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1. Let K be a compact set of R™ such that m(K) > 0, where m is n-dimen-
sional Lebesgue measure. Let L™ (K) denote the set of all functions in L™(IR™)
which vanish almost everywhere on R"\ K. We will be concerned with the set
H”(K) of those functions in L™(K) which have bounded Riesz transforms. More
precisely, a function h € L™(K) is in H°°(K) if and only if all Riesz transforms

ihx) = P.V. c, SI Sh()dt,  §=1,2, -, n,
X -

where ¢, is normalizing constant depending only on n, belong to L “(R™). It follows
from a classical result that IR;h| 5 < Ap”th if 1 <p <. (See Stein [9].) When
p =<, R;h does not necessarlly belong to L”(IR™). In fact, it 1s relatively simple to
show that there exists a function h € L™(K) such that Rjh Q’ L*(R™) for all

j=1,2, -, n. The main purpose of this paper is to 1nvest1gate whether or not

H (K) is always nontvivial; i.e., H°(K) # {0}. We remark that H(K) is a Banach

space under the norm |h| = ||h||oo + EJ 1 |Rjh]o. Related to H”(K) is the set

o (K) of bounded harmonic functions defined on IR™" !\ K and satisfying a Lipschitz
condition. If #(K) consists only of the constants, the set K is called removable
for harmonic functions satisfying a Lipschitz condition. It turns out that K is re-
movable if and only if H(K) is trivial (see Theorem 1). We should mention here
the related work of Harvey and Polking [6], where they have found sufficient condi-
tions on removable sets for solutions of linear partial differential equations. We re-
mark that the well-known result that m(K) = 0 implies K is removable for harmonic

functions satisfying a Lipschitz condition, can also be derived from their Theorem
4.3(b).

The problem of removable singularities of harmonic functions satisfying a
Lipschitz condition of order o, 0 < @ < 1, has been completely solved by Carleson
(see [3, Section VII, Theorem 2]). He proved that K is removable if and only if the
(n - 2 + @)-dimensional Hausdorff measure A, _,,4(K) = 0.

THEOREM 1. Let K be a compact sel of R". Then u € #(K) if and only if
theve exists a function h € H°(K) such that

u(x, y) = S log {(X - t)2 + yz} h(t) dt + Constant if n=1

and

u(x, y) = S h(t)z YR dt + Constant if n> 1.
(|x-t]2+y ) A
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Proof. (For n>1). Suppose u € #(K). Since u can be extended continuously

across K, we find u(x, y) = u(x, -y). It follows that %(x, -y) = - g—;(x, -y) and that

du _ y hit) . mntl
ay(x, y) = ¢, S (2 tf2 +yDmriz dt for all (x, y) in R\ K,

where h(t) = lim %(t, y) exists almost everywhere and vanishes on R™\ K.
y—0
Therefore,

_ _Cn h(t)
ulx, y) = v~ S TEREEE dt + Constant .

To complete the proof of the theorem, we observe that

(x; - t;) hit) y R;h(y)
u J J J
— - d = .
axj(x’ y) cnS (Ix-t'z +y2)(n+l)/2 t Cn‘S‘ (lx-t'z +y2)(n+l)/2 dt, y=>0

(See [10, Chapter VI, Theorem 4.17].) This proves that %— is bounded if and only if
) J
Rjh € L™ (R"), and the theorem follows.

THEOREM 2. If n =1, then H*(K) is nontrivial for any compact set K with
m(K) > 0.

Proof. Suppose m(K) > 0, and let f be the Ahlfors function for K. (See [5,
Chapter VIII].) It is well known that f is nonconstant. By applying Cauchy’s inte-

gral formula, we find f(z) = S;( ZhL_t)t dt, z ¢ K, where

h(t) = lim 5— {£(t + iy) - £t - iy)},
y—0
which exists almost everywhere and vanishes on R\ K. Furthermore, since
f(z) = £(z), h is a real-valued function. Therefore, if u is the real part of f, then

(-0 ¢y
ulx, ) (x—t)2+y 5(x—t)2+ z b v>0,

where H denotes the Hilbert transform. Since u is bounded, this implies that
Hh € L™(IR), and the theorem follows.

