ON RIESZ TRANSFORMS OF BOUNDED FUNCTIONS OF COMPACT SUPPORT

Nguyen Xuan Uy

1. Let K be a compact set of \mathbb{R}^n such that m(K) > 0, where m is n-dimensional Lebesgue measure. Let $L^{\infty}(K)$ denote the set of all functions in $L^{\infty}(\mathbb{R}^n)$ which vanish almost everywhere on $\mathbb{R}^n \setminus K$. We will be concerned with the set $H^{\infty}(K)$ of those functions in $L^{\infty}(K)$ which have bounded Riesz transforms. More precisely, a function $h \in L^{\infty}(K)$ is in $H^{\infty}(K)$ if and only if all Riesz transforms

$$R_{j}h(x) = P.V. c_{n} \int \frac{(x_{j} - t_{j})}{|x - t|^{n+1}} h(t) dt, \quad j = 1, 2, \dots, n,$$

where c_n is normalizing constant depending only on n, belong to $L^{\infty}(\mathbb{R}^n)$. It follows from a classical result that $\|R_jh\|_p \leq A_p\|h\|_p$ if $1 . (See Stein [9].) When <math>p = \infty$, R_jh does not necessarily belong to $L^{\infty}(\mathbb{R}^n)$. In fact, it is relatively simple to show that there exists a function $h \in L^{\infty}(K)$ such that $R_jh \notin L^{\infty}(\mathbb{R}^n)$ for all $j=1,2,\cdots$, n. The main purpose of this paper is to investigate whether or not $H^{\infty}(K)$ is always nontrivial; i.e., $H^{\infty}(K) \neq \{0\}$. We remark that $H^{\infty}(K)$ is a Banach space under the norm $\|h\| = \|h\|_{\infty} + \sum_{j=1}^n \|R_jh\|_{\infty}$. Related to $H^{\infty}(K)$ is the set $\mathscr{K}(K)$ of bounded harmonic functions defined on $\mathbb{R}^{n+1} \setminus K$ and satisfying a Lipschitz condition. If $\mathscr{K}(K)$ consists only of the constants, the set K is called removable for harmonic functions satisfying a Lipschitz condition. It turns out that K is removable if and only if $H^{\infty}(K)$ is trivial (see Theorem 1). We should mention here the related work of Harvey and Polking [6], where they have found sufficient conditions on removable sets for solutions of linear partial differential equations. We remark that the well-known result that m(K) = 0 implies K is removable for harmonic functions satisfying a Lipschitz condition, can also be derived from their Theorem 4.3(b).

The problem of removable singularities of harmonic functions satisfying a Lipschitz condition of order α , $0<\alpha<1$, has been completely solved by Carleson (see [3, Section VII, Theorem 2]). He proved that K is removable if and only if the $(n-2+\alpha)$ -dimensional Hausdorff measure $\Lambda_{n-2+\alpha}(K)=0$.

THEOREM 1. Let K be a compact set of \mathbb{R}^n . Then $u \in \mathcal{H}'(K)$ if and only if there exists a function $h \in H^\infty(K)$ such that

$$u(x, y) = \int \log \{(x - t)^2 + y^2\} h(t) dt + Constant$$
 if $n = 1$

and

$$u(x, y) = \int \frac{h(t)}{(|x - t|^2 + y^2)^{(n-1)/2}} dt + Constant \quad \text{if } n > 1.$$

Michigan Math. J. 24 (1977).

Received July 12, 1976. Revisions received December 23, 1976 and June 28, 1977.

This research was partially supported by a SUNY Faculty Research Fellowship.

Proof. (For n > 1). Suppose $u \in \mathcal{H}(K)$. Since u can be extended continuously across K, we find u(x, y) = u(x, -y). It follows that $\frac{\partial u}{\partial y}(x, -y) = -\frac{\partial u}{\partial y}(x, -y)$ and that

$$\frac{\partial u}{\partial y}(x, y) = c_n \int \frac{y h(t)}{(|x - t|^2 + y^2)^{(n+1)/2}} dt \quad \text{for all } (x, y) \text{ in } \mathbb{R}^{n+1} \setminus K,$$

where $h(t) = \lim_{y \to 0} \frac{\partial u}{\partial y}(t, y)$ exists almost everywhere and vanishes on $\mathbb{R}^n \setminus K$. Therefore,

$$u(x, y) = \frac{c_n}{1-n} \int \frac{h(t)}{(|x-t|^2+y^2)^{(n-1)/2}} dt + Constant.$$

