ON SOME CLASS NUMBER RELATIONS OF ALGEBRAIC TORI
Jih-Min Shyr

1. INTRODUCTION

A formula has long been known for expressing the class number h of a finite
algebraic number field k in terms of other arithmetic invariants; namely

1/2

(1) p = Wldlt2e
2T (2m)tR

where w is the number of roots of unity contained in k, d is the discriminant of Kk,
p is the residue at s = 1 of the Dedekind zeta function of k, R is the regulator of Kk,
and r (resp. 2t) is the number of real (resp. complex) imbeddings of k into C. This
is equivalent to the fact that the volume of the compact group k_}\ /k* is equal to p,
where kk and k* are the group of k-idele with volume 1 and the group of nonzero
elements of k, respectively (cf. [9]). Or, in the language of algebraic groups, (1) is
equivalent to the fact that the Tamagawa number of the algebraic torus R, /Q(Gm)
over Q is 1 (f. [6]), Ry, being the Weil functor of restricting the field of defini-
tion from k to Q {cf. [101). In view of the above interpretation, we shall generalize
(1) to a formula for the class number of an algebraic torus T defined over ® which
has the same form as (1) except a factor involving the Tamagawa number of T.
From this generalized class number formula, we obtain a relation which expresses
the relative class number of two isogenous tori in terms of their Tamagawa numbers
and certain indices of the maps induced naturally by an isogeny between them. We
shall also indicate how the above-mentioned class number relation can be applied to
the studies of totally positive binary quadratic forms over totally real algebraic
number fields and norm forms of algebraic number fields. The details will be dis-
cussed elsewhere.

In this paper, we shall use the following standard notations: Z for the ring of
rational integers; ®, IR, and C for the fields of rational, real, and complex num-
bers; IR’j for the multiplicative group of positive real numbers; § for a universal
domain containing ®; R* for the multiplicative group of invertible elements of a
ring R; [G] for the order of a group G; and Ker @, Im @, and Cok @ for the
kernel, image, and cokernel of a homomorphism a.

Let G, G' be commutative groups, @ a homomorphism G — G'. If Ker «,
Cok a are both finite, we define the q-symbol of a by q(a) = [Cok a]/[Ker a].

2. PRELIMINARIES

We shall start by recalling some basic definitions and results on algebraic tori.
We refer to [5], [6] for the details. Let T be an algebraic torus defined over a field

k. We denote T by Z-module Hom(T, Gm) of rational characters of T. An exten-
sion K of k is called a splitting field of T if T = (T)kx, where (T)x denotes the
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submodule of T consisting of rational characters defined over K. We say that T
splits over K or T is split by K if K is a splitting field of T. The torus T always
splits over a finite separable extension of k. Let K be a finite Galois extension of k

such that T splits over K. Then the Galois group G of K over k acts on T. Hence,
T becomes a Z-free G-module of rank equal to the dimension of T. It is well known
that the map T — T defines an isomorphism between the category ¢ (K/k) of tori

defined over k and split by K, and the dual of the category @ (K/k) of finitely gener-
ated Z-free G-modules. Moreover, for T, T' € €(K/k), T is isogenous to T' over

k if and only if T(X) @ is isomorphic to T'X)® as G-modules with G acting
trivially on Q.

Let k/kg be a finite separable field extension, and K/k a finite extension such
that K/k, is Galois, then the Weil functor Rk/ko of restricting the field of defini-

tion from k to k; maps @ (K/k) into €(K/ky). Moreover, we have the following
identifications;

/\' A

Ry /1, (T) = Z[Gol ® z[G]T;
Gy, G being the Galois groups of K/k, and K/k respectively, and

. /\
Rk/kO(T)kO = Tk and (T)k = (Rk/kO(T))kO .

For T, T' € €(K/k), let A: T — T' be an isogeny defined over k. Then Rk/ko(h) is
an isogeny of Rk/ko(T) — Rk/kO(T') defined over kg, and

~ A T /\
A((T')k) = Rk/ko(h) (Rk/kO(T')kO)

under the above identification.

