SEMIGROUPS OF ANALYTIC FUNCTIONS AND COMPOSITION OPERATORS

Earl Berkson and Horacio Porta

Let U be an open set in the complex plane \mathbb{C} . A one-parameter semigroup $\{\phi_t\}$ of holomorphic mappings of U into itself is a homomorphism $t\mapsto \phi_t$ of the additive semigroup of nonnegative real numbers \mathbb{R}^+ into the semigroup (under composition) of all analytic mappings of U into U such that ϕ_0 is the identity map of U and ϕ_t (z) is continuous in (t, z) on $\mathbb{R}^+ \times U$. We also write $\phi(t, z)$ for $\phi_t(z)$, and denote $\frac{\partial \phi(t, z)}{\partial t}$ by $\phi_1(t, z)$. In this paper we study the collection

 $\mathscr{S}(U)$ of all such one-parameter semigroups on U for U the right half-plane or the open unit disc \triangle , and then apply the results to a treatment of strongly continuous one-parameter semigroups of composition operators on $H^p(\triangle)$, $1 \le p < \infty$.

In Section 1, we show for an arbitrary open set U that if $\{\varphi_t\} \in \mathscr{S}(U)$, then there is a unique analytic function G on U (called the infinitesimal generator of $\{\varphi_t\}$) such that $\varphi_1(t,z) = G(\varphi(t,z))$ on $\mathbb{R}^+ \times U$. In Section 2 we characterize and concretely describe the class of all infinitesimal generators for the case where U is the right half-plane. This involves proving the existence of a global solution to the initial value problem $\varphi_1(t,z) = G(\varphi(t,z)), \varphi(0,z) = z$ for appropriate analytic functions G (see Theorems (2.6) and (2.13) below). In Section 3, after rephrasing these results so as to characterize the generators for the case where U is Δ , we study the strongly continuous one-parameter semigroups of composition operators on $H^p(\Delta)$, $1 \le p < \infty$, and characterize their infinitesimal generators in Theorem (3.7). For $1 \le p < \infty$, every $\{\varphi_t\} \in \mathscr{S}(\Delta)$ gives rise to a strongly continuous semigroup $\{T_t\}$ of composition operators on $H^p(\Delta)$. The point spectrum of the infinitesimal generator of $\{T_t\}$, in certain cases, is taken up in Section 4, where an interplay with logarithmic potentials develops.

Throughout what follows, we denote composition of mappings by \circ and differentiation with respect to z by '.

The authors are indebted to Professor Robert Kaufman for decisive contributions including the framework of Sections 1 and 2.

1. THE INFINITESIMAL GENERATOR OF A SEMI-GROUP OF HOLOMORPHIC MAPPINGS

(1.1) THEOREM. Let U be an open set in \mathbb{C} , and let $\{\phi_t\}$, $t \in \mathbb{R}^+$, be a one-parameter semigroup of holomorphic mappings of U into U. Then there is

Received November 1, 1976.

The first author was supported by a National Science Foundation grant.

Michigan Math. J. 25 (1978).

a holomorphic mapping G: $U \rightarrow \mathbb{C}$ such that

(1.2)
$$\frac{\partial \phi(t, z)}{\partial t} = G(\phi(t, z)) \quad \text{for } t \in \mathbb{R}^+, z \in U.$$

Proof. Let K be a compact convex subset of U. For a suitable $\alpha \in (0, 1)$, the compact set $\bigcup \{ \varphi_t(K) : 0 \le t \le \alpha \}$ has its convex hull (which is compact) contained in U. Therefore, there is an $\eta \in (0, \alpha]$ with the property

$$|\phi_{2t}(z) - 2\phi_t(z) + z| \le (1/10)|\phi_t(z) - z|, \qquad 0 \le t \le \eta, z \in K.$$

Indeed, the minorant in (1.3) is the absolute value of the integral of $\frac{d}{d\zeta}$ [$\varphi_t(\zeta)-\zeta$] along the line segment from z to $\varphi_t(z)$, and (by virtue of Cauchy's integral formula) this integrand has modulus less than 1/10 for sufficiently small t. Using (1.3), we find that $|\varphi_t(z)-z| \leq (10/19)\,|\varphi_{2t}(z)-z|$ for $z\in K,\, 0\leq t\leq \eta.$ For convenience, replace 10/19 by $2^{-2/3}$ in this last inequality. A straightforward argument then shows that there is a constant M (depending on K) such that

$$|\phi_t(z) - z| \le Mt^{2/3}$$
 for $z \in K$, $0 \le t \le 1$.

Cover the convex hull \tilde{K} of \bigcup $\{\varphi_t(K): 0 \le t \le \alpha\}$ by a finite collection of closed

discs, each of which is contained in a closed disc contained in U, having the same center and a strictly larger radius. Apply the last inequality to each of the larger discs (with a suitable constant M in each case), and use Cauchy's integral

formula for $\frac{d}{d\zeta}$ $[\phi_t(\zeta) - \zeta]$ to get a constant \tilde{M} such that for $0 \le t \le 1$, the modulus of this derivative does not exceed $\tilde{M}t^{2/3}$ on \tilde{K} . By an argument like that employed in establishing (1.3), we see that for $0 \le t \le \alpha$, and $z \in K$,

$$\left| \varphi_{2t}(z) - 2 \varphi_t(z) + z \right| \leq \tilde{M} t^{2/3} |\varphi_t(z) - z \,| \leq \tilde{M} M t^{4/3} \,.$$

Thus

$$\left| \; \left[\; \varphi_{2t}(z) - z \; \right] (2t)^{-1} - \; \left[\; \varphi_{t}(z) - z \; \right] t^{-1} \right| \leq \frac{\tilde{M}M}{2} \; t^{1/3} \qquad \text{for } z \in \; K, \, 0 < t \leq \alpha \, .$$

From this we find that $\lim_{n} 2^n (\varphi(2^{-n}, z) - z) = G(z)$ exists uniformly on compact subsets of U. In particular, G is analytic on U. For $z_0 \in U$ and t > 0,

$$\{\phi_s(z_0): 0 \le s \le t\}$$

is a compact subset of U. Thus $2^n [\phi(s+2^{-n},z_0)-\phi(s,z_0)]$ tends uniformly to

 $G(\phi(s, z_0))$ for $s \in [0, t]$. By calculus we see that

$$\varphi_t(z) = z + \int_0^t G(\varphi_s(z)) ds \qquad \text{for } z \in U, t \in \mathbb{R}^+.$$

Definition. For U and $\{\phi_t\}$ as in Theorem (1.1), the function G: U \rightarrow C satisfying (1.2) is uniquely determined as $\phi_1(0, \cdot)$ and is called the *infinitesimal generator* of $\{\phi_t\}$.

