SEMIGROUPS OF ANALYTIC FUNCTIONS AND
COMPOSITION OPERATORS

Earl Berkson and Horacio Porta

Let U be an open set in the complex plane C. A one-parameter semigroup
{$.} of holomorphic mappings of U into itself is a homomorphism t — ¢, of the
additive semigroup of nonnegative real numbers R™ into the semigroup (under
composition) of all analytic mappings of U into U such that ¢, is the identity
map of U and ¢, (z) is continuous in (t, z) on R™ X U. We also write $(t, 2)
d(t, 2)

d
for ¢,(z), and denote by ¢,(t, z). In this paper we study the collection

& (U) of all such one-parameter semigroups on U for U the right half-plane or
the open unit disc A, and then apply the results to a treatment of strongly continuous
one-parameter semigroups of composition operators on H?(A), 1 = p < 0.

In Section 1, we show for an arbitrary open set U that if {¢$,} € #(U), then
there is a unique analytic function G on U (called the infinitesimal generator
of {$,}) such that &,(t, z) = G(d(t,z)) on R* X U. In Section 2 we characterize
and concretely describe the class of all infinitesimal generators for the case where
U is the right half-plane. This involves proving the existence of a global solution
to the initial value problem &,(t, z) = G(d(t, 2)), $(0, z) = z for appropriate analytic
functions G (see Theorems (2.6) and (2.13) below). In Section 3, after rephrasing
these results so as to characterize the generators for the case where U is A,
we study the strongly continuous one-parameter semigroups of composition operators
on H?(A),1 = p < », and characterize their infinitesimal generators in Theorem
(3.7).For1 = p < x,every {d,} € F(A)givesrise to astrongly continuous semigroup
{T,} of composition operators on H?(A). The point spectrum of the infinitesimal
generator of {T,}, in certain cases, is taken up in Section 4, where an interplay
with logarithmic potentials develops.

Throughout what follows, we denote composition of mappings by ¢ and differen-
tiation with respect to z by ’.

The authors are indebted to Professor Robert Kaufman for decisive contributions
including the framework of Sections 1 and 2.

1. THE INFINITESIMAL GENERATOR OF A SEMI-GROUP
OF HOLOMORPHIC MAPPINGS

(1.1) THEOREM. Let U be an open set in C, and let {$)},t €ER", be a
one-parameter semigroup of holomorphic mappings of U into U. Then there is
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102 EARL BERKSON and HORACIO PORTA
a holomorphic mapping G: U — C such that

ad(t, 2)

(1.2) —G@(t,2) fortER',zE U,

Proof. Let K be a compact convex subset of U. For a suitable a € (0, 1),
the compact set U {$6.(K): 0 =t = a} has its convex hull (which is compact)

contained in U. Therefore, there is an m € (0, «] with the property

(1.3) | $20(2) — 2dy(2) + 2| = (1/10)[d(2) —z], O=t=mnz€EK.

‘ d
Indeed, the minorant in (1.3) is the absolute value of the integral of EE [$.(8) — (]

along the line segment from z to b.(z), and (by virtue of Cauchy’s integral formula)
this integrand has modulus less than 1/10 for sufficiently small t. Using (1.3),
we find that | d,(z) — z| = (10/19) | b, (2) — z| for z € K, 0 = t =< v. For convenience,
replace 10/19 by 27%2 in this last inequality. A straightforward argument then
shows that there is a constant M (depending on K) such that

|b.(z) — z| = Mt?/? forze K,0=t=1.

Cover the convex hull K of U {$.(K): 0 =t = a} by a finite collection of closed

discs, each of which is contained in a closed disc contained in U, bhaving the
same center and a strictly larger radius. Apply the last inequality to each of
the larger discs (with a suitable constant M in each case), and use Cauchy’s integral

d _
formqla for'd—g [$.(C) — ] to get a constant M such that for 0 < t < 1, the modulus

of this derivative does not exceed Mt*’° on K. By an argument like that employed

in establishing (1.3), we see that for 0 =t = q, and z € K,
| oulz) — 20,(2) + z| = Mt*?|d,(z) — z| = MMtY?.

Thus

MM
| [$orlz) — 2] (28) 7" — [d,(2) — 2] t7'] < r t'/® forze K,0<t=a.

From this we find that lim2"($(277, z) — z) = G(z) exists uniformly on compact
subsets of U. In particular, G is analytic on U. For z, € U and t > 0,

{d.(2p): 0= s =t}

is a compact subset of U. Thus 2"[d(s + 277, z,) — &(s, z,)] tends uniformly to
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G(d(s, z,)) for s € [0, t]. By calculus we see that

t

b (z) =z + X G(d.(2))ds forze U,teR".