A sequence of homomorphisms of tori:

(2) 1o L8 oy

is called an exact sequence if it is exact in the usual sense and f, g are separable.
We say that the sequence (2) is exact over k if it is exact and T, T', T", f, g are
all defined over k. Let the sequence (2) be exact over k. Then, T € ¥ (K/k) if and
only if T', T" € #(K/k), and T is isogenous to T' X T" over K.

From now on, k denotes a finite algebraic number field. We denote by v a
prime of k. To each prime v of Kk, let HV denote the corresponding normalized
valuation of v, k,, the completion of k with respect to | lv, and U,, the group
{x € k,: lev = 1}. Then, for each prime v, we have a locally compact group Tkv
consisting of points in T which are rational over k,. For the sake of simplicity,
we shall denote by Ty , (’i‘)kv by T, (T), respectively. We define

TS = {x € T,: x(x) € U, for all x € (T),}.

Then TS is the unique maximal compact subgroup of T, . For a finite set S of
primes of k containing the set S,, of all infinite primes of k, we set
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Ta@S) = Il T, x II TS,
vES VQIS

with the product topology. Let T, be the inductive limit of TA(S) with respect to S.
Then T, is a locally compact abelian group which is called the adele group of T
over k. By imbedding T, into Tp diagonally, we identify T, with a discrete sub-
group of Tp. We put Ty (S) = T N TA(S) and call it the S-unit group of T over k.
Then T, (S) is the direct product of the finite group Ty N TR and of a group iso-

morphic to Zx(S)-r , where Tf\ = H TC with v ranging over all primes of Kk,

r= rank(T)k, and r(S) = ZvES rank(T) (cf. [8]). Let kA denote the group of
k-idele with volume 1. We define T = {x € Tt X(x) e k1 for all X € (T)k} By
Artin’s product formula Ty is actually contained in T} . It is well known that the
quotient group T! /'I‘k is compact. This implies that the index

hp(S) = [Tp: Ty - TA(S)]

is finite. The number h7(S) is called the S-class number of T over k. When
S =S, hT(S) is called simply the class number of T over k and denoted by h.

Let k, be a subfield of k. Then we have the following canonical isomorphisms:

Ry /1y Ty = }T T,, and (Ry)y (TN = Ty,
\'4 VO

C

where v, is a prime of k;, and the product runs over all primes v of k lying above
vg . Moreover, by the maximal compactness, we have Rk/kO(T) ~ 1 v .

vo — v/vo T

Let T, T' be tori defined over k, and Ax: T — T' an isogeny defined over k. The
isogeny A: T — T' induces naturally the following maps:

Ay T, — Ty, Ao Ty — TS,

A(S): T(S) — Ti(8), (s (P = (T,

Then, the q-symbols of A, AS, A(S), (A, (R), are defined for any prime v of k
and any S. Moreover, we have the following equalities:

ARy /1, (My,) = }I ax
v VO

II 409,

v/v0

ARy /3, (V5 )

q(Rk/kO(K)kO(SO)) = q(hk(S)),

T T — ~
o1 Mr) = (@),
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where S is the set of all primes v lying above vy, vg € Sg. If T, T' € #(K/k),
then q(A7) =1 if v is a finite prime unramified relative to K/k and the residue
class characteristic of v is prime to the degree of A.

3. A CLASS NUMBER RELATION FOR ALGEBRAIC TORI

In the present section, we shall consider algebraic tori defined over @ only.
Let X;, 1<i<r=rank(T)y, be a Z-basis of (T)p. Define a map

A: Tp — (RY)T

by Ax) = (| x;&®) || o) <i<r» X € Tp, where ||l@ denotes the idele volume of Q.
Then A induces the following isomorphism:

A: Ta /TH = (RY)T.