2. INFINITESIMAL GENERATORS IN THE CASE OF THE RIGHT HALF-PLANE

In this section we describe the infinitesimal generators of semigroups of holomorphic mappings of the right half-plane into itself. Let $\mathcal{H} = \{z \in \mathbb{C} : \text{Re } z > 0\}$. We make some preliminary observations. If $G: \mathcal{H} \to \mathbb{C}$ is analytic and if the initial value problem:

(2.1)
$$\frac{\partial \phi(t, z)}{\partial t} = G(\phi(t, z)), \qquad \phi(0, z) = z$$

has a solution on $\mathbb{R}^+ \times \mathscr{H}$, then it follows by elementary use of the analyticity of G and the convexity of \mathscr{H} , that for every $z_0 \in \mathscr{H}$ and every $\tau > 0$, the initial value problem $\frac{dw}{dt} = G(w)$, $w(0) = z_0$ has a unique solution on the interval $0 \le t \le \tau$. In particular, (2.1) has a unique solution φ on $\mathbb{R}^+ \times \mathscr{H}$, and (since the initial value problem is autonomous) $\varphi_{t+s} = \varphi_t \circ \varphi_s$ on \mathscr{H} for $t,s \in \mathbb{R}^+$. It is elementary that

for $z_0 \in \mathcal{H}$ and s > 0, the problem $\frac{dw}{dt} = G(w)$, $w(s) = z_0$ has at most one solution

on the interval $0 \le t \le s$. It follows that for each $t \in \mathbb{R}^+$, ϕ_t is one-to-one. Standard techniques (such as the method of proof of [2, Theorem 4.1] with suitable modifications) show that $\phi(\cdot,\cdot)$ is continuous on $\mathbb{R}^+ \times \mathscr{H}$. The method of proof of [7, Theorem 9, pp. 13, 14], with obvious modifications, now shows that for $t \ge 0$, $\phi_t(\cdot)$ is analytic on \mathscr{H} , and its derivative with respect to the complex variable

is given by: $\phi_t'(z) = \exp\left[\int_0^t G'(\phi(u,z)) \, du\right]$ for $z \in \mathcal{H}$. In order to set the stage, we summarize the foregoing remarks in the following proposition.

(2.2) PROPOSITION. Let $\mathcal{G}(\mathcal{H})$ denote the set of all infinitesimal generators of one-parameter semigroups of holomorphic mappings of \mathcal{H} into itself. Let $\mathcal{G}(\mathcal{H})$ denote the set of all such one-parameter semigroups. Then $\mathcal{G}(\mathcal{H})$ consists of all analytic functions G on \mathcal{H} such that the initial value problem (2.1) has a global solution Φ on $\mathbb{R}^+ \times \mathcal{H}$. The correspondence which assigns to each member of $\mathcal{G}(\mathcal{H})$ its infinitesimal generator is one-to-one, and, for each $G \in \mathcal{G}(\mathcal{H})$, the corresponding semigroup is the unique solution on $\mathbb{R}^+ \times \mathcal{H}$ of the initial-value problem (2.1). If $\{\Phi_t\} \in \mathcal{G}(\mathcal{H})$, then Φ_t is univalent for all $t \in \mathbb{R}^+$.

In order to achieve the goal of this section, we shall need the following result [6, pp. 115-116].

(2.3) DENJOY-WOLFF THEOREM. Let f be a holomorphic map of the open unit disc \triangle into itself which has no fixed point. Then there exists a unique unimodular α such that

$$\operatorname{Re}[(\alpha + f(z))(\alpha - f(z))^{-1}] \ge \operatorname{Re}[(\alpha + z)(\alpha - z)^{-1}]$$
 for $z \in \Delta$.

Moreover, $\lim_{n} f^{[n]}(z) = \alpha$ for all $z \in \Delta$, where $f^{[n]}$ denotes the n-fold iterate of f.

Notation. Let $\mathscr{G}_1(\mathscr{H})$ be the class of all analytic functions on \mathscr{H} , not identically zero, which map \mathscr{H} into its closure in \mathbb{C} . Let $\mathscr{G}_2(\mathscr{H})$ be the class of all analytic functions G on \mathscr{H} of the form

(2.4)
$$G(z) = -F(z)(z - ib)^2 \quad \text{for } z \in \mathcal{X},$$

where $F \in \mathcal{G}_1(\mathcal{H})$, and b is a real constant. Let $\mathcal{G}_3(\mathcal{H})$ be the class of all analytic functions G on \mathcal{H} of the form

(2.5)
$$G(z) = F(z)(\bar{\zeta} + z)(\zeta - z) \quad \text{for } z \in \mathcal{H},$$

where $F \in \mathcal{G}_1(\mathcal{X})$, and ζ is a constant belonging to \mathcal{X} .

We now take up the concrete characterization of the nontrivial generators.

(2.6) THEOREM. $\mathscr{G}(\mathscr{H}) \setminus \{0\}$ is the disjoint union of $\mathscr{G}_1(\mathscr{H})$, $\mathscr{G}_2(\mathscr{H})$, and $\mathscr{G}_3(\mathscr{H})$. If G belongs to $\mathscr{G}_1(\mathscr{H})$ (resp., G is of the form (2.4)), and if $\{\varphi_t\}$ is the semi-group corresponding to G, then for each $z \in \mathscr{H}$, $\varphi_t(z) \to \infty$ (resp., $\varphi_t(z) \to ib$) as $t \to +\infty$. If G is of the form (2.5) with corresponding semigroup $\{\varphi_t\}$, then: (i) $\varphi_t(z) \to \zeta$ as $t \to +\infty$ for each $z \in \mathscr{H}$ if and only if $F(\mathscr{H}) \subseteq \mathscr{H}$, and (ii) $\varphi_t(\zeta) = \zeta$ for $t \in \mathbb{R}^+$.

Proof. Suppose G has the form (2.5). It is easy to see that in order for (2.1) to have a solution on $\mathbb{R}^+ \times \mathcal{X}$, it suffices to show that there is a solution on $\mathbb{R}^+ \times \Delta$ of the initial-value problem,

(2.7)
$$\frac{\partial \psi(t,z)}{\partial t} = -\psi(t,z)A(\psi(t,z)), \qquad \psi(0,z) = z,$$

where A(z)=2 [Re ζ] $F((\bar{\zeta}z+\zeta)(1-z)^{-1})$ for $z\in\triangle$. For any $z\in\triangle$, and any $\tau>0$, the initial value problem $\frac{dw}{dt}=-wA(w),\,w(0)=z$ has at most one solution on

[0, τ), and the modulus of such a solution must be a decreasing function of t on [0, τ). Standard arguments with the method of successive approximations now show that (2.7) has a solution on $\mathbb{R}^+ \times \Delta$, and hence $G \in \mathscr{G}(\mathscr{H})$. Moreover, the unique solution ϕ of (2.1) is related to the unique solution ψ of (2.7) by the equation $\phi_t = L^{-1} \circ \psi_t \circ L$ for $t \in \mathbb{R}^+$, where $L(z) = (z - \zeta)(z + \overline{\zeta})^{-1}$ for $z \in \mathscr{H}$. It is obvious from (2.7) that $\psi_t(0) = 0$ for $t \in \mathbb{R}^+$. If Re F > 0 on \mathscr{H} , then Re A > 0 on Δ , and it is an easy consequence that $\psi_t(z) \to 0$ as $t \to +\infty$ for all $z \in \Delta$. Otherwise, there

is a nonzero real number α such that $A \equiv i\alpha$. But then (2.7) has the explicit solution $\psi(t,z) = e^{-i\alpha t}z$, $t \in \mathbb{R}^+$, $z \in \Delta$. The corresponding statements for $\{\phi_t\}$ establish the last sentence in the statement of (2.6).

