EXTRINSIC SPHERES IN COMPACT SYMMETRIC SPACES
ARE INTRINSIC SPHERES

Bang-yen Chen

1. INTRODUCTION

An n-dimensional submanifold, n > 2, of an arbitrary Riemannian manifold is
called an extrinsic spheve if it is umbilical and has nonzero parallel mean curva-
ture vector. An n-dimensional Riemannian manifold is called an infrinsic spheve if
it is locally isometric to a standard sphere in Euclidean space. Since extrinsic’
spheres are natural analogues of ordinary spheres in Euclidean spaces from the ex-
trinsic point of view, it is natural to ask when an extrinsic sphere is an intrinsic
sphere. In [2], we have proved that a complete, simply connected, extrinsic 2n-
sphere in any K&hler manifold is an intrinsic sphere if its normal connection is flat.
The main purpose of this paper is to prove the following.

THEOREM 1. An extrinsic sphere in a compact symmetric space is an intvin-
sic sphneve.

THEOREM 2. Let M be an extrinsic spheve in a compact symmelvic space M.
Then dim M < dyy, where dg, is the maximal dimension of all totally geodesic sub-
manifolds of constant sectional curvature in M.

Theorem 2 improves the results in [3] for the compact case.

2. PRELIMINARIES

Let M be an n-dimensional submanifold of a symmetric space M with metric
g, and let V and V be the covariant differentiations on M and M, respectively.

Then the second fundamental form ¢ is defined by o(X, Y) = %XY -VxY, where X
and Y are vector fields tangent to M and ¢ is a normal- bundle valued symmetric

2-form on M. For a vector field £ normal to M, we write VX &= —AgX + Dy &,
where -AgX (respectlvely, Dy £) denotes the tangential component (respectively,
the normal component) of ng A normal vector field & is said to be parallel if
Dg = 0. The submanifold is said to be umbilical if o(X, Y) = g(X, Y)H, where

= (trace 0)/n is the mean curvature vector of M in M. If 0 = =0, M is said to be
totally geodesic in M.

Let RN, R, and R be the curvature tensors associated with D, V, and %, re-
spectively. For example, R(X, Y) = Vx Vy - Vy Vx - V[X,Y] . The submanifold M

is locally symmetric if VR = 0, and the normal connection of M in M is flat if
RN = 0.

_For the second fundamental form ¢, we define the covariant derivative, denoted
by Vo, to be
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(2.1) (V0) (Y, Z) = Dy(o(Y, Z)) - 0(Vy Y, Z) - oY, Vy Z).

Then, for all vector fields X, Y, Z, W tangent to M, the equations of Gauss and
Codazzi take the forms

(2.2) RX,Y;Z, W) = RX, Y; Z, W) +g(0(X, W), a(Y, Z)) - gl6(X, Z), o(Y, W);
(2.3) REX, Y)Z)*+ = (Vxo0)(Y, Z) - (Vyo) (X, 2),

where R(X, Y; Z, W) = g(R(X, Y)Z, W) and * in (2.3) denotes the normal component.

Let X and Y be two orthonormal vectors which span a plane section 7 = (X, Y)
in M. The sectional curvature K(m) of 7 is given by K(r) = R(X, Y; Y, X). We de-

note by K the sectional curvature for M.
3. EXTRINSIC SPHERES IN SYMMETRIC SPACES
Let M be an extrinsic n-sphere, n> 2, ina syrgmetric space M. Then
0(X, Y)=g(X, Y)H and DH = 0. Thus (2.1) implies Vx ¢ = 0. From (2.2) and (2.3)
we find
(3.1 R(X,Y; 2, W) = REX, Y; Z, W) + a?{g(Y, 2)giX, W) - g(X, Z)g(Y, W)};
(3.2) R(X, Y; 2, &) =0

for all vector fields X, Y, Z, W tangent to M and every vector field £ normal to M,
where «? =g(H, H). From (3.1) and (3.2), we get

(3.3) RX, Y)Z = R(X, V) Z + o2 {g(Z, ¥)X - g(X, Z)Y}.

Since DH =0 and H # 0, @ is a positive constant. By the assumption, we have
VR = 0. Thus we find (see, for instance, p. 6 of {1])

VuREK, V)2) = ROy X, V)2 +RE, V3 V) Z + R, Y)Vy Z

RWVy X, Y)Z +RX, Vy V) Z +R(X, Y)Vy Z

(3.4)

+R(h(X, U), Y)Z + R(X, h(U, Y)) Z + R(X, Y)(h(U, Z)).

Consequently, from (3.2) and (3.4), we find

URE, Y; 2, W) = RVy X, Y; Z, W) +R(X, VyY; Z, W)
(3.5) 5 N
+R(X, Y; Vy Z, W) +R(X, Y; Z, Vz W)

for all vector fields X, Y, Z, W, U tangent to M. By using (3.3), (3.5), and Vg = 0,
we have

URX, Y; Z, W) = URKX, Y; Z, W) - g((Vy R)(X, Y)Z, W)
(3.6)
+ a2 U{glx, 2)g(Y, W) - g(X, W)g(Y, 2)}.
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Comparing (3.1) and (3.6), we get VR = 0; i.e., M is locally symmetric. Conse-
quently, we have proved the following.