To complete the proof of the theorem, we observe that

$$\frac{\partial u}{\partial x_{j}}(x, y) = c_{n} \int \frac{(x_{j} - t_{j}) h(t)}{(|x - t|^{2} + y^{2})^{(n+1)/2}} dt = c_{n} \int \frac{y R_{j} h(y)}{(|x - t|^{2} + y^{2})^{(n+1)/2}} dt, \quad y > 0.$$

(See [10, Chapter VI, Theorem 4.17].) This proves that $\frac{\partial u}{\partial x_j}$ is bounded if and only if $R_j h \in L^{\infty}(\mathbb{R}^n)$, and the theorem follows.

THEOREM 2. If n=1, then $H^{\infty}(K)$ is nontrivial for any compact set K with m(K)>0.

Proof. Suppose m(K) > 0, and let f be the Ahlfors function for K. (See [5, Chapter VIII].) It is well known that f is nonconstant. By applying Cauchy's integral formula, we find $f(z) = \int_K \frac{h(t)}{z-t} dt$, $z \notin K$, where

$$h(t) = \lim_{y\to 0} \frac{1}{2\pi i} \{f(t+iy) - f(t-iy)\},$$

which exists almost everywhere and vanishes on $\mathbb{R}\setminus K$. Furthermore, since $f(z)=\overline{f(\bar{z})}$, h is a real-valued function. Therefore, if u is the real part of f, then

$$u(x, y) = \int \frac{(x - t)h(t)}{(x - t)^2 + y^2} dt = \int \frac{yHh(t)}{(x - t)^2 + y^2} dt, \quad y > 0,$$

where H denotes the Hilbert transform. Since u is bounded, this implies that $\operatorname{Hh} \in L^{\infty}(\mathbb{R})$, and the theorem follows.

2. From now on, we may assume that n>1. We shall be involved with the Riesz capacities. We give here some notations for these capacities and refer to Landkof [8] for results. The *Riesz potential of order* α of μ is denoted by u^{μ}_{α} , where $u^{\mu}_{\alpha}(x)=\int \frac{d\mu(t)}{|x-t|^{\alpha}}$. If E is a Borel subset of \mathbb{R}^n , the *Riesz capacity of*

order α of E is defined by the relation $C_{\alpha}(E) = \sup \mu(E)$, where the supremum is taken over all positive measures μ with support $S_{\mu} \subset E$ and potential $u_{\alpha}^{\mu} \leq 1$. We shall consider the capacitary condition

(*)
$$C_{\alpha}(B \setminus K) < C_{\alpha}(B)$$
,

where B is some ball containing K. Whether B is open or closed does not matter; however, for convenience of the argument, we let B be open. Later on we will see that (*) depends only on the degree of density of K and is independent of the choice of B. The significance of this condition in the application of the theory of capacity can be found in several papers; e.g., [1], [4], [7], and [2]. Notice that (*) does not hold if $0 < \alpha \le n - 2$ or if $n - 2 < \alpha < n$ and m(K) = 0. The first case follows from the fact that the equilibrium measure of any compact set concentrates on its outer boundary. (See [8, p. 162].) The second case follows from the fact that the equilibrium measure of B is absolutely continuous with respect to Lebesgue measure. (See [8, Appendix].) Later on we will see that there exists a compact set K with m(K) > 0 but $C_{\alpha}(B \setminus K) = C_{\alpha}(B)$ for all $\alpha \in (n - 2, n)$.

THEOREM 3. Let K be a compact set and B be an open ball containing K such that the condition (*) holds for some $\alpha \in (n-2, n)$. Then $H^{\infty}(K)$ is nontrivial.

Proof. We may assume without loss of generality that the interior $\overset{\circ}{K}$ is empty and B is the unit ball. Let μ be the equilibrium measure of B\K, $u = u^{\mu}_{\alpha}$, and

$$h(t) = \begin{cases} 1 - u(t) & \text{if } t \in B, \\ 0 & \text{otherwise.} \end{cases}$$