Next, suppose G has the form (2.4). Let $\{\zeta_n\}_{n=1}^\infty$ be a sequence in $\mathscr H$ with limit ib. Put $G_n(z)=F(z)(\bar\zeta_n+z)(\zeta_n-z)$ for $z\in\mathscr H$, $n=1,2,\ldots$. Let $\varphi^{(n)}(\cdot,\cdot)$ be the semigroup corresponding to G_n . There is a constant M>0 such that $|G_n(z)|\leq M$ for $|z-1|\leq 1/2,\, n=1,2,\ldots$. From this we see that

(2.8)
$$|\phi^{(n)}(t, 1) - 1| \le 1/2$$
 for $t \in [0, (2M)^{-1}], n \ge 1$.

The analytic functions $\phi^{(n)}(t,\cdot)$ for $0 \le t \le (2M)^{-1}$, $n \ge 1$, leave \mathscr{H} invariant, and so constitute a normal family. In view of (2.8) and Hurwitz's theorem, we conclude that every limit point of this family in the usual topology leaves \mathscr{H} invariant. Straightforward reasoning shows that for each compact subset K of \mathscr{H} , $\{\phi^{(n)}(\cdot,\cdot)\}_{n=1}^{\infty}$ is equicontinuous on $[0, (2M)^{-1}] \times K$. By taking a subsequence $\{\phi^{(n_k)}(\cdot,\cdot)\}$ uniformly convergent on this compact product set, we see that for each $z \in K$ the

initial value problem $\frac{dw}{dt} = G(w)$, w(0) = z has a solution for $0 \le t \le (2M)^{-1}$. Thus

(2.1) has a solution $f(\cdot, \cdot)$ on $[0, (2M)^{-1}] \times \mathcal{H}$. Extend f to a function $g(\cdot, \cdot)$ on $[0, M^{-1}] \times \mathcal{H}$ by setting g(t, z) equal to

$$f(t - (2M)^{-1}, f((2M)^{-1}, z))$$
 for $(2M)^{-1} \le t \le M^{-1}, z \in \mathcal{H}$.

Clearly g is a solution of (2.1) on $[0, M^{-1}] \times \mathcal{H}$. Since this extension process can be repeated indefinitely, we see that (2.1) has a solution ϕ on $\mathbb{R}^+ \times \mathcal{H}$. We show next that $\phi_t(z) \to ib$ as $t \to +\infty$ for every $z \in \mathcal{H}$. Applying (2.1) to the function G in the present case, we see that for fixed $z_0 \in \mathcal{H} \operatorname{Re}[(\phi_t(z_0) - ib)^{-1}]$ has a nonnegative derivative with respect to t, and so we have:

(2.9)
$$\operatorname{Re}[(\phi_t(z_0) - ib)^{-1}] \ge \operatorname{Re}[(z_0 - ib)^{-1}] > 0 \quad \text{for } t \in \mathbb{R}^+.$$

Moreover, since |F| > 0 on \mathcal{H} , (1/G) has a primitive \tilde{G} on \mathcal{H} . From (2.1) we find that

(2.10)
$$\tilde{G}(\dot{\varphi}_t(z_0)) = t + \tilde{G}(z_0) \quad \text{for } t \in \mathbb{R}^+.$$

From (2.9) we have $\operatorname{Re} \varphi_t(z_0) \geq |\varphi_t(z_0) - \operatorname{ib}|^2 \operatorname{Re} [(z_0 - \operatorname{ib})^{-1}]$, $t \in \mathbb{R}^+$. Thus it suffices to show that $\operatorname{Re} \varphi_t(z_0) \to 0$. Also, (2.9) shows that $\varphi_t(z_0)$ is a bounded function of t on \mathbb{R}^+ . If $\operatorname{Re} \varphi_t(z_0)$ does not tend to zero as $t \to +\infty$, then there are an $\epsilon > 0$ and a strictly increasing sequence $\{t_n\} \subseteq \mathbb{R}^+$, with $t_n \to +\infty$ such that

Re
$$\phi_{t_n}(z_0) \ge \varepsilon$$
 for all n.

Thus $\{\phi_{t_n}(z_o)\}_{n=1}^{\infty}$ is contained in a compact subset K of \mathcal{H} . Since \tilde{G} is bounded on K, (2.10) gives a contradiction.

Suppose next that $G \in \mathscr{G}_1(\mathscr{H})$. Then the function $-G(z^{-1})z^2$ belongs to $\mathscr{G}_2(\mathscr{H})$ (with b=0). By what has already been shown, there is a function $\psi(\cdot,\cdot)$ on $\mathbb{R}^+ \times \mathscr{H}$

such that for each $z \in \mathcal{H}, \psi(0, z) = z, \psi(t, z) \rightarrow 0$ as $t \rightarrow +\infty$ and

$$\frac{d\psi(t,z)}{dt} = -G(\{\psi(t,z)\}^{-1}) \left[\psi(t,z)\right]^2 \quad \text{for } t \in \mathbb{R}^+.$$

It follows that the function $\phi(\cdot, \cdot)$ given by $\phi(t, z) = [\psi(t, z^{-1})]^{-1}$ is a solution to (2.1) on $\mathbb{R}^+ \times \mathcal{H}$ for the present particular G. Clearly, for each $z \in \mathcal{H}$, $\phi(t, z) \to \infty$ as $t \to +\infty$.

It is elementary that $\mathscr{G}_3(\mathscr{H})$ is disjoint from each of $\mathscr{G}_1(\mathscr{H})$ and $\mathscr{G}_2(\mathscr{H})$. The disjointness of $\mathscr{G}_1(\mathscr{H})$ and $\mathscr{G}_2(\mathscr{H})$ follows from the foregoing facts about limiting behavior, as $t \to +\infty$, of semi-groups.