(4]

Definition. For U and {&,} asin Theorem (1.1), the function G: U — C satisfying
(1.2) is uniquely determined as ¢,(0, ) and is called the infinitesimal generator

of {d,}.

2. INFINITESIMAL GENERATORS IN THE CASE OF
THE RIGHT HALF-PLANE

In this section we describe the infinitesimal generators of semigroups of
holomorphic mappings of the right half-plane into itself. Let #= {z € C: Re z > 0}.
We make some preliminary observations. If G: 7#— C is analytic and if the initial
value problem:

©.1) b (t, z)

=G(d(t,2z), $(0,2)=1z

has a solution on R™ X # then it follows by elementary use of the analyticity
of G and the convexity of 7 that for every z, € ##and every 7> 0, the initial

w
value problemE = G(w), w(0) = z, has a unique solution on the interval 0 =t < 7.

In particular, (2.1) has a unique solution ¢ on R* X # and (since the initial
value problem is autonomous) ¢,,, = ¢, o ¢, on # fort,s € R*. It is elementary that

w
for z, € #and s > 0, the problem ——;— = G(w), w(s) = z, has at most one solution

on the interval 0 < t < s. It follows that for eacht € R”, ¢, is one-to-one. Standard
techniques (such as the method of proof of [2, Theorem 4.1] with suitable
modifications) show that ¢(-,+) is continuous on R™* X # The method of proof
of [7, Theorem 9, pp. 13, 14], with obvious modifications, now shows that for

t = 0, ¢,(-) is analytic on /# and its derivative with respect to the complex variable
t

is given by: ¢((z) = exp [ S G’'(d(u, 2)) du | for z € #Z In order to set the stage,

1]
we summarize the foregoing remarks in the following proposition.

(2.2) PROPOSITION. Let & (#°) denote the set of all infinitesimal generators
of one-parameter semigroups of holomorphic mappings of #into itself. Let (%)
denote the set of all such one-parameter semigroups. Then & (#°) consists of all
analytic functions G on # such that the initial value problem (2.1) has a global
solution & on R™ X # The correspondence which assigns to each member of
(A} its infinitesimal generator is one-to-one, and, for each G € Z(#°), the cor-
responding semigroup is the unique solution on R™ X #0of the initial-value problem
(2.1). If { .} € A(#), then b, is univalent for all t € R™.
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In order to achieve the goal of this section, we shall need the following result
[6, pp. 115-116].

(2.3) DENJOY-WOLFF THEOREM. Let f be a holomorphic map of the open
unitdisc A into itself which has no fixed point. Then there exists a unique unimodular
o such that

Re[(a + f(z))}(a — f(z)) '] = Re[(x + z2){a — 2)7'] forze A .

Moreover, lim ™ (z) = « for all z € A, where f™ denotes the n-fold iterate of f.

Notation. Let &, (#°) be the class of all analytic functions on /#; not identically
zero, which map #’into its closure in C. Let &, (#°) be the class of all analytic
functions G on #of the form

(2.4) G@z) = — F(@z)(z—ib)® forze #

where F € &, (%), and b is a real constant. Let &, (#°) be the class of all analytic
functions G on #of the form

(2.5) G@) =F@)(+2)( - 2) forz € #,

where F € &, (#°), and { is a constant belonging to /%
We now take up the concrete characterization of the nontrivial generators.

(2.6) THEOREM. & (#)\ (0} is the disjoint union of %,(#), %,(#), and
G(Z). If G belongs to %,(F) (resp., G is of the form (2.4)), and if {$,} is the
semi-group corresponding to G, then for each z € 7, $,(z) > o (resp., &,(z) — ib)
as t— +oo. If G is of the form (2.5) with corresponding semigroup {d.}, then:
(i) ¢,(z) » Last —» +ooforeachz € Zifand only if F(Z°) C #; and (ii) ¢,({) = { for
te R".