By hypothesis, $h \neq 0$ on a set of positive measure contained in K. Since u = 1 on $B \setminus K$, it follows that $h \in L^{\infty}(K)$. We will prove that $R_{j}h \in L^{\infty}(\mathbb{R}^{n})$ for all $j = 1, 2, \dots, n$. It is clearly enough to show that the functions

$$u_j(x, y) = \int \frac{(x_j - t_j) h(t)}{(|x - t|^2 + y^2)^{(n+1)/2}} dt, \quad j = 1, 2, \dots, n,$$

are bounded on the set of (x, y) such that $x \in B' \setminus K$, where B' is some open ball containing K with radius less than 1. Because u(x) = 1, we can write

$$u_{j}(x, y) = \int_{B} d\mu(s) \int_{B} \left\{ \frac{1}{|x-s|^{\alpha}} - \frac{1}{|t-s|^{\alpha}} \right\} \frac{(x_{j} - t_{j})}{(|x-t|^{2} + y^{2})^{(n+1)/2}} dt.$$

We will estimate $\mathbf{u}_{j}(\mathbf{x}, \mathbf{y})$ by dividing the inner integral into three parts over

$$E = \left\{ \, t \in B \colon \left| \, x - t \, \right| \, \leq \frac{1}{2} \, \left| \, x - s \, \right| \, \right\} \, , \quad F = \left\{ \, t \in B \colon \frac{1}{2} \, \left| \, x - s \, \right| \, \leq \, \left| \, x - t \, \right| \, \leq \, 2 \, \left| \, x - s \, \right| \, \right\} \, ,$$
 and

$$G = \{t \in B: |x - t| \ge 2|x - s|\}$$
.

Let I(E), I(F), I(G) be the corresponding integrals, and let C be a certain absolute constant. Then

$$\begin{split} \left| \, I(E) \, \right| \, & \leq \, \int_B \, d\mu(s) \, \int_E \, \left| \, \left\{ \frac{1}{\left| \, x \, - \, s \, \right|^{\, \alpha}} \, - \, \frac{1}{\left| \, t \, - \, s \, \right|^{\, \alpha}} \, \right\} \, \right| \, \frac{dt}{\left| \, x \, - \, t \, \right|^{\, n}} \\ & \leq \, C \, \, \int_B \, d\mu(s) \, \, \int_E \, \frac{\left| \, x \, - \, t \, \right|^{\, \alpha/\, k}}{\left| \, x \, - \, s \, \right|^{\, \alpha+\alpha/\, k}} \, \frac{dt}{\left| \, x \, - \, t \, \right|^{\, n}} \end{split}$$

$$\leq C \int_{B} \frac{d\mu(s)}{|x-s|^{\alpha+\alpha/k}} \int_{0}^{\frac{1}{2}|x-s|} \frac{dt}{r^{1-\alpha/k}} \leq C \int_{B} \frac{d\mu(s)}{|x-s|^{\alpha}} \leq C,$$

where k is some fixed positive integer such that $\alpha/k < 1$. Also,

$$\big| I(F) \big| \, \leq \, \int_{B} \, d\mu(s) \, \int_{F} \frac{dt}{\, \big| \, x \, - \, t \, \big|^{\, n}} \, \int_{B} \, d\mu(s) \, \int_{\frac{1}{2} \, \big| \, x \, - \, s \, \big|}^{\, 2 \, \big| \, x \, - \, s \, \big|} \frac{dr}{r} \leq \, C \, .$$

To estimate I(G), we write I(G) = I'(G) - I''(G), where

$$I'(G) = \int_{B} \frac{d\mu(s)}{|x-s|^{\alpha}} \int_{G} \frac{(x_{j}-t_{j})}{(|x-t|^{2}+y^{2})^{(n+1)/2}} dt$$

and

$$I''(G) = \int_{B} d\mu(s) \int_{G} \frac{1}{|t-s|^{\alpha}} \frac{(x_{j}-t_{j})}{(|x-t|^{2}+y^{2})^{(n+1)/2}} dt.$$

Let $D = \{t \in \mathbb{R}^n : 2|x-s| \le |x-t| \le 2\}$. Since $\int_D \frac{(x_j - t_j)}{(|x-t|^2 + y^2)^{(n+1)/2}} dt = 0$,

$$I'(G) = -\int_{B} \frac{d\mu(s)}{|x-s|} \int_{D\backslash G} \frac{(x_{j}-t_{j})}{(|x-t|^{2}+y^{2})^{(n+1)/2}} dt.$$

Therefore, $|I'(G)| \leq C$, because $dist(B', D \setminus G) > 0$. Finally,

$$\begin{split} \left|I"(G)\right| &\leq C \; \int_{B} \; d\mu(s) \; \int_{G} \; \frac{dt}{\left|x-t\right|^{n+\alpha}} \\ &\leq C \; \int_{B} \; d\mu(s) \; \int_{2 \left|x-s\right|}^{\infty} \; \frac{dr}{r^{1+\alpha}} \leq C \; \int_{B} \; \frac{d\mu(s)}{\left|x-s\right|^{\alpha}} \leq C \; . \end{split}$$

COROLLARY. There exists a totally disconnected compact set K such that $\operatorname{H}^{\infty}(K)$ is nontrivial.