To complete the proof of the theorem, suppose $G \in \mathscr{G}(\mathscr{H}) \setminus \{0\}$, with corresponding semigroup $\{\phi_t\}$, and let t_0 be a fixed positive real number such that ϕ_{t_0} is not the identity map of \mathscr{H} . Let S be the linear fractional transformation given by $S(z) = (z-1)(z+1)^{-1}$, and let $\{\psi_t\}$ be the semigroup of analytic mappings of Δ into Δ specified by $\psi_t = S \circ \phi_t \circ S^{-1}$ for $t \in \mathbb{R}^+$. Either ψ_{t_0} has a (necessarily unique) fixed point $z_0 \in \Delta$ or the Denjoy-Wolff theorem, (2.3), applies to ψ_{t_0} . In the former case, we have for $t \in \mathbb{R}^+$, $\psi_{t_0}(\psi_t(z_0)) = \psi_t(\psi_{t_0}(z_0)) = \psi_t(z_0)$. Hence z_0 is a common fixed point of the semigroup $\{\psi_t\}$. Thus $S^{-1}z_0$ (which we denote by ξ) is a common fixed point of $\{\phi_t\}$. In particular, $G(\xi)$ must vanish. Let L be the linear fractional transformation given by $L(z) = (z-\xi)(z+\bar{\xi})^{-1}$, and let $\{\tilde{\psi}_t\}$ be the semigroup on Δ defined by $\tilde{\psi}_t = L \circ \phi_t \circ L^{-1}$. Clearly, $\tilde{\psi}_t(0) = 0$ for $t \in \mathbb{R}^+$. By Schwarz's lemma, $|\tilde{\psi}_t(z)| \leq |z|$ for $t \in \mathbb{R}^+$, $z \in \Delta$. It follows that for each $z \in \Delta$, $|\tilde{\psi}_t(z)|$ is a decreasing function of t, and hence for $z \in \mathscr{H}$,

$$|\{\phi_t(z) - \zeta\}\{\phi_t(z) + \bar{\zeta}\}^{-1}|^2$$

is a decreasing function of t. Since the derivative at t=0 of this last expression does not exceed zero, simple calculations show that

$$(2.11) 0 \ge \operatorname{Re}\left[G(z)(\overline{z-\zeta})(z+\overline{\zeta})^{-1}\right] \text{for } z \in \mathcal{H}.$$

Since $G(\zeta) = 0$, there is an analytic function F on \mathcal{H} such that

$$G(z) = F(z)(\overline{\zeta} + z)(\zeta - z)$$
 for $z \in \mathcal{H}$.

Substitution of this expression for G in (2.11) easily gives the conclusion that $F \in \mathcal{G}_1(\mathcal{H})$.

There remains the case in which ψ_{t_0} does not have a fixed point. Let α correspond to ψ_{t_0} as in Theorem (2.3). It follows from Cauchy's integral formula and the Lebesgue bounded convergence theorem that $\psi_{nt_0} \to \alpha$ uniformly on compact subsets of Δ . For each $z \in \Delta$, $\{\psi_t(z): 0 \le t \le t_0\}$ is a compact subset of Δ , and so we find easily that $\psi_t(z) \to \alpha$ as $t \to +\infty$ for $z \in \Delta$. In particular, for each t > 0, ψ_t does not have a fixed point in Δ , and Theorem (2.3) allows us to deduce that

$$\operatorname{Re}\left[(\alpha+\psi_t(z))(\alpha-\psi_t(z))^{-1}\right] \geq \operatorname{Re}\left[(\alpha+z)(\alpha-z)^{-1}\right] \quad \text{ for } t>0, \, z\in\triangle.$$

It follows that for each $z \in \triangle$,

(2.12) Re
$$[(\alpha + \psi_t(z))(\alpha - \psi_t(z))^{-1}]$$
 is an increasing function of t.

At this juncture there are two possibilities to consider: $\alpha \neq 1$ or $\alpha = 1$. In the former event, there is a real number b such that $\alpha = S(ib)$, and by obvious calculations, (2.12) can be rephrased as follows: for each $z \in \mathcal{X}$,

$$\text{Re}[(ib\phi_t(z) - 1)(ib - \phi_t(z))^{-1}]$$

is an increasing function of t. If we take the derivative with respect to t of this last expression and set t=0, we find that for $z\in \mathcal{H}$, $\operatorname{Re}[G(z)(z-ib)^{-2}]\leq 0$. Hence $G\in \mathscr{G}_2(\mathcal{H})$, if $\alpha\neq 1$. On the other hand, if $\alpha=1$, then (2.12) can be rephrased to say that for each $z\in \mathcal{H}$, $\operatorname{Re}\varphi_t(z)$ is an increasing function of t. Hence $G\in \mathscr{G}_1(\mathcal{H})$, if $\alpha=1$. The proof of the theorem is complete.

Remark. It is evident from the limiting behavior of semigroups (as $t \to +\infty$) that if G has a representation in either of the forms (2.4), (2.5), then such a representation is unique.

The concrete description of $\mathcal{G}(\mathcal{H})$ in Theorem (2.6), which owes its formulation to the Denjoy-Wolff theorem, does not provide us with a unifying criterion that characterizes the class $\mathcal{G}(\mathcal{H})$. As will be seen in the proof of the next theorem, the Schwarz-Pick inequality leads to the formulation of such a criterion.

(2.13) THEOREM. Let $G: \mathcal{H} \to \mathbb{C}$ be analytic, and writing z = x + iy, let $Re\ G(z) = u(x, y)$. Then $G \in \mathcal{G}(\mathcal{H})$ if and only if

$$(2.14) x \frac{\partial u}{\partial x} \le u on \mathcal{H}.$$

Proof. Suppose $G \in \mathcal{G}(\mathcal{H})$ with corresponding semigroup $\{\phi_t\}$. For $z_0 \in \mathcal{H}$, $\phi(\cdot, \cdot)$ is analytic in (t, z) in a neighborhood of $(0, z_0)$ (as may be seen, *e.g.*, by treating t as a complex variable and using successive approximations). This gives a $\delta > 0$ such that for $0 \le t < \delta$,

(2.15)
$$\phi(t, z_0) = z_0 + G(z_0)t + O(t^2);$$

(2.16)
$$\phi'_t(z_0) = 1 + G'(z_0)t + O(t^2).$$

We know from the Schwarz-Pick inequality that for $t \in \mathbb{R}^+$, $z \in \mathcal{X}$,

$$|\phi_t'(z)| \le z^{-1} \operatorname{Re} \phi_t(z).$$

In particular,

(2.17)
$$\operatorname{Re} \, \phi_{t}'(z_{0}) \leq \left[\operatorname{Re} \, \phi_{t}(z_{0}) \right] / \operatorname{Re} \, z_{0} .$$

Substitute (2.15) and (2.16) into (2.17) to get for $0 < t < \delta$

(2.18)
$$t \operatorname{Re} G'(z_0) \le t \left[\operatorname{Re} G(z_0) \right] (\operatorname{Re} z_0)^{-1} + O(t^2).$$

Divide (2.18) by t, and let $t \to 0^+$ to obtain (2.14).

