VECTOR MEASURES AND SCALAR OPERATORS
IN LOCALLY CONVEX SPACES

Alan Shuchat

P. G. Spain [15] has determined two different necessary and sufficient conditions
for a bounded linear operator on a Banach space with an operational calculus defined
for continuous functions on its spectrum to be a scalar-type spectral operator.

B. Walsh [17] and M. Tidten [16] have discussed spectral measures whose range is
an equicontinuous family of projections on a locally convex space, in order to study
operators on nuclear spaces. In this paper, we show how Spain’s problem is related
to the general theory of vector measures and solve it in the setting of Walsh and
Tidten. Spain’s two conditions turn out to be valid for locally convex spaces, but
under different completeness hypotheses (Theorems 5 and 6 below). Some of our
results are new even for Banach spaces.

In order to avoid restricting our attention to barreled spaces, we assume, as in
[17] and [16], that certain sets of linear functions are equicontinuous rather than
merely bounded. An alternate approach is to view this problem from the standpoint
of bornology theory [2] and consider morphisms of b-algebras rather than certain
continuous linear mappings of locally convex spaces, but we shall not do this.

Throughout this article, K denotes a compact Hausdorff space, C(K)[B(K)] the
Banach space of continuous [bounded Borel-measurable]| complex functions on K,

U [U,] the unit ball in C(K)[B(K)], 2J(K) the o-algebra of Borel sets of K and E a
locally convex Hausdorff space. In general, we follow the terminology and notation
of Schaefer [12] for topological vector spaces, but we use L(E) rather than Z(E) to
denote the space of continuous linear operators on E.

A (vector) measuve is a countably additive set function p: 22(K) — E. By the
Orlicz-Pettis theorem, p is countably additive for the weak topology of E if and
only if it is for the initial topology. A measure is regular for the weak topology if
and only if it is for the initial one [9, Theorem 1.6]. The range of a measure is a

bounded set [9, p. 158]. If u: 22(K) — E is a measure, then Sfd,u € E can be de-
fined in the obvious way for simple functions in B(K) and is continuous in f. If E is
sequentially complete, we define Iif = Sfdu for f € B(K) by continuity, as an ele-

ment of E. Then II: B(K) — E is a continuous linear map and if ¢ denotes its re-
striction to C(K) and u is a regular measure, then II is the restriction of ®" from
C(K)" to its subspace B(K) [13, Theorem 1]. Since C(K) is dense in C(K)y and

®": C(K)g — E{ is continuous (Ey denotes E" with the topology o(E", E')), for
each f € B(K) there is a net (fy) in C(K) such that Sfa dy — Sfdu weakly in E.

In fact, the following (which may be new even for Banach spaces) shows we can obtain
convergence in the initial topology of E. If we know in advance that the integrals in
question are elements of E; we can drop the completeness assumption.
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PROPOSITION 1. Let f € B(K). Theve is a net (ig) in C(K), |fal < ||,
such that Sfa dy — S. fdu in E for every sequentially complete locally convex
space E and every regular measure |.: E(K) — K.

Proof, Define & as above. We first show &' maps every equicontinuous set
HCE' toarelatively o(C(K)', C(K)")-compact set. Since &': Eg — C(K)g is con-

tinuous, ®'H is bounded in C K)§ fAe 2(K) and A = &' h, h € H, then

A(A) = <<I> h, XA> <h d" XA <h 1L (A) > Since p is countably additive and
E has the topology of uniform convergence on equicontinuous subsets of E', it fol-
lows that if (4;) is any sequence of pairwise disjoint Borel sets, then

A(A;) — O uniformly for X € &' H.

By [5, Théoreme 2], ®'H is relatively o(C(K)', C(K)")-compact.

By [5, Lemme 1], &" is continuous as a map C(K)} —E!, where 7 denotes the
Mackey topology 7(C(K)", C(K)') and n denotes the “natural” topology on E" [12,
p. 143] which induces the initial topology on E. Since C(K)g has the weak topology
of C(K)7 and U is convex, its closure in C(K)g , which is the unit ball of C(K)",
must be its closure in C(K)7 . Thus if f € Uy, there is a net (fy) in U such that
fo — f in C(K)7 . Since &"[B(K)] C E, the result follows by continuity.

