A RESIDUALLY CENTRAL GROUP THAT IS NOT A Z-GROUP
R. Edward Phillips and J. Edward Roseblade

A group G is residually central if x & [x,G] holds for every non-identity element
x of G. Any Z-group (that is, one which has a central system in the sense of
Kurosh [5, p. 218]) is residually central. John Durbin proved in [2] that a locally
finite residually central group is a Z-group, and asked whether every residually
central group G must be a Z-group (see also Robinson ([8, p. 13]). He showed
in [3] that this is true if G satisfies the minimum condition for normal subgroups,
as did Ayoub in [1]. It is also true and not hard to see that residually central
groups G which are either Abelian-by-nilpotent or Abelian-by-locally finite are
Z-groups.

It occurred to us that a recent result of P. A. Linnell [6, Theorem A] could
be used to give easily understood examples of residually central groups which
are not Z-groups. Linnell has shown that if G is a torsion-free polycyclic group
with an Abelian subgroup of finite index, then the group algebra KG over any
field of nonzero characteristic has no zero divisors.

Suppose G is a nontrivial such group; suppose also that it is residually nilpotent
and that G/G’ is finite. Let p be a prime not dividing |G/G’| and K the field
with p-elements. We form the natural split extension I' = (KG) {G; this, by a
well known theorem of P. Hall [4], satisfies the maximum condition on normal
subgroups. If g denotes the augmentation ideal of KG, then g = a”® by our choice
of p; thus g is the limit of the lower central series of I'. It follows that I' is
not a Z-group.

On the other hand, T is residually central. For if x is nonzero in KG , then
x cannot lie in [x,T'], since [x,I'] = xg and, by Linnell’s theorem, an equation
X = x8 cannot hold in KG unless 8 = 1. If x is in T but not in KG, then (KG)x
does not lie in (KG)[x,I'] since G is residually nilpotent. Thus, I' is residually
central.

One example of a group G with all of the stated properties is the group
G=(x,y:x'y’x=y %y 'y=x")
discussed by Passman [7, p. 96]. This group has the additional property of being
supersoluble.

Thus, there is a finitely generated Abelian-by-supersoluble group T which is
residually central and is not a Z-group.

The second author enjoyed the warm hospitality of Michigan State University
during the preparation of this note.
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