Proof. Consider a closed cube $Q \subseteq B$. Then $C_{\alpha}(B \setminus Q) < C_{\alpha}(B)$ for all $\alpha \in (n-2,n)$. Fix an $\alpha \in (n-1,n)$ and choose a sequence $\{a_k\}$ of positive numbers such that $C_{\alpha}(B \setminus Q) + \sum_{k=1}^{\infty} a_k < C_{\alpha}(B)$. Divide Q into Q cubes by Q n hyperplanes parallel to the faces of Q and passing through its center. Since for Q n, the Riesz capacity of order Q of any hyperplane (of dimension Q 1)

is 0, we can remove from Q a set V_1 symmetrically along these hyperplanes so that $C_{\alpha}(V_1) < a_1$ and $Q_1 = Q \setminus V_1$ is a union of 2^n disjoint closed cubes of the same size. Suppose at step $k \geq 1$ we have defined V_k and Q_k . We repeat the above division with each cube of Q_k and remove from Q_k a set V_{k+1} along the hyperplanes occurring at this step so that $C_{\alpha}(V_{k+1}) < a_{k+1}$ and $Q_k = Q_k \setminus V_{k+1}$ consists of $2^{n(k+1)}$ disjoint closed cubes of the same size. Thus $Q_1 \supset Q_2 \supset \cdots$. Let

$$K = \bigcap_{k=1}^{\infty} Q_k.$$

Then K is totally disconnected and B\K = (B\Q) \cup ($\bigcup_{k=1}^{\infty}$ V_k) . Thus

$$C_{\alpha}(B \setminus K) \leq C_{\alpha}(B \setminus Q) + \sum_{k=1}^{\infty} C_{\alpha}(V_k) < C_{\alpha}(B \setminus Q) + \sum_{k=1}^{\infty} a_k < C_{\alpha}(B).$$

and the corollary follows.

3. The answer to the question of the nontriviality of $H^{\infty}(K)$ depends upon Theorem 3, where we have assumed that the condition (*) holds for some $\alpha \in (n-2, n)$. In this section we will see that there exists a compact set of positive measure which does not satisfy (*) for all $\alpha \in (n-2, n)$. Thus Theorem 3 gives only a partial answer. In general, the nontriviality of $H^{\infty}(K)$ is still unknown.

THEOREM 4. Let $\alpha \in (n-2, n)$, and let E be a compact set with m(E) > 0. Then for each $\epsilon > 0$, there exists a compact set $K \subset E$ such that $m(E \setminus K) < \epsilon$ and $C_{\alpha}(B \setminus K) = C_{\alpha}(B)$, where B is an open ball containing K.

LEMMA. Let $\alpha \in (n-2, n)$. Then the following are equivalent.

- (i) $C_{\alpha}(B \setminus K) = C_{\alpha}(B)$;
- (ii) $\lim_{\delta \to 0} \sup \frac{C_{\alpha}(Q(x, \delta) \setminus K)}{\delta^n} > 0$ for almost all $x \in K$, where $Q(x, \delta)$ is the closed cube of center x and side δ .

Proof. That (ii) implies (i) follows from Theorem 9 of [7]. To prove that (i) implies (ii), suppose there exists a sequence $\{\delta_k\}$ decreasing to 0 such that

$$\frac{C_{\alpha}(Q(x, \delta_k) \setminus K)}{\delta_k^n} \to 0 \quad \text{as } k \to \infty$$

for all $x \in F \subset K$ with m(F) > 0. By Egoroff's theorem, we may assume that the above convergence is uniform on F. For each $k = 1, 2, \cdots$, cover F with a finite collection $\left\{P_{k,j}\right\}$ of cubes intersecting F with sides equal to $\delta_k/2$ such that $P_{k,j} \cap P_{k,\ell} = \emptyset$ if $j \neq \ell$. Choose a point $x_{k,j} \in F \cap P_{k,j}$, and let $Q_{k,j} = Q(x_{k,j}, \delta_k)$. It is easy to see that $F \subset \bigcup_j Q_{k,j}$. Now choose $\epsilon > 0$ and consider the equilibrium measure μ of $B \setminus K$. Since $\mu(Q_{k,j}) \leq C_{\alpha}(Q_{k,j} \setminus K)$, we obtain

$$\mu(F) \, \leq \, \sum_{j} \, C_{\boldsymbol{\alpha}}(Q_{k,j} \backslash \, K) \, \leq \, \epsilon \, \sum_{j} \, m(Q_{k,j}) \, \leq \, \epsilon \, C$$

if k is sufficiently large. Hence $\mu(F)=0$. This implies that $\mu \neq \nu$, where ν is the equilibrium measure of B. Therefore $C_{\alpha}(B \setminus K) < C_{\alpha}(B)$, which is a contradiction.