Proof. Suppose G has the form (2.5). It is easy to see that in order for (2.1)
to have a solution on R™ X /# it suffices to show that there is a solution on
R X A of the initial-value problem,

Y (t, z)
2.7) ” =—{¢(t, z2) AW, z), ¢(0,2)=1z,

where A(z) = 2[Re {]F((Zz + {)(1 — 2)" ") forz € A. For any z € A, and any 7 > 0,
dw
the initial value problem E = — wA(w), w(0) = z has at most one solution on

[0, 7), and the modulus of such a solution must be a decreasing function of t
on [0, 7). Standard arguments with the method of successive approximations now
show that (2.7) has a solution on R™ X A, and hence G € % (#°). Moreover, the
unique solution ¢ of (2.1) is related to the unique solution ¥ of (2.7) by the equation
b, =L 'oy,oLfort € R", where L(z) = (z — {)(z + {) " forz € # It is obvious
from (2.7) that ¢,(0) =0 for t € R*. If Re F > 0 on /# then Re A >0 on A, and
it is an easy consequence that ¢, (z) — 0 as t — +o for all z € A. Otherwise, there
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is a nonzero real number a such that A = ia. But then (2.7) has the explicit
solution Y(t,z) = e 'z,t € R,z € A. The corresponding statements for {&,}
establish the last sentence in the statement of (2.6).

Next, suppose G has the form (2.4). Let {{,}._, be a sequence in /#with limit
ib. Put G (2) = F(2)({, +2z)({, —z) forz € #n=1,2,....Let " (-,") be the semi-
group corresponding to G,. There is a constant M > O such that |G, (z)|] = M for
lz—1=1/2,n=1,2,.... From this we see that

(2.8) 6™, 1) — 1| =1/2 fort € [0,2M)'],n=1.

The analytic functions ¢™(t,-) for 0 <t < (2M)™}, n = 1, leave #invariant, and
so constitute a normal family. In view of (2.8) and Hurwitz's theorem, we conclude
that every limit point of this family in the usual topology leaves /# invariant.
Straightforward reasoning shows that for each compact subset K of % { ™ (-, *) }o_,
is equicontinuous on [0, (2M)™'] X K. By taking a subsequence {¢$"¥(-, )} uni-
formly convergent on this compact product set, we see that for each z € K the

dw A
initial value problem E = G(w), w(0) = z has a solution for 0 = t = (2M)™". Thus

(2.1) has a solution f(-, -) on [0, (2M)™ '] X # Extend f to a function
g(-, -y on [0, M™'] X # by setting g(t, z) equal to

f(t — M), f((2M) 7, z)) for(2M) '=t=M ',z Z

Clearly g is a solution of (2.1) on [0, M™'] X &# Since this extension process
can be repeated indefinitely, we see that (2.1) has a solution ¢ on R* X # We
show next that ¢,(z) — ib as t — +o for every z € # Applying (2.1) to the function
G in the present case, we see that for fixed z, € # Re[(d,(z,) —ib)™'] has a
nonnegative derivative with respect to t, and so we have:

(2.9) Re[(d,(z,) — ib)™'] = Re[(z, —ib)™'] >0 forte R™.

Moreover, since |F| > 0 on & (1/G) has a primitive G on /# From (2.1) we find
that

(2.10) G(d(z) =t +G(z,) forteR™.

From (2.9) we have Re ¢,(z,) = |b,(z,) — ib]> Re[(z, — ib) '], t € R* . Thus it suf-
fices to show that Re ¢,(z,) — 0. Also, (2.9) shows that ¢,(z,) is a bounded function
of t on R". If Re &,(z,) does not tend to zero as t — +o, then there are an € > 0
and a strictly increasing sequence {t.} C R™, with t, — +o such that

Re cbtn(zo) = for all n.

Thus {$, (z,)},-, is contained in a compact subset K of 7 Since G is bounded
on K, (2.10) gives a contradiction.

Suppose next that G € %,(#°). Then the function ~G(z Y)Z® belongs to %,(#)
(with b = 0). By what has already been shown, there is a function $:(-,-) on R* X #
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such that for each z € Z/ ¥ (0,z) =z, ¢ (t, z) > 0 ast— +o and

dy (¢, 2)
dt

= —G({(t, 2} ) [¥(t,2]* forte R™.

It follows that the function &(-, ) given by ¢(t, z) = [¥(t,z~")] ' is a solution to
(2.1) on R™ X # for the present particular G. Clearly, for each z € # ¢(t, z) —> w0 as

t — +oo,

It is elementary that &,(#) is disjoint from each of %,(#) and %,(#°). The
disjointness of &,(7°) and %,(#) follows from the foregoing facts about limiting
behavior, as t — +o, of semi-groups.