Let df be the pullback of the product measure A1 1 t; dt on (1R+) by means of

1
A, dTp the canonical discrete measure on the discrete group T, and d(TA /Tgp)

the normahzed Haar measure on the compact group TA /T . Matching dt,
TA /Tg), dTq together topologically (cf. [10]), we obtain a Haar measure
on TA
For each prime v of Q, let &, 1<i<r, = rank(T),, be a Z-basis of (T),
r
Define a map A,: T, — (RY) ¥ by A, (x) = (|§&)|,)) <i<r » X € T,. Then A,
="y

induces the following isomorphism:

Tr
(R)) ¥ if v=oo
. ¢
A,: T, /TS ~

A if v=p.

r
We denote by dt_ (resp. dt.) the pullback of the product measure A% t.'l dt. on
o i=1 i 1

r r
(R}) © (resp. the canonical discrete measure on Z F) by means of X, , and by
dT$ the normalized Haar measure on the compact group Ty . Matching dt, and
dT,\C, together topologically, we obtain a measure v, on T,. Clearly, II vp(T;) is

absolutely convergent, and hence HV v, defines a Haar measure on Tp which will
be denoted by v..

Now, let w be an invariang gauge form on T defined over ®. Then, w induces

canonically a Haar measure w, on T, (c¢f. [10]). Since Hp wp(Ty) is not abso-
lutely convergent, we shall introduce a set of canonical convergence factors for

{w,}, inthe following way. Let K be a finite Galois extension of @ such that T
splits over K. Then, T can be converted as a G-module, G being the Galois group

of K/Q. Let L(s) be the Artin L-function L(s, x 1 : K/®Q) defined by the G-module

T (cf.\ [1], [2]), and L(s) = H L ) be its Euler product. We can choose a suffi-
ciently large finite set S of prlmes of @ containing the infinite prime <« such that

L, (1) wp(T;) =1 for all p ¢ S (¢f. [5]). Then w Hp L,(1) w, defines a Haar
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measure on T which is independent of the choice of a splitting field for T. We call
this measure the Tamagawa measure on Tp and denote it by wT. For a torus T'
in € (k/®) isogenous to T over ®, we have recalled in Section 1 that the G-module

T'®) Q is equivalent to the G-module T(X) ®. Therefore, T and T' have the same
set of canonical convergence factors.

The character X of thehG-module T (in the sense of group representation)

can be expressed as X = Ej:1 m; X, my € Z, m, >0, m,; =r, where X.,
1 <j<h, are irreducible characters of G with x; the principle character. By the

h
properties of Artin L-functions (cf. [1], [2]), we have L(s) = {(s)” H':z L(s, x) 9,

¢(s) being the Riemann {-function. Since L(1, X;), j > 2, is nonzero (¢/. [3]), the
limit
h

pp = lim (s - )7L(s) = IT L1, )™
s 1 =2

is nonzero and finite. Moreover, p1 is independent of the choice of a splitting field
for T (cf. [5]). We shall call pp the quasi-residue of T over ®. The Tamagawa

number 7. of T over Q® is defined to be the total measure on the compact group
TA /TQ w1th respect to the measure m on TA /TQ such that d¥, m, dTQ give the
measure pTl W on T when matched together topologically. By the uniqueness of
Haar measures on a locally compact group, there is a positive constant ¢, depend-
ingon T and @ only, such that wp = ¢ v . The number Dy = 1/cT will be called
the quasi-discriminant of T over Q.

In order to find a relation among the arithmetic invariants of T over @, we
shall compare the three Haar measures [, Vp, Wp. ThlS will be done by evalu-
ating these three measures on a fundamental domain for Tl A / TQ Put

T) () = T} N T, ().