Conversely, suppose (2.14) holds. We recall some basic facts about the hyperbolic metric ρ on \mathscr{H} (see, for example, [1]). For z_1, z_2 in \mathscr{H} , $\rho(z_1, z_2) = \min \int_{\gamma}^{\gamma} (\operatorname{Re} z)^{-1} |dz|$, where the minimum extends over all paths γ in \mathscr{H} from z_1 to z_2 . The metric ρ induces the usual Euclidean topology on \mathscr{H} , and the ρ -compact sets are the subsets of \mathscr{H} which are closed and bounded with respect to ρ . Let $z_0 \in \mathscr{H}$, and suppose that for some b>0, the initial value problem $\frac{dw}{dt}=G(w)$, $w(0)=z_0$, has a (necessarily unique) solution $\varphi(t,z_0)$ for $0 \le t < b$. If we square the expression

(2.19)
$$\left| \frac{d\phi(t, z_0)}{dt} \right| / \operatorname{Re} \left(\phi(t, z_0) \right)$$

and differentiate with respect to t, we get $2|G(\varphi(t,z_0))|^2$ [Re $\varphi(t,z_0)$] $^{-3}$ multiplied by [Re $(\varphi(t,z_0))$] Re $G'(\varphi(t,z_0))$ – Re $G(\varphi(t,z_0))$. Thus by (2.14), the expression (2.19) is a decreasing function of t. Thus $\rho(z_0,\varphi(t,z_0))$ does not exceed

$$b|G(z_0)|/\operatorname{Re}\,z_0\qquad\text{for }0\leq t< b.$$

Thus $\{\phi(t, z_0): 0 \le t < b\}$ is contained in a compact subset of \mathcal{H} . Standard arguments now show that (2.1) has a solution on $\mathbb{R}^+ \times \mathcal{H}$.

(2.20) COROLLARY. $\mathcal{G}(\mathcal{H})$ is a cone with vertex at 0 in the linear space of all analytic functions on \mathcal{H} .

Suppose next that G (resp., \tilde{G}) belongs to $\mathscr{G}(\mathscr{H})$ with corresponding semigroup $\{\varphi_t\}$ (resp., $\{\tilde{\varphi}_t\}$), and $\lambda > 0$. Theorem (2.13) and Corollary (2.20) do not provide a method for constructing the semigroups corresponding to λG and $(G + \tilde{G})$ from $\{\varphi_t\}$ and $\{\tilde{\varphi}_t\}$. The semigroup corresponding to λG is obviously given by $\varphi(\lambda t, z)$. We sketch a method for obtaining the semigroup $\{\psi_t\}$ corresponding to $(G + \tilde{G})/2$. For each positive integer n, we construct an "approximate semigroup" $\psi_n(\cdot, \cdot)$ on $\mathbb{R}^+ \times \mathscr{H}$ satisfying the requirements: for each $z \in \mathscr{H}$,

$$(2.21) \qquad \frac{d\,\psi_n(t,z)}{dt} = \begin{cases} G(\psi_n(t,z)) & \text{ for } 2kn^{-1} \leq t \leq (2k+1)n^{-1}, \, k=0,\,1,\,2,\,\dots\,, \\ \\ \tilde{G}(\psi_n(t,z)) & \text{ for } (2k+1)n^{-1} \leq t \leq 2(k+1)n^{-1}, \\ \\ k=0,\,1,\,2,\,\dots\,; \end{cases}$$

where the differential equations indicated in (2.21) involve only one-sided derivatives at the end-points of the indicated intervals. The construction of ψ_n is accomplished

by repeated alternate use of the global solutions ϕ and $\bar{\phi}$ in appropriate initial value problems. It is easy to see that for each $t \in \mathbb{R}^+$, $\psi_n(t,\cdot)$ is an analytic map of \mathscr{H} into \mathscr{H} . Using (2.21), we find that there is a positive t_0 such that

$$|\psi_n(t, 1) - 1| < 2^{-1} \quad \text{for } 0 \le t \le t_0, \, n = 1, 2, \dots$$

Let \mathscr{F} be the family of functions on \mathscr{H} given by $\{\psi_n(t,\cdot)\colon t\in[0,t_0],\,n=1,2,\ldots\}$. As in the proof that $\mathscr{G}_2(\mathscr{H})\subseteq\mathscr{G}(\mathscr{H})$ (Theorem (2.6)), we see that \mathscr{F} is a normal family such that every limit point of \mathscr{F} in the usual topology leaves \mathscr{H} invariant. With the aid of this, we find that $\{\psi_n(\cdot,\cdot)\}$ is equicontinuous on compact subsets of $[0,t_0]\times\mathscr{H}$. Thus we arrive at a subsequence $\{\psi_{n_k}(\cdot,\cdot)\}$ which converges uniformly on compact subsets of $[0,t_0]\times\mathscr{H}$. It follows from (2.21) that the limit ψ satisfies, on $[0,t_0]\times\mathscr{H}$,

(2.23)
$$\frac{\partial \psi(t,z)}{\partial t} = 2^{-1} \left[G(\psi(t,z)) + \tilde{G}(\psi(t,z)) \right], \quad \psi(0,z) = z.$$

As before, we can extend ψ so as to satisfy (2.23) on $\mathbb{R}^+ \times \mathcal{H}$.

3. SEMI-GROUPS OF COMPOSITION OPERATORS ON HARDY SPACES OF THE DISC

We begin this section with the observation that Proposition (2.2), together with the remarks in Section 2 leading up to it, remains true word for word if $\mathcal H$ is replaced by \triangle throughout.

Notation. Let $\mathscr P$ be the class of all analytic functions F on \triangle such that $Re\ F \ge 0$, and F is not the zero function. Let $\mathscr A$ be the class of all functions G on \triangle of the form

(3.1)
$$G(z) = \bar{\alpha} F(z)(z - \alpha)^2,$$

where $|\alpha| = 1$, $F \in \mathcal{P}$. Let \mathcal{B} be the class of all functions G on \triangle of the form

(3.2)
$$G(z) = F(z)(\bar{\beta}z - 1)(z - \beta),$$

where $\beta \in \Delta$, $F \in \mathcal{P}$.

In the preceding notation, Theorem (2.6) and the remark immediately following it can be rephrased as follows.

(3.3) THEOREM. $\mathscr{G}(\Delta) \setminus \{0\}$ is the disjoint union of \mathscr{A} and \mathscr{B} . If G has the form (3.1), then its corresponding semigroup $\{\varphi_t\}$ satisfies: $\varphi_t(z) \to \alpha$ as $t \to +\infty$ for each $z \in \Delta$. If G has the form (3.2), then for its corresponding semigroup $\{\varphi_t\}$ we have: (i) $\varphi_t(z) \to \beta$ as $t \to +\infty$ for each $z \in \Delta$ if and only if Re F > 0 on Δ ; and (ii) $\varphi_t(\beta) = \beta$ for all $t \in \mathbb{R}^+$. A representation in either of the forms (3.1), (3.2) is unique.