Proof of Theorem 4. Let $\{\delta_k\}$ be a sequence of positive numbers decreasing to 0, and let $\{\delta_k'\} = \{\delta_k^{n/\alpha}\}$. Cover E with a finite collection $\{Q_{k,j}\}$ of cubes intersecting E of sides equal to δ_k such that $\mathring{Q}_{k,j} \cap \mathring{Q}_{k,\ell} = \emptyset$ if $j \neq \ell$. Let $Q_{k,j}'$ be a cube contained in $Q_{k,j}$ with sides equal to δ_k' , and let $V_k = \bigcup_j \mathring{Q}_{k,j}'$. We will choose δ_k so small that $m(V_k) < \epsilon/2^k$. Let $K = \bigcap_{k=1}^\infty (E \setminus V_k)$. Then

$$m(E \setminus K) \leq \sum_{k=1}^{\infty} m(V_k) \leq \sum_{k=1}^{\infty} \epsilon/2^k = \epsilon.$$

Now suppose $x \in K$. Then for each k there exists some j so that $x \in Q_{k,j}$. Since $Q(x, 2\delta_k) \setminus K \supset Q'_{k,j}$, we find

$$\frac{C_{\alpha}(Q(x, 2\delta_k) \setminus K)}{(2\delta_k)^n} > \frac{(\delta_k')^{\alpha}}{2^n \delta_k^n} = \frac{1}{2^n},$$

which implies

$$\lim_{\delta \to 0} \sup \frac{C_{\alpha}(Q(x, \delta) \setminus K)}{\delta^n} > 0 \quad \text{for all } x \in K.$$

By the lemma above, $C_{\alpha}(B \setminus K) = C_{\alpha}(B)$. Hence the theorem is proved.

Now let $\{\alpha_j\}$ be increasing to n. Consider a sequence $\{K_j\}$ of compact sets contained in E satisfying $m(E\setminus K_j)<\epsilon/2^j$ and $C_{\alpha_j}(B\setminus K_j)=C_{\alpha_j}(B)$, j = 1, 2,

Set $K = \bigcap_{j=1}^{\infty} K_j$. Then it is obvious that $m(E \setminus K) \leq \sum_{j=1}^{\infty} m(E \setminus K_j) < \epsilon$, and $C_{\alpha_j}(B \setminus K) = C_{\alpha_j}(B)$ for all j. Using (ii) in the above lemma, we can verify that this implies $C_{\alpha}(B \setminus K) = C_{\alpha}(B)$ for all $\alpha \in (n-2, n)$. Thus Theorem 4 has the following extension.

THEOREM 5. For any compact set E with m(E)>0 and for any $\epsilon>0$, there exists a compact set $K\subseteq E$ such that $m(E\setminus K)<\epsilon$ and $C_{\alpha}(B\setminus K)=C_{\alpha}(B)$ for all $\alpha\in (n-2,n)$.

REFERENCES

- 1. L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101-129.
- 2. T. Bagby, L_p approximation by analytic functions. J. Approximation Theory 5 (1972), 401-404.
- 3. L. Carleson, Selected Problems on Exceptional Sets. Van Nostrand Mathematical Studies, No. 13. D. Van Nostrand Co., Inc., Princeton, N.J., 1967.
- 4. ——, On null-sets for continuous analytic functions. Ark. Mat. 1 (1951), 311-318.

- 5. T. W. Gamelin, Uniform Algebras. Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 6. R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations. Acta Math. 125 (1970), 39-56.
- 7. L. I. Hedberg, Non-linear potentials and approximation in the mean by analytic functions. Math. Z. 129 (1972), 299-319.
- 8. N. S. Landkof, Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972.
- 9. E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
- 10. E. M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*. Princeton University Press, Princeton, N.J., 1971.

Department of Mathematics State University of New York at Albany Albany, New York 12222