Then, T} () =Tk x II Tp, where Te = {x € Too! |X®)|e = 1 for all x € (T)g}.
Let £, 1<i<r,= rank (T).,, be a Z-basis of (T) such that £,

1<i<r = rank(T)q,

form a Z-basis of ('i‘)Q (note that the existence of such a Z-basis for (T), is

r
guaranteed; cf. [5], p. 130, Footnote 23). Let &, be a map T, > IR * defined by
@, (x) = (log|& (%) o)y < . Then & is surjective with kernel TS and we have

0 i 1 _§1Sroo 0 oo
1 roo-r

$,(T,) = {0} x -+ x {0} xRx---xR ~ R
\_"\/\/ N,
r r

We have remarked in Section 1 that the unit group Tp(~) of T over @ has the fol-
lowing decomposition:

To(®) = (Tp N TR) X E,
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where E is Z-free of rank r, - r. Let ej, r+ 1<j<re, bea Z-basis of E.
Then we have r,, - r linearly independent vectors

T
P (e;) = Mloglﬁrﬂ(ej)lw, ey loglérm(ej)lw), r+1<j<ry,in R "

r

(cf. [5]). The number Ry = |det(log|&;(e;)]w)rs <1< T |, which is independent of
the choice of &; and e;j, is called the regulator of T over Q. In ]R r, we have a

r
parallelotope Py = { Z)J.:H A.@O(e.). 0<L Aj <1 } We shall extend P, toa

1"
parallelotope P in R °. First, let X5, 1 <j<r, bethe elements in the Lie alge-
bra of Tq (in the sense of Chevalley [4] defined by the condition d&;(X
1<1i, j<r. Since exp X;, 1<j<r, are contained in the identity componenf] of
T, , we have
L

(I)O(exp XJ) = (0, .-., 1, 0, -.-, 0’ dgr‘i'].(x_])’ ...’ dgrco(x.]))

(cf. [5]). We define the parallelotope P in R™ by

r

r co
P = Z;, A @, (exp X,) + Z)l N @gle): 0K, A <1
1= j=r+

r
It is easily seen that the Euclidean volume of P in IR ® is Ry .

r r
LEMMA 1. If we extend the map &3: T, =R © to a map ®: To(o) >R = by

bulting ®(x) = @, (%), then the set Uﬂ ) Xg B, is a fundamental domain of TI/T
wheve {xg} 1<£<hT (resp. Ey) is a complete set of vepresentatives for Th (’resp

@ 1(Py)) modulo Tg - Th(=) (resp. TR N Tg). Moreover, we have
.UT(‘I’—I(P)) = WT/hT

with Wy = [Ty 0 Tgl.
Proof. Cf. [5].

r
LEMMA 2. Let &: Tp(=) =R * be the map defined in Lemma 1. Then,

vr@1(P) = Ry, wp@(P) = cRy = R./DY2,  and

¢ = w (@ M) II L (1w (T).
P

r
Pafoof Let I be the parallelotope in IR *° spanned by the r, unit vectors
(1,0, ---, 0), (0, 1, O, +--, 0), --+, (0O, =+-, O, 1). Since & 1sah0momorphlsm we
have VT(<I) 1(P))/VT(cb 1(I)) = the Euchdean volumé of P = the regulator Ry of T.

From the definition of &, we see easily that -1 (1) = ®; (1) % Hp Tp , where
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51 (D) = {x,, € Too: 0< log|E(Xeo) |0 <1, 1<1i<Teo}; &, 1 <i<ry, being the
Z-basis of (T),, we chose to define the map &, . Hence, vp(®-1(I)) = 1. This
proves the first two equalities. The number c is given by

wp@ 1 D)/v (@1 1D) = we@sm) IT L,(1) w, (T).
P

THEOREM 1. Lel T be an algebraic tovus defined over Q, hp, Ry, 71, pr,
Dy, wp the avithmetic invariants of T over Q defined above. Then,

hT = TTpTWT(DT)l/Z/RT .