PROPOSITION 1. Every extrinsic spheve in any symmeltrvic space is locally
symmetric.

Let 7 be any plane section in M. Equation (3.3) implies that the sectional
curvatures on M and M satisfy

(3.4) K(z) = R(n) + a2,

Thus, if M is nonnegatively curved, then M is positively curved. Hence, M is
irreducible and the rank of M is one. In summary, we have the following.

LEMMA 2. Every extvinsic spheve in a nonnegatively cuvved symmelric space
is a positively curved locally symmetvic space of rank one.

Since M is a symmetric space, there is a triple (G, H, 7) consisting of a con-
nected Lie group G, a closed subgroup H of G, and an involutive automorphism 7

of G such that M = G/H and H lies between G+ and the identity component of G,
where G4 is the closed subgroup of G consisting of all elements left fixed by 7.

Let ¢ and  be the Lie algebras of G and H, respectively, and let g =) + m be the
canonical decomposmon of g assoc1ated w1th 0. Then m may be identified with the

tangent space of M at a point 0 € M. It is well known that the curvature tensor R of
M at O satisfies

(3.5) RX, V)Z = -[[X, ¥, Z] forX,Y,Zem.

Without loss of generality, we may assume that 0 € M. Let m' = TO(M). Then,
by (3.2), we have
(3.6) [m', [m', m']] C m;
i.e., m' forms a Lie triple system. Thus, by a result of E. Cartan, we have the
following.

LEMMA 3. Let M be an extvinsic spheve in a symmelric space M. Then, for

any point 0 € M, theve exists a totally geodesic submanifold M' in M such that
To(M) = To(M'). Moreover, M is of constant sectional curvatuve if and only if M
is of constant sectional curvature.

As a corollary to Lemma 3, we have the following.

LEMMA 4. If an extrinsic sphere M in a symmelvic space M is an intvinsic
spheve, then dim M < dgy, wherve dgy is the maximal dimension of all totally geo-

desic submanifolds of constant sectional curvature in M.
Theorem 2 follows from Theorem 1 and Lemma 4.

If M and M' are both locally symmetric spaces of rank one, then from Lemma
3, either they are both of constant sectional curvature, or they are both 1/4-pinched.

If M' is 1/4-pinched, then we have either c/4 < K <cor -c<K<-c/4, ¢c>0,
for all the plane sections in Ty(M). Therefore, we have either

o +c/4 <K< a2+c or a?2-c<K< a?-c/4
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for all plane sections in Ty(M). Since M is also 1/4-pinched, we get @2 = 0. This
contradicts @2 > 0. Consequently, we have

LEMMA 5. Let M be an extvinsic spheve in a symmelrvic space M. If M and
M' arve both of vank one, then M is of constant sectional curvature.

In particular, if M is of rank one, then M' is of rank one. Thus, Lemma 5 im-
plies the following.

PROPOSITION 6. Let M be an extvinsic spheve of vank one in a rvank-one
iymmetrz’c space M. Then M is of constant sectional curvatuve. In parvticular, if
M is compact, then M is an intvinsic spheve.

4. EXTRINSIC SPHERE OF RANK ONE

Assume that M is an extrinsic n-sphere in a nonnegatively curved symmetric

space Iﬁ, and M is not an intrinsic sphere. Then, from Lemma 2, M is of rank one
and it is 1/4-pinched.

From Lemma 3, there exists a complete totally geodesic submanifold M' such
that To(M) = To(M') at some point 0 in M. Since M is 1/4-pinched and of rank
one, Lemma 5 implies that the rank of M' is greater than one. Thus, there exists a
constant ¢ > 0 such that

(4.1) 0< K(n) < c

for all plane sections 7 in Ty(M'). Moreover, K takes both values 0 and c for
some plane sections in To(M'). From (4.1) we have

(4.2) a? < K(m) < a®+c

for all plane sections in Ty(M). Moreover, K takes both values @2 and a2 +c for
some plane sections.

Let V be a linear subspace of Ty(M). Then K(7) = 0 for all plane sections 7
in V if and only if K(7) = @2 for all plane sections 7 in V. Since M is not an in-
trinsic sphere, ¢ > 0. Moreover, by the definition of rank for symmetric spaces,
we have the following.

LEMMA 7. Let M be an extrinsic spheve in a nonnegatively curved symmeltvic
space M. Then we have

rank (M') = max {dim V: V a linear subspace of Ty(M) with K(w) = a?
(4.3)
for all plane sections 7 in V}.