Now let p: 27(K) — L(E). Since the “strong operator topology” of L (E) has
the “weak operator topology” induced by L (E,) as its weak topology, p is a regu-
lar measure for one of these topologies if and only if it is for the other. We say u

is multiplicative if p(A N B) = u(A) u(B) for all A, B € 24(K) and equicontinuous
if its range is an equicontinuous subset of L(E). The range of a multiplicative equi-

continuous measure p: 27(K) — L/ (E) is a Boolean algebra of commuting projec-
tions, with u(A) < u(B) when p(A)E C u(B)E, that is bounded in Ly (E).

An (algebra) homomorphism from C(K) or B(K) into L(E) is equicontinuous if
it maps the unit ball to an equicontinuous set, and then it is continuous for the topol-
ogy of Ly(E). As the following shows, a multiplicative equicontinuous measure de-
termines an equicontinuous homomorphism. Note that since E is sequentially com-

plete and pu is equicontinuous, Sfdu € L(E) even if L (E) is not sequentially

complete, so Proposition 1 can be applied to L (E).

THEOREM 1. Let E be sequentially complete and u: 22(K) — L(E) a multi-
plicative, equicontinuous L (E)-countably additive measuve. Then IIf = S‘f du de-

termines an equicontinuous homomorphism I1: B(K) — L(E) and each S fdu,

f € B(K), is the limit in Ly(E) of a sequence of linear combinations of projections.
Each opevator in L(E) that commutes with N[C(K)] also commutes with T1[B(K)].

If E is quasi-complete and u is L (E)-regular, then 11 is weakly compact as a map
B(K) — L (E).

Proof. The first part has essentially been proved by Walsh [17]. By first prov-
ing Walsh’s Proposition 2.1 for simple functions, the remaining properties of II can
be established without any reference to an ordering for L(E) such as in [17, p. 300].
We omit the details.



VECTOR MEASURES AND SCALAR OPERATORS 305

For the last part, let E be quasi-complete and & the restriction of II to C(K).
By [5, Lemme 1], it suffices to show that ® is weakly compact for Lg(E), and for
this it suffices to show that ®" maps the unit ball U, of C(K)" into L(E). As the
proof of Proposition 1 shows, if ¢ € U,, there is a net (fy) in U such that f5 — &

in C(K)7. By continuity, ®fy — ®" £ in L (E);. Since ®U is equicontinuous and
E is quasi-complete, the closure of ®U in Lg(E) is complete [12, I1.4.4] and so
"¢ € L(E). Thus & and Il are weakly compact, which completes the proof.

Conversely, if E is sequentially complete, we wish to know when a given equi-
continuous homomorphism &: C(K) — L(E) can be written as ®f = S fdp and ex-
tended to B(K) as in Theorem 1. By [13, Theorem 1], & always has this form for a

unique p: 22(K) — L (E)", countably additive and regular for Lg(E)g , and if the
range of i lies in L(E), then u is a regular measure with respect to Lg(E). The
proof of Theorem 3 below will show that p is then multiplicative and equicontinuous.
The range of g must lie in L(E) if & is weakly compact for L (E) [5, Lemme 1] or
if L (E) is weakly sequentially complete (e.g., if E is barreled and weakly sequen-
tially complete) [13, Theorem 2]. Theorem 2 below is motivated by the result for
Banach spaces that the adjoint of an operator on E with an operational calculus is a
scalar-type spectral operator of class E on E'. In Theorem 3, we use this idea to
prove a necessary and sufficient condition for the range of u to lie in L(E).

Let L (Eﬁ) denote the space L(E ) with the “weak* operator topology” induced
by LS(EB, Eg). Note that L w(EB) has the weak topology o (L(Eg), E'® E), and that
both it and its subspace L(Eg) are dense in Lg(Eg, Eg). In general, L(Eg) is a
proper subspace of L(EZ;) and L. (Eg) is not a topological algebra [14], which
slightly complicates the proof of Corollary 1 below.