Proof. From the definition of 7, we have wp =p Tpu . Evaluating both
sides on -1 (P), we get Ry /D,ll,/2 =pp Towp/hp by Lemma 1 and Lemma 2.
Remark. Let k be a finite algebraic number field, and K a finite Galois exten-

sion over @ containing k. Let G, H denote the Galois groups of K/Q, K/k respec-
tively. Put T =Ry /Q(Gm). Then T is an algebraic torus defined over ® and split

by K. Since the G-module T is the induced module by the trivial H-module
G,, = Z with respect to G/H, the character X of G defined by the G-module T is
the induced character 13 induced by the principal character 1;; of H. Thus

L(s, X3 K/® = Lis, 15; K/Q) = L(s, 1;;; K/k)

]

the Dedekind zeta function & _(s) of k,

and pp =Res,_; {1 (s) =py. It is easily seen that w = wy = the number of roots of
unity contained in k, R = Ry = the regulator of k, ht = hy = the class number of k,
and D = |d|/(27(2m)Y)?. These clarify our nomenclature. Moreover, since the
Tamagawa number 7 is 1 (¢f. [6]), Theorem 1, applied to the torus T = Rk/Q(Gm),
gives the following well-known class number relation for the algebraic number field
k:

wildi |12 py
2r(277)t R’k

hy

4. THE RELATIVE CLASS NUMBER OF ISOGENOUS TORI

Let~K be a finite Galois extension over @, ang G the Galois group of K/®. Let
A: T — T be an isogeny defined over @ of tori T, T in #(K/Q). We shall apply
Theorem 1 to the study of the relative class number hp /hT of T and T.

Let @ be an invariant gauge form on T defined over ®, and w the gauge form
on T obtained from @ by A. Then w is also invariant -and defined over ®. Let

~ ~ r ~ r
®g: T, » R * be the map to T what the map &;: Teo — IR ® is to T. Then we have

a(rg)
al(),)

(3) Beo@5' (D) = W@ 5 M)

and
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for every finite prime p of Q (¢f. [5]).
THEOREM 2. Let \: T — T be an isogeny defined over Q of tovi T, T in
€ (K/Q). Then the velative class numbey of T and T can be expressed as
hp 7q a(Xeo)
hg 73 qg(=) al(R) )

I g0 .
pq(hp)

Remark., The product IT pd hp) is well-defined since we have remarked at the
end of Section 1 that q(?t )=1 for almost all p. The number

d(eo)
a(rg(=) a((R)g)

- I )
P

being equal to hp 75 / h3 7.4, is independent of the isogeny A.

Proof. From Lemma 1, Lemma 2, and Theorem 1, we get

hT ‘OT TTWfR"f' aoo((’i;(_)l(:[)) l;-[ Lp(l, XT5 K/Q) a’p("f‘;)
(5) — = . .
hi  pF7FwpRy wlo(@ (D) I L1, x1; K/Q wy(Ty)

P

As we remarked before, T T have the same L-function and rank(T)g = rank(T)g .
Hence, L (1 Xt; K/Q) = (1, X7 ; K/®) and pr = p5. Therefore, by (3) and (4),
(5) can be simplified as

(©) h_z _ TTWFRF alx, H th)

hy  7ywrRr q((x)

Now, let Tp(«) = E X F be a decomposition of the unit group of T over ® with E
torsion-free and F finite. By choosing a maximal torsion-free subgroup E of

T (00) such that A(E) C E, we  get a similar decomposition TQ(°°) =EXF for TQ( )
w1th F finite. Let e (resp e yr+1<j<r_, r= rank(T,Q,

r = rank('i‘)oo = rank(i‘)oo,

o0

be a Z-basis of E (resp. E), and £, (resp. 5) 1<i<r,, a Z-basis of (T)
(resp. (T) ) such that &; (resp. g ), 1<i<r, form a Z-basis of (T)Q (resp.
(T)Q). By definition, we have

= Idet(log|§i(ej)loo)r+1Si,erool , and Ry = |det(logl€i(5j)|oo)r+l Si,jérml .