2. From now on, we may assume that n > 1. We shall be involved with the
Riesz capacities. We give here some notations for these capacities and refer to
Landkof [8] for results. The Riesz potential of ovder & of u is denoted by ukt,

where uZ(X) = S -l-qu—(t)lj;. If E is a Borel subset of R", the Riesz capacity of
x-t
ovder a of E is defined by the relation C,(E) = sup 1(E), where the supremum is

taken over all positive measures p with support S“ C E and potential u*L < 1l. We
shall consider the capacitary condition

(*) Ca(B\K) < Cu(B),



ON RIESZ TRANSFORMS OF BOUNDED FUNCTIONS 171

where B is some ball containing K. Whether B is open or closed does not matter;
however, for convenience of the argument, we let B be open. Later on we will see
that (*) depends only on the degree of density of K and is independent of the choice
of B. The significance of this condition in the application of the theory of capacity
can be found in several papers; e.g., [1], [4], [7], and [2]. Notice that (*) does not
holdif 0 <a<n-2 orif n-2<a <n and m(K) =0. The first case follows from
the fact that the equilibrium measure of any compact set concentrates on its outer
boundary. (See [8, p. 162].) The second case follows from the fact that the equilib-
rium measure of B is absolutely continuous with respect to Lebesgue measure.
(See [8, Appendix].) Later on we will see that there exists a compact set K with
m(K) > 0 but Cx(B\K) = Cn(B) for all @ € (n- 2, n).

THEOREM 3. Let K be a compact set and B be an opeigoball containing K such
that the condition (*) holds for some o € (n- 2, n). Then H (K) is nontrivial.

Proof. We may assume without loss of generality that the interior I%I is empty
and B is the unit ball. Let p be the equilibrium measure of B\K, u= ug , and

1-ut) if te B,
hit) =
0 otherwise .

By hypothesis, h # 0 on a set of positive measure contained in K. Since u=1 on

B\K, it follows that h € L™(K). We will prove that R;h € L*(R") for all
j=1,2, .-, n. Itis clearly enough to show that the functions

uj(x, y) = ‘S\

are bounded on the set of (x, y) such that x € B'\ K, where B' is some open ball
containing K with radius less than 1. Because u(x) = 1, we can write

1 1 (xj - t))
(x,y) =\ d -
s, 9) = §, ot SB{yx-sm |t-s|“}<|x-t12+y2>‘n“”2

We will estimate uj(x, y) by dividing the inner integral into three parts over

dt
(lx_tlz +y2)(n+l)/2 ’

i=1,2, -, n,

dt.

E={teB:|x-t] <flx-s|}, F={teBizlx-s| < x-t] <2lx-s]},
and
G={teB:|x-t|] >2]x-s|}.

Let I(E), I(F), I(G) be the corresponding integrals, and let C be a certain absolute
constant. Then
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1 1 dt
IE)| < S du(s) { - }
] <), o wosle Je-sof| T e
- t]@/k at
< CS du(s) S |x
=" ) E |x - s|¥t®/k |x - t|n
du(s) 7 || dt du(s)
<C pis 5 & < | S8 ¢,
— B Ix_sla+a/k 0 rl—Ct/k— B IX'Sla—

where k is some fixed positive integer such that a/k < 1. Also,

II(F)[ <S du(s)j. |X tI ‘S‘ du(s) S‘ZIX SldrS
) |

Lixss

To estimate I(G), we write I(G) = I'(G) - I"(G), where

Q) = S du(s) S (Xj - tJ-)

dt
B IX_ S,a G (lx B tlz +y2)(n+1)/2

and
(x —t)
S du(s) ‘S‘ !t- Sla l _ l yZ)(l’H‘l)/Z dt
) | (x; - t;)
Let D={te R :zlx— s| < lx-tl _<__2}- Since S lx—t|2 +y 2)(n+1)/2 dat =0,
dp(s) (x5 - t3)
1(G) = - i L dt.
o T= s Jor Tt ryhe

Therefore, |I'(G)| < C, because dist(B', D\ G) > 0. Finally,

[1"(G) | SCS dp s)‘S‘ |x—t!n+a

<cf du<s>j o asef g <c.

COROLLARY. Theve exists a totally disconnected compact set K such that
H7(K) is nontrivial.