THEOREM 2. Let ®: C(K) — L(E) be an equicontinuous homomovphism. Then
¥f = (f)' defines an equicontinuous homomovphism ¥: C(K) — L(EB) that is
(weakly) compact as a map C(K) — L (EB)
Proof. It is easy to see that ¥ is a homomorphism and that YU is equicontinu-
ous in L(EB) [12, 1V, exercise 25]. It suffices to show that ¥U is relatively com-
pact in L (EB’ Ey) and that its closure ¥U in L (EB’ Eg) lies in L(Eﬁ)

For each x' € E', the polar {x'}0% of {x'} inE isa 0-neighborhood in E and
$U is equicontinuous, so there is a 0-neighborhood V in E such that

(@U)V C {x'}9.

Then (¥U)x'C VO in E', so (¥U)x' is relatively compact in E¢, and by [3, III,
Section 3, No. 5, p. 23], ¥U is relatively compact in LS(E{';, E(’;).

Let T € ¥U and x — 0 in Eg. For each 0-neighborhood V in EB there is a
O-neighborhood W in E;'g such that (YU) W C V. Each Txy is in the E§-closure of
¥Uxgy , and ¥Ux,, is eventually contained in V. Since EB has a base of Eg -closed
0-neighborhoods, namely the polars of all bounded subsets of E, we may assume V
is Eg-closed. Thus Txg is eventually in V, which shows T € L(E}g) and completes
the proof.

COROLLARY 1. Theve is a unique Ly(Eg)-countably additive vegular measure
y: 22(K) — L(Eb) such that ¥"f = S‘ fdv in L(Eb) for all £ € B(K), where ¥" is
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computed with respect to LW(EZ;). Moveover, v is a multiplicative equicontinuous
measuve, and each S fdv, f € B(K), is the limit in L,(E}) of a sequence of linear

combinations of projections. Each operatov in L(EG) that commutes with ¥ [C(K)]
also commutes with ¥" [B(K)].

Proof. Since ¥ is (weakly) compact, the existence and uniqueness of v and
¥ "[B(K)] C L(Eg) follow from [9, Theorem 3.1]. To prove equicontinuity, let V be a
0-neighborhood in Eg and let W be a 0-neighborhood in Ej such that (JU)W C V.
Since ¥" is continuous as a map C(K)g — L (Ep), ¥"U; lies inthe L,(Ep)-closure
of YU and so (¥"U;)W lies in the E;-closure of V. But we may take V to be Eg -

closed as in the proof of Theorem 2, so ¥" U, is equicontinuous and v is an equi-
continuous measure.

Now let f, g € B(K). As in [13, Theorem 3], there are nets (fy), (g4) in C(K) con-
verging to f and g, respectively, in the mean for each x» € C(K)'. Thus gy — g, and

for each fixed B, fggay — fgg in C(K)g . Since ¥ is a homomorphism with range in
L(Eg) and left multiplication by an operator in L(Eg) is continuous on L. (Ep) [14,

Theorem 2], we have S fBng = ( SfB du) ( S gdv) . Since right multiplication
by any operator in L(Eg) is continuous on L(Eg), a similar argument shows that
S fgdy = ( S de) (S gdv), t.e., ¥" is a homomorphism. In particular, v is
multiplicative. The rest follows easily.

We call v the adjoint measure of ®. It is natural to ask when v is countably
additive for LS(E/'g). The answer is apparently new even for Banach spaces. We say
E is an 07 -space if every finitely additive set function A from a 0-ring R to E
that has bounded range is strongly bounded. (Recall that A is sfrongly bounded, or
exhaustive, if whenever (A;) is a sequence of pairwise disjoint sets in R, then
A(Ai) — 0 in E.) This is equivalent to Labuda’s definition in [8]. In particular, if E
is sequentially complete, then E is an 09 -space if and only if E contains no sub-
space isomorphic to £%.