Denote by M = (mij)r+l <ij<r, the matrix defined by

Too

(7) Mep = II 879, rr1<j<ng.
i=r+l
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Then, we have
(8) |det M| = q(Ag),

Ar being the restriction of A to E. Denote by N = (nkg)1<k, 1< r,, the matrix de-
fined by

Teo

(9) Mol = 2 gy, 1<0< 1.
k=1

~

By our choice of §;, &, the matrix N is of the form
N, O
N - (
0 N,
with Nj = () <1, ¢<r» and Np = (nyp)ry1 <x, g <r_ - Moreover, we have

(10) |det N| = q((R),), and |detN;| = q((R)g).
From (1), (8), we get I, (5ley) " = DoEo)le;) = Foey) = T4y Eo@) 2.
Since Tqf) C Th(), lgk(ej)lw =1, 1 <k <r. Hence, we have

I’oo I‘oo

(11) II gk(ej)lookﬁ= II IEQ(Si)Imij.
k=rt+l i=r+1

By taking logarithms on both sides of (11), we obtain

Too Too

27 nggloglérle;)|o = 27 mijlog|gg(§'i)|°o.
k=r+l i=r+l

This implies that |det N,| - R = |det M| - R5. Since det N = det N; - det N, it
follows from (8), (10) that

RT _ a((R)y)
Rt qOpa@g

(12)

Denote At F — F the restriction of A to F. Since F, F are finite,

= _[_‘i?_'l = W_;f__
It is clear that
(14) dq(=) = aQg)aOrg) .

Thus, our assertion follows from (6), (12), (13), and (14).
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Let 0 — T' — T — T" be an exact sequence of algebraic tori in #(K/Q). Then,
as we have recalled in Section 1, T is isogenous to T' X T" over Q. Let
M T — T'XT" be an isogeny defined over ®. From Theorem 2, we obtain the
following:

THEOREM 3. Fov any exact sequence 1 = T' > T — T" = 1 in €(K/Q), we
have

hp 7 a(r)
hpe | 7o 10 q0g ) a@g) IL q0p),

hop,

wheve the isogeny A: T — T' X T" can be chosen arbitrarily.

Proof. This is an immediate consequence of Theorem 2 together with the facts
that hT'XT" = hT’ th sy Toixn = Tt Tpw (Cf. [6])

5. APPLICATIONS

Let k be a finite algebraic number field, and K a finite Galois extension of k.
Denote by G the Galois group of K/k. Put Tp = Rk, (Gp), To = G, . Let N de-
note the norm map N: Ty — Ty, and Té the kernel of N. We get an exact sequence

,i N "
(N) 1= Ty = Ty~ Ty — 1

of tori in ¥ (K/k), i being the canonical inclusion. The dual of the sequence (N) is
given by

~ ~

~ N i
(N) 0> Z — Z[G] — Z[G]/Zs — 0,

where s = 20 g€G g, and N, i are defined by N(z) = zs, i(y) =¥ mod Zs. Define a
map Xg: Z X (Z[G]/Z s) — Z[G] by

~

(15) Ao(z, ¥ mod Zs) = zs + (my - S(y) s)
where m = [G], and S(y) = ge G 2g if ¥ = 23 g€ G Zgg. Also define a map
0! Z[G] - Z X (Z[G]/Zs) by }\o(g) = (S(y), v mod Z s). Then, Xy 0 Ay =m, i.e.,

the map y 2 my, Yy € Z [G]. Dualizing the above situation, we.obtain a commutative
diagram of isogenies of algebraic tori in % (K/k):

where m is the map x — x™, x € Ty, and AO, hb are the isogenies defined over k
by Ag(x) = (x™MN(x) !, N(x)), and 2p(x', x") =x'x". Now, applying the Weil functor
Ry /@ to the isogeny 7\0 To — Ty X Tg, we get the isogeny A: T — T' X T" defined
over @ A, T, T', T" being Ry ;p(Xo), Ri/n(To), Ri/n(To), Ri/n(To) respectively.
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Since T = Ty = 1, hp=hyg, and hq. = hy, from Theorem 3 we obtain the follow-
ing:
THEOREM 4. Let k, K, A\, T' be stated as above. Then
hK hT' q(h,,o) c