We remark in passing that, as would be expected, the description of $\mathscr{G}(\mathbb{C})$ contrasts with that of $\mathscr{G}(\Delta)$. Since a univalent entire function is a first degree polynomial, it is easy to see that $\mathscr{G}(\mathbb{C})$ consists of the constant functions and the first degree polynomials.

If $0 and <math>\psi$ is an analytic map of \triangle into \triangle , then, as is well known, ψ induces a continuous linear transformation C_{ψ} : $H^p(\triangle) \to H^p(\triangle)$ defined by the formula $C_{\psi}f = f \circ \psi$ [4, p. 29]; C_{ψ} is called the composition operator on $H^p(\triangle)$ induced by ψ . For fixed p, the correspondence between analytic maps of \triangle into itself and the composition operators they induce is one-to-one, since $\psi = C_{\psi}\chi_1$ (from now on, χ_n denotes the function given by $\chi_n(z) \equiv z^n$, n = 0, 1, 2, ...).

(3.4) THEOREM. Suppose $1 \le p < \infty$. There is a one-to-one correspondence between $\mathcal{S}(\Delta)$ and the strongly continuous one-parameter semigroups of composition operators on $H^p(\Delta)$. For $\{\varphi_t\} \in \mathcal{S}(\Delta)$, the corresponding semigroup of composition operators is given by:

(3.5)
$$T_t f = f(\phi_t) \quad \text{for } t \in \mathbb{R}^+, f \in H^p(\Delta).$$

Proof. Suppose $\{\phi_t\} \in \mathscr{S}(\Delta)$. We show that the semigroup $\{T_t\}$ defined by (3.5) is strongly continuous on $H^p(\Delta)$. For each $t \in \mathbb{R}^+$, let $\sum_{n=0}^{\infty} a_{n,t} z^n$ be the Maclaurin series expansion for ϕ_t . Since each ϕ_t is univalent (Proposition (2.2) applied to Δ), we have by the area theorem [5, Lemma 1.1]

$$(3.6) \sum_{n=1}^{\infty} n |a_{n,t}|^2 \le 1 \text{for } t \in \mathbb{R}^+.$$

It follows from (3.6) that $\{\varphi_t : t \in \mathbb{R}^+\}$ is a totally bounded subset of $H^2(\Delta)$. Suppose $\{t_n\} \subseteq \mathbb{R}^+$ and $t_n \to s$. Then there are a subsequence $\{t_{n_k}\}$ and an $f \in H^2(\Delta)$ such that $\|\varphi_{t_{n(k)}} - f\|_2 \to 0$. In particular, for each $z \in \Delta$, $\varphi_{t_{n(k)}}(z) \to f(z)$. But $\varphi_t(z)$ is a continuous function of t, and so $\|\varphi_{t_{n(k)}} - \varphi_s\|_2 \to 0$. Consequently, the map $t \mapsto \varphi_t$ is continuous from \mathbb{R}^+ into $H^2(\Delta)$. If we go out to the boundary |z| = 1, and use the Lebesgue bounded convergence theorem, we see that $t \mapsto \varphi_t$ is continuous from \mathbb{R}^+ into $H^p(\Delta)$, and in fact for each polynomial $P, t \mapsto T_t P$ is continuous from \mathbb{R}^+ into $H^p(\Delta)$. Since for each $t \in \mathbb{R}^+$

$$||T_t|| \le [(1 + |\phi_t(0)|)(1 - |\phi_t(0)|)^{-1}]^{1/p},$$

 $\{T_t\}$ is uniformly bounded on compact subsets. Since the polynomials are dense in $H^p(\Delta)$, it follows from the foregoing that $\{T_t\}$ is strongly continuous.

Conversely, suppose $\{T_t\}$ is a strongly continuous semigroup of composition operators on $H^p(\Delta)$, and let $\{\phi_t\}$ be the family of holomorphic functions satisfying (3.5). By strong continuity (applied to χ_1), $t \mapsto \phi_t$ is continuous from \mathbb{R}^+ into $H^p(\Delta)$. The continuity of $\phi(\cdot, \cdot)$ on $\mathbb{R}^+ \times \Delta$ follows easily by Cauchy's integral formula.

(3.7) THEOREM. Suppose $1 \leq p < \infty$, and $\{\phi_t\} \in \mathcal{S}(\Delta)$. Let G be the infinitesimal generator of $\{\phi_t\}$, $\{T_t\}$ the semigroup of composition operators in (3.5), and Γ the infinitesimal generator of $\{T_t\}$. Then the domain of Γ , $\mathcal{D}(\Gamma)$, consists of all $f \in H^p(\Delta)$ such that $Gf' \in H^p(\Delta)$, and $\Gamma(f) = Gf'$ for $f \in \mathcal{D}(\Gamma)$.

Proof. If $\phi_t = \chi_1$ for $t \in \mathbb{R}^+$, the assertion is trivial. Thus we assume that $G \in \mathscr{G}(\Delta) \setminus \{0\}$. Since $T_t \chi_0 = \chi_0$, $\|T_t\| \ge 1$ for $t \in \mathbb{R}^+$. By [3, Lemma VIII.1.4 and Theorem VIII.1.11], $\omega_0 = \lim_{t \to +\infty} t^{-1} \log \|T_t\|$ exists, $0 \le \omega_0 < +\infty$, and if Re λ > ω₀, then λ is in the resolvent set of Γ. The description of $\mathscr{D}(\Gamma)$ in the statement of the present theorem certainly defines a linear manifold M in $H^p(\Delta)$. The linear transformation $\mathscr{E}: M \to H^p(\Delta)$ given by $\mathscr{E}f = Gf'$ clearly extends Γ.

Suppose first that G has the form (3.1). In particular, |G| > 0 on \triangle . Let h be a primitive on \triangle of (1/G). Then for $t \in \mathbb{R}^+$, $z \in \triangle$,

(3.8)
$$h(\phi(t, z)) = t + h(z).$$

Pick $r > \max\{\omega_0, \log[(1+|\varphi(1,0)|)(1-|\varphi(1,0)|)^{-1}]\}$. We show that $(\mathscr{E}-r)$ is one-to-one. Suppose $f \in H^p(\Delta)$, and Gf' = rf on Δ . There is a complex constant K such that f = K exp (rh). From this and (3.8) we see that for $t \in \mathbb{R}^+$, $f(\varphi_t) = e^{rt}f$. Thus $e^{rt} \|f\|_1 \le (1+|\varphi_t(0)|)(1-|\varphi_t(0)|)^{-1} \|f\|_1$. If f is not the zero function, then by taking t=1 in this last inequality, we get a contradiction to the choice of f. Since $(\mathscr{E}-r)$ is one-to-one and extends (f-r), while the range of the latter is f is f it follows that f is f it follows that f is f in the same f in the same f is f in the same f in the same

Suppose, finally, that G has the form (3.2). If λ is a complex number, and f is an analytic function on Δ such that f is not the zero function and $Gf' = \lambda f$ on Δ , then pick r such that $|\beta| < r < 1$, and f has no zeros on |z| = r. We have:

(3.9)
$$(2\pi i)^{-1} \int_{|z|=r} [f'(z)/f(z)] dz$$

$$= (2\pi i)^{-1} \int_{|z|=r} [\lambda/G(z)] dz = \lambda [F(\beta)(|\beta|^2 - 1)]^{-1}.$$

By virtue of the argument principle, we infer that the set of eigenvalues of \mathscr{E} is countable in this case. In particular, we can choose a real number $\lambda > \omega_0$ such that $(\mathscr{E} - \lambda)$ is one-to-one. As in the previous case, $\mathscr{E} = \Gamma$, and the proof is complete.