COROLLARY 2. If E'ﬁ is an 0% -space, then v is Ls(Eb)—countably additive,
and each opevraltor in L(ER) that commutes with ¥[C(K)] also commutes with
¥ [B(K)].

Proof. For each x' € E', VX,(A) = v(A)x' defines an Eg-countably additive
measure v,.: 22(K) » E'. Since ¥"U, is equicontinuous, the range of v_. is a
bounded subset of Eb and so vy is strongly bounded. Let (A;) be a sequence of

pairwise disjoint sets in 27(K) with union A. Then va,(Ai) converges to v_.(A)

in E; and, by a transcription of Rickart’s argument for Banach spaces [10, Lemma
2.2], its partial sums form a Cauchy sequence in Eg. Thus, by [7, p. 71], the series
converges to v..:(A) in Elé and so v is LS(E'B)—countably additive. The last asser-
tion follows from Theorem 1, applied to LS(E'ﬁ). (This is legitimate, since

j‘fdv € L(Eig) and the only use of completeness in Theorem 1 is to assure that

integrals are elements of the appropriate space of operators. Note that ‘gfdv is

the same element of L(Eg) whether we compute it using L(Ej) or Lg(Ep).)
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The corollary includes the cases where E is reflexive, for which the result is
immediate, and, more generally, where Ek; is semi-reflexive. The result is also

immediate when E is only semi-reflexive, but we do not know if E'ﬁ is then an
00 -space.

THEOREM 3. Let E be sequentially complete and &: C(K) — L(E) an equi-
continuous homomovphism. Thevre is a unique Lg(E)-countably additive regular

measuve p: 24(K) — L(E) such that &f = Sfd,u , £ € C(K), if and only if the range

of v, the adjoint measure of ®, lies in L(Eg). In this case,

(1) PUf = Sfdv - (Sfdu)‘ - @"1), forallfe BK),

and | is a multiplicative equicontinuous measuve., (Here ®" and V" ave computed
using Lg(E) and Ly (Ep), respectively.)

Proof. If such a measure p exists, it must be unique by [13, Theorem 1] and
(1) must hold for all f € C(K). By Proposition 1 and the comment that precedes it,
the range of u lies in the Lg(E)-closure of ®U and is thus equicontinuous [12,

II1.4.3]. In view of the comment preceding Theorem 1, S fdy € L(E) for all

f € B(K), so by Proposition 1 and the continuity of the adjoint map T — T' from

Ls(E) to Ly(EB), we can extend (1) to B(K). Thus each v(A) = u(A)' lies in L(Eg)
and p is multiplicative.

Conversely, if the range of v lies in L(Ey), then p(A) = v(A)' defines a set

function u: 27(K) — L(Ey). We will show the range of ¢ actually lies in L(E).
Since v is now countably additive and regular for the topology of Lg(Ey),

t, (A) = u(A)x defines, for each x € E, a regular measure fi,: 2(K) — Es, and so

Ui, is a regular measure 2J(K) — E. In fact, we shall see that p, is the (unique)
representing measure for &,: C(K) — E, defined by &, f = (®#f)x.

For each simple function s on K,

(2) Ssdux=(‘gsdu>x= (Ssdu)'x.

Each f € C(K) is the uniform limit of simple functions s, , so

{ spav — {1av = @y
in L (Ey) and S Spdiy — @, f in E; . But ‘gsndux - S fdu, in E, so
(3) d,f = Sfdux.

Since E is sequentially complete, Proposition 1 implies that for each A € 2J(K), '

there is a net (fy) in U such that for each x € E, Sfa dity, — Uy (A) in E. Thus
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$f, — 1(A) in the product space E® and, since ®U is equicontinuous, (A) € L(E)
[12, I1.4.3]. It is now immediate that p is L (E)-countably additive and regular.

Finally, for f € C(K), S s, du —*\S‘ fdu in Lg(E), so(2) and (3) imply &f = Sfdu.

Theorem 3 implies that if each v(A) is in L(E{), then so is each 5 fdv,

f € B(K). This also follows from the fact, whose proof we omit, that when E is
(sequentially) complete, L(Eg) is (sequentially) closed in L, (Ep).