To complete the proof of the theorem, suppose G € Z(#)\ {0}, with corre-
sponding semigroup {é,}, and let t, be a fixed positive real number such that
¢, 1s not the identity map of # Let S be the linear fractional transformation
givenby S(z) = (z — 1)(z + 1)7%, and let {s,} be the semigroup of analytic mappings
of A into A specified by ¢, = Sodp, oS ' fort € R™. Either ¥,, has a (necessarily
unique) fixed point z, € A or the Denjoy-Wolff theorem, (2.3), applies to { . In
the former case, we have for t € R, U, (U,(20)) = b (W, (z0)) = U, (z,). Hence z, is
a common fixed point of the semigroup {{,}. Thus S 'z, (which we denote by
{) is a common fixed point of {¢,}. In particular, G({) must vanish. Let L be
the linear fractional transformation given by L(z) = (z — {)(z + )}, and let {\I:t}
be the semigroup on A defined by s, = Lo ¢,0 L. Clearly, §,(0) =0fort € R™.
By Schwarz’s lemma, |§(z)] <|z|]fort € R*,z € A. It follows that for each
z €A, |J1t(z)| is a decreasing function of t, and hence for z € #,

[{z) — £} {bu@) + T}

is a decreasing function of t. Since the derivative at t = 0 of this last expression
does not exceed zero, simple calculations show that

(2.11) 0=Re[G@)(z—-C)z+T)"] forz € #Z.
Since G({) = 0, there is an analytic function F on /7 such that
G(@) =F@(L+2)({ - 2) forz € #

Substitution of this expression for G in (2.11) easily gives the conclusion that
F € ,(2).

There remains the case in which ¢, does not have a fixed point. Let a correspond
to ¥, as in Theorem (2.3). It follows from Cauchy’s integral formula and the
Lebesgue bounded convergence theorem that {,,, — « uniformly on compact subsets
of A. For each z € A, {¥,(2): 0=t =1t,} is a compact subset of A, and so we
find easily that §,(z) > a ast — +oo for z € A. In particular, for each t > 0, ¥, does
not have a fixed point in A, and Theorem (2.3) allows us to deduce that

Re[(x + Y@ (@ — () "] = Re[( + 2)( — )] "fort>0,z€ A.
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It follows that for each z € A,
(2.12) Re[(a + ¥,(2)) (a — ¥,(z)) "] is an increasing function of t.

At this juncture there are two possibilities to consider:a # 1 or a = 1. In the
former event, there is a real number b such that o = S(ib), and by obvious
calculations, (2.12) can be rephrased as follows: for each z € 7]

Re[(ibd,(z) — 1)(ib — b,(z)) ']

is an increasing function of t. If we take the derivative with respect to t of this
last expression and set t = 0, we find that for z € # Re[G(z)(z — ib) "?] = 0. Hence
G € ,(#), if a # 1. On the other hand, if a = 1, then (2.12) can be rephrased
to say that for each z € # Re ,(z) is an increasing function of t. Hence G € %, (%),
if a = 1. The proof of the theorem is complete.

Remark. 1t is evident from the limiting behavior of semigroups (ast— +)
that if G has a representation in either of the forms (2.4), (2.5), then such a
representation is unique.

The concrete description of #(#) in Theorem (2.6), which owes its formulation
to the Denjoy-Wolff theorem, does not provide us with a unifying criterion that
characterizes the class (). As will be seen in the proof of the next theorem,
the Schwarz-Pick inequality leads to the formulation of such a criterion.

(2.13) THEOREM. Let G:#— C be analytic and writing z=x + 1y, let
Re G(z) = u(x, y). Then G € Z(#) if and only if

Ju
(2.14) X—=u on %,
Jx

Proof. Suppose G € Z(#) with corresponding semigroup {¢,}. For z, € 7
& (-, ©) is analytic in (t, z) in a neighborhood of (0, z,) (as may be seen, e.g,
by treating t as a complex variable and using successive approximations). This
gives a 8 > 0 such that for 0 =t <9,

(2.15) $(t, o) =z, + G(zo)t + O(t?) ;
(2.16) &/ (z0) = 1 + G (z)t + O(tD).

We know from the Schwarz-Pick inequality that fort € R,z € #Z;
|b! (z)| =z 'Re d,(2).

In particular,

(2.17) Re &, (z,) = [Re &.(z,)] /Re z, .

Substitute (2.15) and (2.16) into (2.17) to get for 0 <t <3
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(2.18) t Re G’ (z,) = t[Re G(z,)] (Re z,) "' + O(t?).