(3.10) COROLLARY. If $1 \le p < \infty$, and $\{T_t\}$ is a strongly continuous one-parameter semigroup of composition operators on $H^p(\triangle)$, then $\{T_t\}$ has a bounded infinitesimal generator if and only if T_t is the identity operator for every $t \in R^+$.

Proof. Suppose the infinitesimal generator Γ of $\{T_t\}$ is a bounded operator on $H^p(\Delta)$. Then, in the notation of Theorem (3.7), $\Gamma(f) = Gf'$ for every $f \in H^p(\Delta)$. Taking f to be χ_1 , we see that $G \in H^p(\Delta)$. By taking f to be χ_n , n = 1, 2, ..., we see that $n \|G\|_p \leq \|\Gamma\|$. Hence $G \equiv 0$.

4. AN EIGENVALUE PROBLEM.

In this section we examine the point spectrum of the infinitesimal generator for a certain type of semigroup of composition operators. An interplay will arise between the foregoing circle of ideas and potential theory. Let F be an analytic function on \triangle such that Re F > 0 and F(0) > 0. The Herglotz representation gives a Borel measure μ on the unit circle K, with $\mu \ge 0$, $\mu(K) > 0$ such that

(4.1)
$$1/F(z) = \int_{K} (w+z)(w-z)^{-1} d\mu(w).$$

Clearly any such measure μ can arise in (4.1) by suitable initial choice of F. We rewrite (4.1) in the form

(4.2)
$$1/F(z) = [1/F(0)] \int_{K} (w+z)(w-z)^{-1} d\sigma(w),$$

where $\sigma \geq 0$, $\sigma(K) = 1$. Let G(z) = -zF(z). By Theorem (3.3), G is the infinitesimal generator of a semigroup of holomorphic mappings of \triangle into \triangle . For $1 \leq p < \infty$, let Γ_p be the infinitesimal generator of the corresponding semigroup of composition operators on $H^p(\triangle)$. It is apparent from (3.9) that the point spectrum of Γ_p is a subset of $\{-F(0)k: k = 0, 1, 2, ...\}$. The null space of Γ_p is the set of all constant functions. We have:

(4.3) THEOREM. Suppose $1 \le p < \infty$. For each positive integer k, -F(0)k belongs to the point spectrum of Γ_p if and only if $H^p(\Delta)$ contains the function E_k given by

(4.4)
$$E_{k}(z) = \exp\left[-k \int_{0}^{z} \zeta^{-1} (F(\zeta) - F(0)) (1/F(\zeta)) d\zeta\right].$$

In this case, the eigenmanifold corresponding to -F(0)k is the span of the function $z^k E_k(z)$.

Proof. If -F(0)k is in the point spectrum, and f is a non-zero vector in $\mathscr{Q}(\Gamma_p)$ such that Gf' = -F(0)kf, then it follows from (3.9) that there is an analytic function g on \triangle such that $f(z) = z^k g(z)$ and |g| > 0 on \triangle . Obvious simplification of the equation zF(z)f' - kF(0)f = 0 gives $g' + k[zF(z)]^{-1}(F(z) - F(0))g = 0$. The theorem follows easily.

If we use (4.2) in the integral in (4.4) and interchange the order of integration, we see that this integral is equal to $-2\int_{K}\log\left[1/\left(1-\bar{w}z\right)\right]\,d\sigma\left(w\right)$, where "log" denotes the principal branch of the logarithm. In view of this, the next proposition is a corollary of Theorem (4.3).

(4.5) PROPOSITION. The point spectrum of Γ_{p} is

$$\{-F(0)k: k = 0, 1, 2, ...\}$$
 for all $p \in [1, \infty)$

if and only if the function eg given by

(4.6)
$$e_{\sigma}(z) = \exp \left[\int_{K} \log \left\{ 1/\left(1 - \bar{w}z\right) \right\} d\sigma(w) \right] \quad \text{for } z \in \triangle$$

belongs to $H^p(\triangle)$ for all finite p.

In view of Proposition (4.5), we shall concentrate throughout the remainder of this section on functions of the form (4.6).

(4.7) THEOREM. Let ν be a finite positive measure on the Borel sets of K, and suppose ϵ is a positive number such that K can be covered by a finite collection of closed arcs $J_1, ..., J_n$ with $\nu(J_k) < \epsilon$ for k = 1, 2, ..., n. Then $e_{\nu} \in H^p(\Delta)$ for $p < \epsilon^{-1}$.

Proof. There is no loss of generality in making the further assumption that each J_k is a proper subset of K. For each k, let S_k be the sector $\{rw: r \in [0,1], w \in J_k\}$. If η is any positive number, we strictly extend each J_k at both end-points so as to obtain a larger closed arc \tilde{J}_k , still a proper subset of K, such that $\nu(\tilde{J}_k) < \varepsilon + \eta$. The distance between S_k and $K \setminus \tilde{J}_k$ is a positive number a_k . Let m denote normalized Lebesgue measure on K, and let p be any positive real number. For $z \in J_k$,

$$|e_{\nu}(rz)|^{p} \leq a_{k}^{-p\nu(K \setminus J_{k})} \exp \left[\int_{J_{k}} \log\{1/|w-rz|^{p}\} d\nu(w) \right].$$

Application of the arithmetic-geometric mean inequality to the integral in (4.8) yields

$$|e_{\nu}(rz)|^{p} \leq a_{k}^{-p\nu(K \setminus \tilde{J}_{k})} [\nu(\tilde{J}_{k})]^{-1} \int_{\tilde{J}_{k}} |w - rz|^{-p\nu(\tilde{J}_{k})} d\nu(w)$$

(if $\nu(\tilde{J}_k) = 0$, the last two factors are deleted from the majorant in (4.9)). Integration of (4.9) with respect to m and interchange of the order of integration give

$$\int_{J_k} \left|\,e_{\nu}(rz)\,\right|^p \! dm(z) \leq \, a_k^{\,-p_{\nu}(K \, \smallsetminus \, \tilde{J}_k)} \, \int_{\,K} \left|\,1 \, - \, rz\,\right|^{\,-p_{\nu}(\,\tilde{J}_k)} \, dm(z) \; .$$

We see then that $e_{\nu} \in H^p(\Delta)$ if $p\nu(\tilde{J}_k) < 1$ for k = 1, 2, ..., n. Thus $e_{\nu} \in H^p(\Delta)$ for $p < (\epsilon + \eta)^{-1}$, where η is an arbitrary positive number. The desired conclusion follows.