The following corollary is proved in [1, Theorem 3.9] for weakly sequentially
complete Banach spaces.

COROLLARY. Let E be sequentially complete and contain no subspace iso-
movphic to co. Then every equicontinuous homomorphism ®: C(K) — L(E) has the

form &f = Sfdu, wheve 1: 24(K) — L(E) is a unique multiplicative, equicontinuous,
L (E)-countably additive vegular measure.

Proof. By [6, Theorem 4.1], for each x € E there is a regular measure
it 22(K) — E such that &, f = Sfd,ux, f € C(K), where &, f = (®f)x. We define a
set function p: 22(K) = EE by p(A)x = Ly (A), and for each A select (fy) in U as

in the argument at the end of the proof of Theorem 3. Then each p(A) € L(E), u is
L (E)-countably additive and regular and in particular, &f, — p(A) in L (E). So p

is an equicontinuous measure and Sfdu € L(E) for all f € B(K). Since

Ssdux = (Ssdu)x

for simple functions, it is now easy to see that &f = j‘ fdu, f € C(K). By Theorem
3, K is unique and multiplicative.

We now apply these theorems to extend Spain’s results [15] to locally convex
spaces. The spectrum o(T) of T € L(E) is the set of complex numbers t for which
(tT - T)"! does not exist in L(E). We will only consider operators with compact spec-
trum. A linear transformation T: E — E is bounded if it maps some 0-neighborhood
into a bounded set, and then it is of course continuous. If E is sequentially complete
and T is bounded, then o(T) is compact, T' is bounded as an operator on Eg, and
o(T") = o(T) [11, p. 276].

Let T be a o(E', E)-dense subspace of E' and let Ey denote E with the topol-
ogy o(E, I'). An operator T € L(E) with compact spectrum is a scalar opevator of

class T if there is a multiplicative equicontinuous set function p: 27 [0(T)] — L(E)
that is countably additive for the topology induced on L(E) by L (E, Er), such that
each p(A) commutes with T, u[o(T)] =1,

(*) o(T|u(AE) C A, for all A € 25 [o(T)],

and T = deu, where j(t) =t. We call p an equicontinuous spectval measure of

class I'. If T"=E', then u is LS(E)~c0untab1y additive, by the Orlicz-Pettis
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theorem. If E is barreled, the equicontinuity requirement for p in Theorems 5 and
6 below is automatically satisfied, by [3, IIl, exercise 10]. Since all scalar meas-
ures on o(T) are regular, p is weakly regular and therefore regular for L (E, E).

An operator T € L(E) with compact spectrum has an equicontinuous opevational
calculus if there is an equicontinuous homomorphism ®: C[o(t)] — L(E) such that
®1=1 and &j = T. Of course, if E is barreled, we may replace equicontinuity by
the continuity of & for Ly(E). The following are now immediate consequences of
the theorems above. Condition (*) in the definition of scalar operator can be veri-
fied by the same technique as in [4, p. 898].

THEOREM 4. Lelt E be sequentially complete and T a bounded opevator on E
with an equicontinuous operational calculus. Then T' € L(E;'g) has an equicontinuous
operational calculus and is a scalav opevator of class E.

COROLLARY. If E{'g is an 0% -space, then T' is a scalar operator of class E".

THEOREM 5. Let E be sequentially complete and T a bounded operator on E.
Then T is a scalar opevator of class E' if and only if T has an equicontinuous
opevational calculus the vange of whose adjoint measuve lies in L(Ey).

COROLLARY. Let E be sequentially complete and contain no subspace iso-
movrphic to cg. Every bounded operator on E with an equicontinuous operational
calculus is a scalar opevator of class E'.

THEOREM 6. Let E be sequentially complete and T a bounded operator on E.
If T has an equicontinuous operational calculus that is weakly compact as a mapping
Clo(T)] — Lg(E), then T is a scalar opevator of class E'. If E is quasi-complete,
the converse is {vue.
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