Proof, Consider a closed cube Q@ C B. Then Cq(B\ Q) < Cq(B) for all
@ € (n-2,n). Fixan a € (n - 1, n) and choose a sequence {a)} of positive num-

> e]
bers such that Co(B\Q) + 27, _; a; < Co(B). Divide Q into 2" cubes by n hyper-
planes parallel to the faces of Q and passing through its center. Since for
n - 1 < a <n, the Riesz capacity of order @ of any hyperplane (of dimension n - 1)
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is 0, we can remove from Q a set V; symmetrically along these hyperplanes so
that Co(V;) <a; and Q;=Q\V; is a union of 2" disjoint closed cubes of the same
size. Suppose at step k > 1 we have defined Vi and Qx. We repeat the above divi-
sion with each cube of Q; and remove from Q; a set V., along the hyperplanes
occurring at this step so that Cqg (V1) <ay,; and Q) = Qi \ Vi, consists of

on{k+1) disjoint closed cubes of the same size. Thus Q;2Q,> . Let
[+ o]
K = Qk'
k=1

o0
Then K is totally disconnected and B\ X = (B\ Q) U (Ukzl Vk) . Thus

Ca(B\K) < Co(B\Q) + 27 Cqu(Vy) < Co(B\Q + 27 a, < Cy(B).
k=1 k=1

and the corollary follows.

3. The answer to the question of the nontriviality of H(K) depends upon Theo-
rem 3, where we have assumed that the condition (*) holds for some @ € (n - 2, n).
In this section we will see that there exists a compact set of positive measure which
does not satisfy (*) for all a € (n - 2, n). Thus Theorem 3 gives only a partial
answer. In general, the nontriviality of H®(K) is still unknown.

THEOREM 4. Lel a € (n - 2, n), and let E be a compact set with m(E) > 0.
Then for each € > 0, theve exists a compact set K C E such that m(E\K) < ¢ and
Cy(B\K) = Cy(B), where B is an open ball containing K.

LEMMA. Let a € (n - 2, n). Then the following ave equivalent.
(i) Co(B\K)=Cqy(B);

. . Ca(QbQ GV\K)

(ii) lim sup

6—0 o™
closed cube of center x and side 6.

> 0 for almost all x € K, wherve Q(x, 6) is the

Proof. That (ii) implies (i) follows from Theorem 9 of [7]. To prove that (i) im-
plies (ii), suppose there exists a sequence {ﬁk} decreasing to 0 such that

Co(Qx, 6,)\K)

— 0 as k — =

n

6k
for all x € F C K with m(F) > 0. By Egoroff’s theorem, we may assume that the
above convergence is uniform on F. For each k =1, 2, ---, cover F with a finite

%ollectign {Pk’j} of cubes intersecting F with sides equal to ak/z such that
Pk,j NPy = @ if j # L. Choose a point Xy,; € FO Py 5, andlet Q ;= Q(xk,j, 6,).

It is easy to see that F C U j Qk,j. Now choose € > 0 and consider the equilibrium
measure u of B\ K. Since 1(Qy,;) < Ca(Qk,j\K), we obtain

#(F) < 20 Co(Q ;\K) < €22 m(Q ) < &C
J J
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if k is sufficiently large. Hence u(F) = 0. This implies that ¢ # v, where v is
the equilibrium measure of B. Therefore Cy(B\K) < C,(B), which is a contradic-
tion.

Proof of Theovem 4. Let {Gk} be a sequence of positive numbers decreasing
to 0, and let {8, } = {5n/a} Cover E with a finite collection {Qy J} of cubes

intersecting E of sides equal to §, such that Qk 30 Qk =@ if j # L. Let QkJ be
a cube contained in Q ; with sides equal to 0y, and let V) = U Qk ,j- We will
choose &, so small that m(V,) < g/2k. Let K = nk 1 (E\Vk Then

m(E\K) < 2 m(Vy) < 2 /2K =¢.
k=1 k=1

Now suppose x € K. Then for each k there exists some j so that x € Q Since
Qx, 261 ) \K 2 Qy ;, we find

Ca(Qx, 20)\K) _ ()% 1

(26, )" 2nen  2n’

which implies

, Cy(Qx, 8)\K)
lim sup -
6—0 6

>0 for all x € K.

By the lemma above, Co(B\K) = C,(B). Hence the theorem is proved.

Now let {@;} be increasing to n. Consider a sequence {K;} of compact sets
contained in E satisfying m(E\K;) <&/2’ and ca (B\K;) = Ca,(B), i=1,2,
0

Set K = ﬂj:1 K;. Then it is obvious that m(E\K) < Z -1 m(E\K;) <e, and
Cq (B\K) = Caj(B) for all j. Using (ii) in the above lemma, we can verify that this
J

implies Cg(B\K) = Cy(B) for all @ € (n - 2, n). Thus Theorem 4 has the following
extension.

THEOREM 5. For any compact set E with m(E) > 0 and for any € > 0, theve
exists a compact set K C E such that m(E\K) <& and Cgx(B\K) = Cy(B) for all
a € (n- 2, n).
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