Divide (2.18) by t, and let t —» O™ to obtain (2.14).
Conversely, suppose (2.14) holds. We recall some basic facts about the hyperbolic

metric p on # (see, for example, [1]). For z,, 2, in # p(z,, 2,) = min K (Re z) '|dz|,

v
where the minimum extends over all paths vy in #from z, to z,. The metric p

induces the usual Euclidean topology on /# and the p-compact sets are the subsets
of # which are closed and bounded with respect to p. Let z, € #, and suppose

w
that for some b > 0, the initial value problemg = G(w), w(0) = z,, has a (necessar-
ily unique) solution ¢ (t, z,) for 0 =t < b. If we square the expression

dé (t, zo)

2.19
(2.19) "

/ Re (& (t, z,))

and differentiate with respect to t, we get 2|G(d (t, z,))|* [Red (t, z,)] ~> multiplied
by [Re(d (t, z,))] Re G’ (d (t, z,)) — Re G(d (t, 2,)).Thus by (2.14), the expression (2.19)
is a decreasing function of t. Thus p(z,, ¢ (t, z,)) does not exceed

b|G(z,)|/ Re z, forO=t<b.

Thus { ¢ (t, z,): 0 = t < b} is contained in a compact subset of 7% Standard arguments
now show that (2.1) has a solution on R* X #

(2.20) COROLLARY. % (%) is a cone with vertex at 0 in the linear space of
all analytic functions on #.

Suppose next that G (resp., G) belongs to ¥(#) with corresponding semigroup
{d) (resp., {,}), and X > 0. Theorem (2.13) and Corollary (2.20) do not provide
a method for constructing the semigroups corresponding to AG and (G + G) from
{$,} and {¢,}. The semigroup corresponding to A\G is obviously given by & (\t, z).
We sketch a method for obtaining the semigroup {{;,} corresponding to (G + G)/2.
For each positive integer n, we construct an “approximate semigroup” ¥,(:, °)
on R X # satisfying the requirements: for each z € 7

(G, (t,z)) for2kn'=t=(2k+1n " k=0,1,2,...,
di, (t,z)
(2.21) % =
G(.(t,2) for 2k + I)n'=t=2(k+ n},
L k=0,1,2,...;
$.0,2) = z,

where the differential equations indicated in (2.21) involve only one-sided derivatives
at the end-points of the indicated intervals. The construction of {, is accomplished
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by repeated alternate use of the global solutions ¢ and ¢ in appropriate initial
value problems. It is easy to see that for each t € R™, Y _(t,-) is an analytic map
of # into # Using (2.21), we find that there is a positive t, such that

(2.22) [Gat, 1) = 1] <27 - forOst=t,n=1,2,....

Let # be the family of functions on #given by {{_(t, -):t € [0,t,],n=1,2,...}.
As in the proof that Z,(#) C %(#°) (Theorem (2.6)), we see that .#is a normal
family such that every limit point of % in the usual topology leaves #invariant.
With the aid of this, we find that {{ (-, )} is equicontinuous on compact subsets
of [0, t,] X #Z2 Thus we arrive at a subsequence {¥, (-, )} which converges uni-
formly on compact subsets of [0, t,] X # It follows from (2.21) that the limit
y satisfies, on [0, t,] X

t,
(2.23) 9 (t,2)

=27 [GW (t,2) + G (t,2)], ¥(0,2) ==z

As before, we can extend s so as to satisfy (2.23) on R* X #

3. SEMI-GROUPS OF COMPOSITION OPERATORS ON
HARDY SPACES OF THE DISC

We begin this section with the observation that Proposition (2.2), together with
the remarks in Section 2 leading up to it, remains true word for word if #is
replaced by A throughout.

Notation. Let 2be the class of all analytic functions F on A such that Re F = 0,
and F is not the zero function. Let </ be the class of all functions G on A of
the form

(3.1) G@) = aF(z)(z — o),
where |a| = 1, F € & Let & be the class of all functions G on A of the form
(3.2) G =F(2)(Bz — 1)z - B),

where B € A, Fe £

In the preceding notation, Theorem (2.6) and the remark immediately following
it can be rephrased as follows.

(3.3) THEOREM. Z(A)\ {0} is the disjoint union of & and %. If G has
the form (3.1), then its corresponding semigroup {d&,} satisfies: &,(z) > o as
t— 4w foreachz € A. If G has the form (3.2), then for its corresponding semi-
group {$,) we have: (1) &, (z) > Bast— +o for each z € A if and only
if Re F > 0 on A; and (ii) $,(B) = B for allt € R*. A representation in either of
the forms (3.1), (3.2) is unique.
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We remark in passing that, as would be expected, the description of #( C)
contrasts with that of ¥(A). Since a univalent entire function is a first degree
polynomial, it is easy to see that %(C) consists of the constant functions and
the first degree polynomials.

