ON THE EULER CHARACTERISTIC OF REAL VARIETIES

Harold Abelson

In this paper we give a bound for the Euler characteristic of algebraic varieties
in real projective space. This provides a generalization of, and a conceptual frame-
work for, the well-known work of Petrovsky and Oleinik [4] which estimates the
Euler characteristic of a nonsingular hypersurface by means of a detailed analysis
of the critical points of polynomials. Our result applies to any smooth variety. It is,
in fact, much easier to state and prove the theorem in its general setting than to no-
tice that it yields the more computationally formulated Petrovsky-Oleinik inequality
when applied to hypersurfaces.

We obtain this topological information about the algebraic variety V € RIPN by
comparing V with its complexification Vg C cpPN, By definition V¢ is the com-
plex projective variety of all complex solutions to the polynomials which define V.

Note (added in revision). After this manuscript was prepared, the author
learned that similar results have been obtained by Kharlamov in [2]. In that paper
he proves Theorem 1 and states Proposition 1 as a conjecture.

THEOREM 1. Let V22 Cc RIPN pe q nonsingulay projective real algebraic
vaviety and suppose that Vg, the complexification of V, is also smooth. Then the

Euler characteristic of V is bounded by Ix(V)] <dim H™™V).

Remark. We may always assume that V¢ is smooth, since a small variation of
the defining polynomials eliminates any singularities of V¢ while altering V by a
diffeomorphism. A smooth V¢ admits a Hodge decomposition of its complex co-
homology [see 6]

HY(Ve; €) = 2 HP YV(),
pta=k

and the right hand side of the above inequality refers to this decomposition.
Proof of Theovem 1. Complex conjugation T: CIPN — ¢cIPN,

T(ZO’ Zys "7 ZN) = (20’ 21; "y zN)s

restricts to an involution of V¢ with V as fixed-point set. Moreover, T is an
isometry, and therefore the Euler characteristic of V is equal to the Lefschetz
number L(T, V). (See [3], p. 76.)

Let J be the almost complex structure on the tangent bundle of V. T carries
J to the “conjugate” structure -J. Acting on forms, then, T* sends forms of type
(p, @) to forms of type (q, p). Therefore, for every p and q, T* preserves the di-
rect sum HP>9UV) @ HY P(V). For p # q, the trace of T* restricted to this sum
is zero. Therefore

4n

L(T, Vc) = 22 (-1Y tr(T* | W(V()) = tr(T* | W),
j=0
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2n
where W = Z)k___o Hk’ k(Vc).

Let we Hl» 1(V:) be the Kihler class. Splitting each HX k(V) according to
the Lefschetz decomposition [6], we can rewrite W as

n
W - Z) (Pk’k@ ka,k @ e 6_) wZ(n-k) Pk, k),
k=0

where P K s the primitive part of HK k(VC). Since T sends J to -J, one sees
that T*(c_o) = -w. Hence T* preserves the Lefschetz decomposition and
tr(T* | il Pk, k) = (-1)i tr(T*Tka k), This implies that

tr(T* | W) = tr(T*| 27 PK),
k=0

The theorem now follows, since dim 2Jy_g Pk X = dim gm0,

Remark. This recovery of topological restrictions on V coming from V¢ is
analogous to the observation of Thom [5] that the sum of the mod 2 Betti numbers of
V is bounded by the corresponding sum for V.

Suppose now that V2 C RIP2P*T jg a smooth complete intersection of hyper-
surfaces of degrees a, ***, a,,. We can assume that V¢ is likewise a complete in-
tersection. By the Hirzebruch-Riemann-Roch theorem [1], dim H™ ™(V) is equal

to (-1)™ times the coefficient of y*z?™'T in the power series expansion of
r a. a;
(1) 1 II (1+zy)*-(1-2)1
(1-2)1+2zy)

i=1 (1 +zy)ai - y(1 - z)ai

Our theorem thus gives an explicit bound for x(V) in terms of the a;.

In the case where V28 C RIP22*L js a nonsingular hypersurface defined by a
polynomial f of degree a, we can compare our result with that given by Petrovsky
and Oleinik [4].