Since M is of rank one and it is not an intrinsic sphere, M is an open submani-
fold of either a complex projective space PX(C) with k =n/2 > 1, or a quaternion
projective space PX(Q) with k = n/4 > 1, or a Cayley projective plane P2 (Cayley).
Since PK(C) (respectively, P2(C)) can be isometrically imbedded in PX(Q) (respec-
tively, P2 (Cayley)) as a totally geodesic sullmanifold, and every totally geodesic
submanifold of M is an extrinsic sphere in M, we may always assume that there
exists an extrinsic M in M such that M is an open submanifold of PK(C) for some
k. Because a? is the least sectional curvature on M and
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max {dim V: V C Tq(M) = PX(C) with K(n) = a? for all plane sections 7 C V}
is equal to k, we have by Lemma 7

(4.4) rank M' = -;: dim M'.

On the other hand, let J be the complex structure of M = PX(C). For any unit
vector X in T,(M), the sectional curvature K(n(X, JX)) of the holomorphic section
7(X, JX) is equal to ¢ + @%. Without loss of generality, we may assume that M' is
simply connected. Let M'= Mg X M; X --- X M. be the de Rham decomposition of
the symmetric space M' into a flat space M, and irreducible compact symmetric
spaces M, -, M. Then for any unit vector X in T((M') = To(Mg X == X M)
tangent to M, the sectional curvature K on M' for any plane section containing X
vanishes. Thus, the sectional curvature K on M for any plane section containing X
is equal to «2. This is a contradiction because the holomorphic sectional curva-
tures on M are equal to ¢ + a?l, Therefore, My is just a point and

M1 = Mlx.-‘xMr,

where each M;, i=1, ---, r, is an irreducible compact symmetric space. From
(4.4) and Cartan’s classification theorem of irreducible symmetric spaces (see, for
instance, [5]), we have

(4.5) dim M; = 2, rank M; = 1, i=1,2 >, r.

Since M' is not of constant sectional curvature, (4.5) implies that k =r > 2 and
n > 4. This leads to a contradiction because we have the following identities:

dim {X € T,(M): K(n(X, Y)) = c+0a? for some Y € To(M)} = n;
dim {X € To(M'): K(n(X, Y)) = ¢ for some Y € To(M')} = 2; and
To(M) = To(M') = TO(MI X oo X Mk) .

Consequently, we obtain the following.

PROPOSITION 8. If M is an extvinsic sphere in a nonnegatively cuvved sym-
metvic space M, then M is an inivinsic spheve.

If particular, if M is a compact symmetric space, then M is positively curved.
Thus, by Proposition 8, M is an intrinsic sphere. This proves Theorem 1.

5. REMARKS

Remark 1. Let M be an n-dimensional Riemannian manifold isometrically im-
mersed in a Euclidean space En*N | and let £ be any unit normal section on M.
Then by a suitable change of the metric on En*N | without changing the metric on M,
M may become an extrinsic sphere in the ambient space with § as its mean curva-
ture vector [8]. Therefore, locally, a Riemannian manifold is an extrinsic sphere in
some other Riemannian manifold.

Remark 2. Since every Riemannian manifold of constant sectional curvature ad-

mits extrinsic hyperspheres, every symmetric space M admits extrinsic spheres of
any dimension less than di\"/[ .
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Remavk 3. Theorem 2 and Proposition 8 can be used to obtain the maximal
dimension of all extrinsic spheres in the compact symmetric space M if we know
the maximal dimension of the totally geodesic submanifolds in M which are intrin-
sic spheres. For example, from [4], we see that if M is the complex quadric
SO(2 + m)/SO(2) X SO(m), then dgy = m. Thus, every extrinsic sphere in

SO(2 + m)/S0O(2) x SO(m)

has dimension less than or equal to m.

Remark 4. If M is a complete orientable extrinsic sphere in any nonnegatively
curved Hermitian symmetric space 1\71, then Proposition 8 implies that M is iso-
metric to an ordinary n-sphere S™. Thus, M is simply connected. If we further as-
sume that the normal connection is flat, then, by Theorem 1 of [2], we see that the
curvature tensor R of M satisfies f{(X, Y) = 0 for all vectors X, Y tangent to M
when n is even. If n is odd, then, for any (n - 1)-dimensional linear subspace V of
Tp(M) = Tp(S™), there exists an ordinary (n - 1)-sphere 8-l in S™ = M such that
T (Sn 1) = V and S?-1 is a totally geodesic submanifold of S®. Since M =S8 is an
extrlnsm sphere in M and S7-! is totally geodesic in S®, S™-1 is an extrinsic
sphere with flat normal connection in M. By applying Theorem 1 of [2] again, we
get ﬁ(X Y) = 0 for all vectors X, Y tangent to S°-1. Because V can be any hyper-
plane in Tp(M) for any p € M, we see that R(X Y) =0 for all X, Y tangent to M.
Let m = To(M). Then, by the fact that R(X Y) =0 for all X, Y € To(M), m is abel-

ian with respect to the Lie bracket | , ] on g. Therefore dim M < rank M. In
particular, we have the following.

THEOREM 3. If M is a complete, orientable extrvinsic n-spheve, n > 2, with
flat normal connection in any compact Heyrmitian symmetvic space M, then M is
isometric to an ovdinavy n-spheve and n < rank M.

This proposition generalizes the main theorem of [6] for the compact case.

Remark 5. In [7], extrinsic spheres were studied from the point of view of
circles.
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