If 0<p=w and ¥ is an analytic map of A into A, then, as is well known,
¢ induces a continuous linear transformation C, H?(A) - H?(A) defined by the
formulaC f = foy [4, p. 29]; C, is called the composition operator on H*(A) induced
by ¢. For fixed p, the correspondence between analytic maps of A into itself and
the composition operators they induce is one-to-one, since § = C,x, (from now
on, x, denotes the function given by x,(z) =z", n=0, 1, 2, ...).

(3.4) THEOREM. Suppose 1 <p <o, There is a one-to-one correspondence
between #(A) and the strongly continuous one-parameter semigroups of composition
operators on H?(A). For {$,} € S(A), the corresponding semigroup of composition
operators is given by:

(3.5) TS = f(d,) fort € R*, f € H(A).

Proof. Suppose {¢$,} € F(A). We show that the semigroup {T,} defined by

(3.5) is strongly continuous on H°(A). For eacht € R ™, let z a, .z" be the Maclaurin
n=0

series expansion for ¢,. Since each ¢, is univalent (Proposition (2.2) applied to
A), we have by the area theorem [5, Lemma 1.1]

oo

(3.6) D nla, /=1 forteR"

n=1

It follows from (3.6) that {&,: t € R} is a totally bounded subset of H*(A). Suppose
{t.} € R" and t,— s. Then there are a subsequence {tnk} and an f € H*(A) such
that "(btn(k) — f||], = 0. In particular, for each z € A, be, ., (2) = (z). But ¢,(2) is a
continuous function of t, and so |, , — ¢l — 0. Consequently, the map t ~ &,
is continuous from R* into H?*(A). If we go out to the boundary |z| =1, and
use the Lebesgue bounded convergence theorem, we see that t — &, is continuous
from R™ into HP(A), and in fact for each polynomial P, t~ T,P is continuous
from R™ into H? (A). Since for each t € R*

ITd = [(1 + [60) N(1 = [ (0 ) 717,

{T,} is uniformly bounded on compact subsets. Since the polynomials are dense
in H?(A), it follows from the foregoing that {T,} is strongly continuous.

Conversely, suppose {T,} is a strongly continuous semigroup of composition
operators on H?(A), and let {$,} be the family of holomorphic functions satisfying
(3.5). By strong continuity (applied to x,), t + ¢, is continuous from R* into H?(A).
The continuity of ¢ (-, *) on R" X A follows easily by Cauchy’s integral formula.

(3.7) THEOREM. Suppose 1 =p <o, and ($,} € S (A). Let G be the infini-
tesimal generator of {d,}, {T,} the semigroup of composition operators in (3.5), and
I the infinitesimal generator of {T,}. Then the domain of T, Z(T'), consists of all
f € H°(A) such that Gf' € H°(A), and T' (f) = Gf’ for f € Z(I').
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Proof. Ifd,=x,fort € R", the assertion is trivial. Thus we assume that

G € Z(A)N\{0}. Since Tyxo = X0 |Te|= 1 fort € R*. By {3, Lemma VIII.1.4 and

Theorem VIIL.1.11], w,= lim t 'log|T,| exists, 0 =< w, < 4+, and if Re X > w,,
t— 4o

then M\ is in the resolvent set of I'. The description of Z(I') in the statement
of the present theorem certainly defines a linear manifold M in H” (A). The linear
transformation & M — H”(A) given by &f = Gf’ clearly extends I.

Suppose first that G has the form (3.1). In particular, |G| > 0 on A. Let h be
a primitive on A of (1/G). Then fort € R*, z € A,

(3.8) h(¢(t, z)) =t + h(z).

Pick r > max {w,, log [(1 + [¢ (1, 0))(1 — | ¢ (1, 0)[)"'1}. We show that (£—r) is
one-to-one. Suppose f € H°(A), and Gf’ = rfon A. There is a complex constant
K such that f = K exp (rh). From this and (3.8) we see that fort € R*, f($,) = e™f.
Thus e™||f|l, = (1 + | $,(0) (1 — | &, (0)|) " '||fll,. If f is not the zero function, then
by taking t =1 in this last inequality, we get a contradiction to the choice of

r. Since (& — r) is one-to-one and extends (I' — r), while the range of the latter
is H?(A), it follows that &=T.