(4.10) THEOREM. If v is a finite positive measure on the Borel sets of K, then $e_v \in H^p(\triangle)$ for all finite p if and only if v annihilates singletons.

Proof. The "if" part is immediate from Theorem (4.7). On the other hand, suppose $z_0 \in K$, and $\nu(\{z_0\}) > 0$. Then $|e_{\nu}(rz_0)| \ge 2^{-\nu(K \setminus \{z_0\})} (1-r)^{-\nu(\{z_0\})}$. If $0 and <math>e_{\nu} \in H^p(\Delta)$, then $|e_{\nu}(rz_0)| = 0((1-r)^{-1/p})$. It follows that $p \le [\nu(\{z_0\})]^{-1}$.

We conclude this section by investigating conditions sufficient to insure that $e_n \in H^{\infty}(\Delta)$, or, equivalently, that the logarithmic potential u_n given by

(4.11)
$$u_{\nu}(z) = -\int_{K} \log |w - z| d\nu(w), \quad z \in \Delta,$$

is bounded. We recall that by a standard application of Fubini's theorem the right-hand side of (4.11) defines (m-almost everywhere on K) a function of z belonging to L^1 (dm) whose Poisson integral is u_{ν} .

- (4.12) THEOREM. Let ν be a finite positive measure on the Borel sets of K, and define f_{ν} on $[0, 2\pi]$ by setting $f_{\nu}(t) = \nu\{e^{iu}: 0 < u \le t\}$. Either of the following conditions is sufficient for e_{ν} to be in $H^{\infty}(\Delta)$:
- (i) ν is absolutely continuous, and the Radon-Nikodym derivative $\frac{d\nu}{dm}$ belongs to L \log^+ L;
- (ii) if ω_{ν} denotes the modulus of continuity of f_{ν} then $t^{-1}\omega_{\nu}(t)$ is integrable on $0 \le t \le 2\pi$.

Proof. Without loss of generality, we assume that $\nu(K) = 1$. Let F be an analytic function on \triangle such that Re F > 0, F(0) > 0, and (4.2) holds with σ replaced by ν . Then by virtue of the discussion just preceding Proposition (4.5),

$$e_{\nu}(z) = \exp \left[-2^{-1} \int_{0}^{z} \zeta^{-1} (F(\zeta) - F(0)) (1/F(\zeta)) d\zeta \right].$$

Differentiation with respect to z gives,

(4.13)
$$e'_{\nu}/e_{\nu} = -(2z)^{-1}[1 - (F(0)/F(z))].$$

The left-hand side of (4.13) is the derivative of $\int_K \log \left[1/(1-\bar{w}z)\right] d\nu(w).$ The right-hand side of (4.13) belongs to $H^1(\triangle)$ if and only if 1/F belongs to $H^1(\triangle)$. In view of [4, Theorems 4.3 and 4.4] and (4.2), we see that this last condition is equivalent to (i). Thus, if (i) holds, then it follows from Hardy's inequality that $H^\infty(\triangle)$ contains $\int_K \log \left[1/(1-\bar{w}z)\right] d\nu(w).$

Suppose next that (ii) holds. Let γ be the measure $(\nu - m)$. Although γ is not a positive measure, we define f_{γ} and ω_{γ} by analogy with the definitions of f_{ν} and ω_{ν} Clearly, $t^{-1}\omega_{\gamma}(t)$ is integrable on $[0, 2\pi]$ and $f_{\gamma}(0) = f_{\gamma}(2\pi) = 0$. Since, for all $z \in \Delta$,

$$\int_{K} \log |w - z| dm(w) = 0,$$

we have

$$u_{\nu}(z) = -\int_{K} \log |w-z| \, d\gamma(w) = -\int_{0}^{2\pi} \log |e^{it}-z| \, df_{\gamma}(t), \qquad z \in \triangle.$$

Integration by parts on the right-hand side of this last equation gives

(4.14)
$$u_{\nu}(z) = -2^{-1} \int_{0}^{2\pi} f_{\gamma}(t) \operatorname{Im} [(e^{it} + z)(e^{it} - z)^{-1}] dt.$$

Since $t^{-1}\omega_{\gamma}(t)$ is integrable on $[0, 2\pi]$, it follows by [8, Theorem III.13.30] that the conjugate function of f_{γ} is continuous. It follows easily that u_{γ} is bounded.

Remarks. (1) The discussion in [8, p. 197] shows the existence of a positive singular measure ν_0 on K having total mass 1 such that f_{ν_0} satisfies a Lipschitz condition. By Theorem (4.12)-(ii), $e_{\nu_0} \in H^{\infty}(\Delta)$. Thus the absolute continuity of ν is not a necessary condition for e_{ν} to be bounded. (2) The absolute continuity of ν is not a sufficient condition for e_{ν} to be bounded. For, suppose to the contrary that for every real function $f \in L^1(m)$, the convolution $g * f \in L^{\infty}(m)$, where g is defined by $g(z) = -\log|1-z|$ for $z \in K$. By the closed graph theorem, there is a constant B > 0 such that $\|f * g\|_{\infty} \le B\|f\|_1$ for all real $f \in L^1(m)$. Let $\{f_n\}$ be the Fejér kernel. By Alaoglu's theorem, there are a $\psi \in L^{\infty}(m)$ and a subnet $f_{n_j} * g$ which converges weak-star in $L^{\infty}(m)$ to ψ . Since $\|f_n * g - g\|_1 \to 0$, we are led to the absurd conclusion that $g \in L^{\infty}(m)$.

REFERENCES

- 1. L. Ahlfors, Conformal invariants: topics in geometric function theory. McGraw-Hill, New York, 1973.
- 2. E. A. Coddington and N. Levinson, *Theory of ordinary differential equations*. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
- 3. N. Dunford and J. T. Schwartz, *Linear operators. I. General Theory.* Pure & Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, 1958.
- 4. P. Duren, *Theory of H^p spaces*. Pure and Applied Mathematics, Vol. 38. Academic Press, New York-London, 1970.
- 5. W. Hayman, *Multivalent functions*. Cambridge Tracts in Mathematics and Mathematical Physics, No. 48. Cambridge University Press, Cambridge, 1958.
- 6. M. H. Heins, On the pseudo-periods of the Weierstrass zeta functions. II. Nagoya Math. J., 30 (1967), 113-119.
- 7. W. Hurewicz, Lectures on ordinary differential equations. The Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass.; John Wiley & Sons, Inc., New York, 1958.
- 8. A. Zygmund, *Trigonometric series*. 2nd ed., Vol. I. Cambridge University Press, New York, 1959.

Department of Mathematics University of Illinois Urbana, Illinois 61801