PETROVSKY-OLEINIK INEQUALITY. If V C RIP2nt) §s g smooth hypersur-
face of degree a, then

(2) Ix(V)| < (a-1)2ntl - 25(2n +1, a) + 1,

wheve S(2n + 1, a) is equal to the numbey of tevms of degrvee less than ov equal to
an - (2n + 1) in the expansion of

2n+l

(3) H x: -1

i=1 1

a-1
Xi -1

The following proposition shows that this formidable expression is nothing
more than dim H® ™V ). Hence our theorem can be regarded as a generalization of
the Petrovsky-Oleinik inequality, valid for any smooth real algebraic variety.

PROPOSITION 1. The expression (2) is equal to dim H™ ™(V), where
Ve C CIP2tL is g smooth hypersurface of degree a.
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Proof. By the Riemann-Roch formula (1), dim H» ®(V) is given by the coeffi-
cient of ynz2ntl in the expansion of
1 (1-2zy)*-Q1-2)?%
i-2)(1-12y) (1- zy)2 - y(1 - )2

Fly, z) = 7

To compare this with (2) we construct a generating function for the combinatorial
expression S(2n + 1, a).

LEMMA 1. S(2n+ 1, a) is equal to minus the coefficient of y™z2ntl in the
power series expansion of

(1 _ Zy)a—l
(1-2zy)?-y(-2)2"

G(y, z) =

The proposition now reduces to showing that the coefficient of y”z 2ntl gy
F(y, z) - 2Gly, z) is (a - 1)2ntl + 1, Since F - 2G can be written as

i 1+ I:Z)a-l
o e ) Uk
1-zy

and the coefficient of ynz2ntl in the first term of (4) is 1, we need only show that
the coefficient in the second term is (a - 1)2ntl | It is not hard to see that this re-
duces to the following identity in binomial coefficients.

LEMMA 2.
n
gtk ak-i-n—k) ak ak+a+n-k-1 ak+a—1)
(5) ké)(l) I:( ak (n+k+1)+( ak+a-1 ) n+k+1 :I
= (a_ 1)2n+1 .

Remavrk. The above proposition was initially conjectured after a number of low-
dimensional cases had been conveniently verified with the aid of the Macsyma system
for symbolic computation. I am grateful to Joel Moses of M.I.T.’s Project Mac for
making the facilities available.

Proof of Lemma 1. Let R(k, j) be the number of terms of degree less than or
equal to j in

k a—l
-1

II——- =1

i=1 B

Let T(k, j) be the number of terms of degree exactly j in the above expression.
Then T(k, ]) is the coefficient of xJ in the power series expansion of QX, where
Q(x) = (x®~! - 1)/(x - 1), and hence

<0

= 27 xR, j) .

k
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This shows that S(2n + 1, a), which is R(2n + 1, an - (2n + 1)), equals the coefficient

1
(1+2zx2) -x(1+2)’°

(6)

because (6) is equal to

1 = 2 zkxk

H(x, z) = 1
(1 -2x?) -x(1-2)
which is the same as the coefficient of x2"z2n+1l jp
a-1 a-1
— a -
(1) 15 H(ni x, z) = (A - zx%) .
& 520 (1 - zx#)?2 - x31 - z)?

(Here n is a primitive ath root of unity.) Finally, we set y = x2 in (7) and Lemma
1 is proved.

Proof of Lemma 2. Rewrite the summation in (5) as
n+l

D o () ) - () (D ]

k=1

This simplifies to

n+l
2 k 2n + 2 m+1-K(a-1)+n
2n+2k§)(_1) (n+1'k)( K )( on + 1 )
(8) N
1 2732(1)1{( +1-K) (2n+2)((n+1—k)(a—1)+n)
Toent2 ) TS k 2n + 1 '

Now we use the following fact: If P(k) is any polynomial of degree 2n + 2, then the
sum
2nt2

2n + 2
Z () e

is equal to (2n + 2)! times the leading coefficient of P. Applying this to (8) with

n+1-%)(a- 1)+n)

PK) = (n+1- k) ( e

completes the proof.
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