX PROJECTIVE SPACES

Ted Petrie [11] conjectured that if a homotopy complex projective space admits
a circle action with isolated fixed point set then it has the same Pontrjagin classes
as the standard projective space. Here is a situation where the conjecture holds.

Let f:X— CP" be a homotopy equivalence where X admits a smooth circle
action with a nonempty set of isolated fixed points. Denote by  — X the pullback
of the Hopf bundle over CP". The S* action lifts to an action over m. Also, there
is a natural action of T' = S' on m given by complex multiplication. Since both
actions commute we get a T? = S* X T*! action on q [11].

COROLLARY 5.1. In the above situation if the total space of the sphere bundle
S(n) is a pseudo-linear T? sphere then f preserves the Pontrjagin classes.
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Proof. Since S(n) is odd-dimensional it follows from Proposition 2.3 that the
canonical homomorphism R(T?)— K. 2(S(n)) is surjective. We interpret this as
follows. Since T! acts freely on S(n), K;2(S()) = Kg:(X). Also, if M denotes
the standard nontrivial irreducible T' module then M X <1 S(m) =m. This implies
that the canonical homomorphism R(S') — K, (X) extends to an epimorphism

RESH[Tmm ™" Kai (X).

The result now follows from [11].
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