b T O a@g abp)-

Now, let k be a totally real number field, and q(x, y) = ax? + xy +yy? a
totally positive binary quadratic form over k; Z.e., «, 8, ¥ € Kk, and the discriminant
5 =82 - 4ay is a totally negative number in k. The study of the binary quadratic
form q(x, y) is equivalent to that of the norm form N of the totally imaginary quad-
ratic extension K = k(vV'5) over k. Let L be an O-free lattice in K, Oy being the
ring of algebraic integers in k. Since T' is nothing but the special orthogonal group
SO(N), hp: can be interpreted as the number h(L) of classes in the genus of L with
respect to N. In this case, the g-symbols appeared in Theorem 4 can be explicitly
determined using results in algebraic number theory. Theorem 4 then gives the fol-
lowing simple class number relation:

(16) hL) = K. - ,

by 9u-liyd: vl

where u is the number of distinct prime factors of the relative discriminant dy . of
K/k, and UK (resp. Uk) is the torsion-free part of the unit group Uy (resp. Uy) of
K (resp.k). If k = ® and K is an imaginary quadratic field, then [UO UO] =1. We
have hy /h; = 29-1. this is the well-known result due to Gauss on the genera of

primitive integral binary quadratic forms. If K is the £-th cyclotomic field, £ be-
ing an odd rational prime, and k is the maximal totally real subfield of K, then

u=1 and [U(I)(: Ug] = 1. The relation (16) gives an interpretation for the first factor
in the well-known factorization of hy due to Kummer.

Theorem 4 can also be applied to the study of norm forms in the following way.
Let k be a finite algebraic number field, and K a finite Galois extension of ® con-
taining k. Denote by G, H the Galois groups of K/®, K/k respectively. Let

d
G = Ui:1 Hg; be a decomposition of G into its cosets modulo H. We can write
7 [G] as Z[G] =@i=; Z[H]g;. Define a Z [G]-module homomorphism

~ d ~
N: Z —> Z|[G] by N(z) =2zs, z€ Z, s = Ei:l gi, and 1: Z[G] —» Z [G]/Z s by
i(y) =y mod Zs. We have an exact sequence of Z [G]-modules

A~ ~

N i
0—Z — ZI|G] — Z[G]/Zs — 0.

Dualizing the above situation, we get an exact sequence of tori in € (K/Q):

i N
1>T T —T" -1,

where T, T', T" are the tori Rk/Q(Gm), Ker N, G,,, respectively. This implies

that T is isogenous to T' X T" over Q. Let A: T — T'X T" be an isogeny defined
over Q. Then, by Theorem 3, we have
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Let {al y Tt an} be an integral basis of k/Q. The form F defined by

n

F(xy, =, x,) = Nyplayx + - +a, x)) = II (oz(li)xl 4o +a1(11)xn),
i=1

where aéi) , 1 <i, j <n, denote the conjugates of @; over @, is a rational form in
n variables of degree n. We imbed T = Rk/(D(Gm) into GL, () by means of the
basis {al y ttt an}. Let & denote the set of rational forms f in n variables such
that f=Fot with t € Ty and f = F o t, with (t,) € Tp(®). The set ® is divided
into classes by the following integral equivalence relation: f, g e &, f ~ g is and

onlyif f=got with t € Ty{4 = TQ(OO). The torus T' is nothing but the subgroup

{t eT; F=Fo t} of T. There exists an injection of the set of integral classes in
® into the quotient space T /T T s(). Moreover, if the class number of k is 1,
this injection is surjective (cf. [7]). Thus, (17) gives the following result: if the
class number of k is 1, the number of integral classes in ® is given by

~aag)) q((R) o)

q0he) T q0x$)
p#®

(18) T

Since the quotient of g-symbols is independent of the choice of A, we may choose A
as in (15) with slight modification and (18) can then be effectively computed for
certain k.
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