Suppose, finally, that G has the form (8.2). If A is a complex number, and
f is an analytic function on A such that f is not the zero function and Gf’ = \f
on A, then pick r such that |[B| <r < 1, and f has no zeros on |z| = r. We have:

3.9 (2w S [f' (z)/f(z)] dz

lz] =r

= (27i)~" S [N/G(@)]dz = N[FB)|B]* = D]

lz|=r

By virtue of the argument principle, we infer that the set of eigenvalues of &
is countable in this case. In particular, we can choose a real number A > w, such
that (&— \) is one-to-one. As in the previous case, &= T, and the proof is complete.

(3.10) COROLLARY. - If 1=p <, and {T,} is a strongly continuous one-
parameter semigroup of composition operators on H°(A), then {T,} has a bounded
infinitesimal generator if and only if T, is the identity operator for everyt € R".

Proof. Suppose the infinitesimal generator I' of {T,} is a bounded operator
on H?(A). Then, in the notation of Theorem (3.7), I' (f) = Gf’ for every f € H?(A).
Taking f to be x,, we see that G € H?(A). By taking f to be x,,n=1,2, ...,
we see that n||G||, = ||T'|. Hence G = 0.

4. AN EIGENVALUE PROBLEM.

In this section we examine the point spectrum of the infinitesimal generator
for a certain type of semigroup of composition operators. An interplay will arise
between the foregoing circle of ideas and potential theory. Let F be an analytic
function on A such that Re F > 0 and F(0) > 0. The Herglotz representation gives
a Borel measure p on the unit circle K, with p = 0, pn (K) > 0 such that
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4.1) 1/F(z) = S (W + z)(w — 2) " 'dp(w) .

K

Clearly any such measure p can arise in (4.1) by suitable initial choice of F.
We rewrite (4.1) in the form

(4.2) 1/F(z) = [1/F(0)] X (w+2)(w—2)""do(w),

K

where o = 0, 0 (K) = 1. Let G(z) = —zF(z). By Theorem (3.3), G is the infinitesimal
generator of a semigroup of holomorphic mappings of A into A. For 1 =p <,
let I', be the infinitesimal generator of the corresponding semigroup of composition
operators on H”(A). It is apparent from (3.9) that the point spectrum of I, is
a subset of {—F(0)k: k =0, 1, 2, ...}. The null space of T, is the set of all constant
functions. We have:

(4.3) THEOREM. Suppose 1< p <. For each positive integer k, —F(0)k
belongs to the point spectrum of T, if and only if H°(A) contains the function
E, given by

z

(4.4) E,(2) = eXp[—k S {THEF () — FO)(1/F(L) dC:l .

[¢]

In this case, the eigenmanifold corresponding to —F(0)k is the span of the function
k
z E, (z).

Proof. If —.F(O)k is in the point spectrum, and f is a non-zero vector in Z(I'))
such that Gf’ = —F(0)kf, then it follows from (3.9) that there is an analytic function
g on A such that f(z) = z"g(z) and |g] > 0 on A. Obvious simplification of the
equation zF (z)f' — kF(0)f = 0 gives g’ + k[zF(z)] '(F(z) — F(0))g = 0. The theorem
follows easily. i

If we use (4.2) in the integral in (4.4) and interchange the order of integration,
we see that this integral is equal to —2 log [1/ (1 — wz)] do (w) , where “log”

K
denotes the principal branch of the logarithm. In view of this, the next proposition
is a corollary of Theorem (4.3).

(4.5) PROPOSITION. The point spectrum of I', is
{(-FOk:k=0,1,2,...} forallp € [1,x)

if and only if the function e, given by
(4.6) e (z) = exp[ S log {1/ (1 — wz)} dc(w)] forz € A
K

belongs to H” (A) for all finite p.
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In view of Proposition (4.5), we shall concentrate throughout the remainder
of this section on functions of the form (4.6).

(4.7 THEOREM. Let v be a finite positive measure on the Borel sets of K,
and suppose € is a positive number such that K can be covered by a finite collection
of «closed arcs J,,...,d, withv(J,) <efork=1,2,...,n. Then e, € H?(A) for
p<e .

Proof. There is no loss of generality in making the further assumption that
each J, is a proper subset of K. For each k, let S, be the sector
{rw:r € [0,1],w € J,}. If q is any positive number, we strictly extend each J,
at both end-points so as to obtain a larger closed arc J,, still a proper subset
of K, such that v(J,) <& + 7. The distance between S, and K\ J, is a positive
number a,. Let m denote normalized Lebesgue measure on K, and let p be any
positive real number. For z € J,,

(4.8) le,(rz) | < a, PN exp[ S log{1/|w —rz|"} dv (W)] .
Ji

Application of the arithmetic-geometric mean inequality to the integral in (4.8)
yields

(4.9) le,(rz)|® < a, P*" NN [v (T )]} S |w — rz| ™% dv(w)

Ji
(f v(J ) = 0, the last two factors are deleted from the majorant in (4.9)). Integration
of (4.9) with respect to m and interchange of the order of integration give

S le,(rz)|"dm(z) < a, P** W S |1 —rz| "% dm(z) .

We see then that e, eH?(A) if pv(d)<1lfork=1,2,..,n. Thus e, € H(A) for
p < (g +m)~', where m is an arbitrary positive number. The desired conclusion
follows.

(4.10) THEOREM. Ifv is a finite positive measure on the Borel sets of K, then
e, € H?(A) for all finite p if and only if v annihilates singletons.

Proof. The “if” part is immediate from Theorem (4.7). On the other hand,
suppose z, € K, and v({z}) > 0. Then |e,(rz,)|= 27> "1 — y)7 =D If
0 <p <w and e, € H°(A), then |e, (rz,)| = 0((1 — r)"VP), It follows that
p=[v({z,}] "

We conclude this section by investigating conditions sufficient to insure that
e, € H”(A), or, equivalently, that the logarithmic potential u, given by

4.11) u,(z) = — S log|w — z|dv(w), zZ € A,
K
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is bounded. We recall that by a standard application of Fubini’s theorem the
right-hand side of (4.11) defines (m-almost everywhere on K) a function of z belonging
to L' (dm) whose Poisson integral isu,.

(4.12) THEOREM. Let v be a finite bosil:‘ive measure on the Borel sets of K,
and define £, on [0, 2w] by setting f,(t) = v{e': 0 < u =< t}. Either of the following
conditions is sufficient for e, to be in H” (A):

v
(1) v is absolutely continuous, and the Radon-Nikodym derivative E— belongs
m

to L log™ L;

(ii) if o, denotes the modulus of continuity of f, then t o (t) is integrable on
0=t=2m

Proof. Without loss of generality, we assume that v(K) = 1. Let F be an analytic
function on A such that Re F > 0, F(0) > 0, and (4.2) holds with o replaced by
v. Then by virtue of the discussion just preceding Proposition (4.5),

e,(z) = exp [—2'1 S {7 (F(L) — FO)(1/F(L)) d?;]-

(]

Differentiation with respect to z gives,

(4.13) e,/e,=— (22)7"[1 - (F(0)/F(2))] .

The left-hand side of (4.13) is the derivative of log[1/(1 — wz)] dv(w). The

K
right-hand side of (4.13) belongs to H'(A) if and only if 1/F belongs to H'(A).
In view of [4, Theorems 4.3 and 4.4] and (4.2), we see that this last condition
is equivalent to (i). Thus, if (i) holds, then it follows from Hardy’s inequality

that H*(A) contains S log[1/(1 — wz)] dv(w).

Suppose next that (ii) holds. Let y be the measure (v — m). Although v is
not a positive measure, we define f, and w, by analogy with the definitions of
f and o, Clearly, t‘lwy(t) is integrable on [0, 27} and f (0) = f (2w) = 0. Since,
for all z € A,

S log|w — z|dm(w) = 0,
K

we have

'211'

u,(z)=—g 10g|w—z|d-y(w)=—g log|e™ — z|df_(t), z € A.
K

o

Integration by parts on the right-hand side of this last equation gives
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2%

(4.14) u,(z) = -2 S £,(t) Im[(e"* + z)(e* —2) "] dt .

0

Since t™'w_(t) is integrable on [0, 2], it follows by [8, Theorem II1.13.30] that
the conjugate function of f is continuous. It follows easily that u, is bounded.

Remarks. (1) The discussion in [8, p. 197] shows the existence of a positive
singular measure v, on K having total mass 1 such that f, satisfies a Lipschitz
condition. By Theorem (4.12)-(ii), e, € H”(A). Thus the absolute continuity of
v is not a necessary condition for e, to be bounded. (2) The absolute continuity
of v is not a sufficient condition for e, to be bounded. For, suppose to the contrary
that for every real function f € L'(m), the convolution g * f € L” (m), where g is
defined by g(z) = — log|1 — z| for z € K. By the closed graph theorem, there is
a constant B > 0 such that ||f  g||., < B||f]|, for all real f € L'(m). Let {f,} be the
Fejér kernel. By Alaoglu’s theorem, there are a ¢y € L”(m) and a subnet fnj * g
which converges weak-star in L”(m) toy. Since ||f, * g — g|,— 0, we are led to
the absurd conclusion that g € L™ (m).
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