NAKANO’S THEOREM REVISITED
C. D. Aliprantis and O. Burkinshaw

This paper is a complement of the authors’ paper [2]. In that paper we have
provided a new proof of the following theorem (due to H. Nakano): If (L, 7) is a
Dedekind complete Riesz space with the Fatou prvoperty, then the ovder intevvals of
L are t-complete. (For a discussion and the history of this result, the reader is
referred to [3], [5], [6], [7], and to the references of [2].) In the course of our proof
of Nakano’s theorem we made use of a nonelementary result. In this note we show,
however, that it is possible to modify the proof of Nakano’s theorem as it was pre-
sented in [2] so that it becomes elementary. On the other hand, an alternate proof of
the same result will also be given.

For notation and basic terminology concerning Riesz spaces we refer the reader
to [4]. A locally solid Riesz space (L, 7) is a Riesz space L equipped with a local-
ly solid topology T; that is, equipped with a linear topology 7 which has a basis for
zero consisting of solid sets. (A subset V of L is said to be a solid set if
lu| < |v] and v € V implies u € V.) Anet {uy} of a Riesz space L order con-

(o}
verges to u in L, denoted by uy — u, if there exists a net {va} of L (with the
same indexing set) such that lua - u| Kvy | 6 holdsin L. A subset V of a Riesz

space is said to be ovder closed if {uy} C V and uy L implies u € V, and V
is said to have the Fatou property if V is solid and order closed. Note that a solid
subset V of a Riesz space L is order closed if and only if § <uy T u in L and
{ug} € V implies u € V (see [2, p. 25]).

A locally solid Riesz space (L, 7) has the Fatou property if 7 has a basi§ for
zero consisting of sets with the Fatou property. The fopological completion (L, T)
of a Hausdorff locally solid Riesz space (L, 7) equipped with the cone formed by the
closure of L' in L is a locally solid Riesz space containing L as a Riesz subspace
(see [1, Theorem 2.1, p. 109]).

A Riesz subspace L of a Riesz space K is said to be ovder dense in K if
sup {veL: 0 <v<u} =u holds in K for all u € K'. If K is Archimedean this is
equivalent to the property that for each 8 <u € K (6 <u means, of course, 6 <u
and u # 0), there exists v € L with 8§ <v <u. In particular, it follows that if L is
order dense in K, the embedding of L into K preserves arbitrary suprema and
infima.

We continue with a simple but very useful result.

LEMMA. Assume that L is an ovdey dense Riesz subspace of a Riesz space K,
If L. is a Dedekind complete Riesz space, then L is an ideal of K,

Proof. Assume 6 <u<v with v e L and u € K. Pick anet {u,} c L' with
8 <ug Tu in K and notice that since L is Dedekind complete, uy T w holds in L
for some w € L. But since L is order dense in K, ug 7 w holds also in K.
Hence u=w € L; L is an ideal of K.
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The proof of Nakano’s theorem given in [2] would be considered elementary if
we could avoid a result stating that, in a Hausdorff locally solid Riesz space with the
Fatou property, the Fatou subsets of the space are topologically closed. Although
this result seems natural its proof is not elementary.

We present next two proofs of Nakano’s theorem (for the Hausdorff case). The
first one is a modification of the proof of [2] and the second an alternate one.

THEOREM (Nakano). If (L, 7) is a Hausdovff Dedekind complete locally solid
Riesz space with the Fatou property, then the ovder intevvals of L are T-complele.

Proof. We have to show that L is an ideal of L. Since Ld = {6} in i. ac-
cording to the lemma it is enough to show that L is order dense in A(L), the ideal

generated by L in L. To this end, let 8§ <u<ue L. Pick a sequence of Fatou
neighborhoods of zero {Vn} of (L, 'r)A with V41 + Va4 €V, for n=1, 2, --- and
with 0 ¢ V), the 7-closure of V| in L. Then select anet {vg} of L, 6 <vy <u

for all @ € {a}, with vo, 5 . In particular, note that {v,} isa 7-Cauchy net of
(L, 7). Next pick a sequence of indices {an} C {a} with o, < a4+ for
n=1,2, -, suchthat vg - vg € V42 and U-vy € Vpy1 for a, B>an Put

u, = van, =1, 2, -+, and note that u,4, - u, € Vpqp for n, p=1, 2, ---. Note
also that |
9Ssup{um:nSmSn-Fp}-un=sup{um-un:n_§m_<_n+p} i
< sup {|um - uplin <m <n+p}
nt+p-1
< 2 'um-}-l S Uy | € Vgt +Vn+p+1 < Vil
m=n
for n,p=1,2, ---. Now put w, =sup {up,: m >n}, n=1,2, ---, in L and note

that since V,4+) is order closed in L, the above relation implies
6 < Wn-upe€ Vni

for n=1, 2, ---. Observe next that w, | w> 6 in L and so
(o)

|Wn+p - unl (pToo_> IW - unl in L.

But since |wn+p - un| < [Wn+p un+p| + lun+p unf € Vp41 for n,p=1, 2, ---,

Iw -u,| € Vpuyy for n=1, 2, ---. Hence |u- w| € V, for all n. (Note that
= lim supu,; the same holds for lim infuy.)
Now let

(> o]
S={ve L' v-weA-= ﬂ Vn_}.
n=1

Obviously S is nonempty. Put s =infS in L and notice that since A is a band of

L, s-wé€ A and so s> 6. Now choose a Fatou neighborhood of zero W; of (L, 7)
such that W; C V;. Pick a sequence of Fatou nelghborhoods of zero {W,} of L
with W, + W, 41 © W, and W, CV, for n=1, 2, ---. Next choose a sequence of
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indices {Bn}t C {a} with an < Bn < Bnr1, for n=1, 32, -+, such that
Vg - Vg € Wpyp and - vg € W, for o, 8> 8,. (A simple verification shows
that such a sequence exists.) Put x, =vg , D =1, 2, ---, and use the above argu-

ment to get that x = limsupx,, in L satisfies lﬁ -x| € W,CV, for n=1, 2, -
Since

lX-W' < lx_xn'+lxn'unl+lun"wl;
X -w € V, for all n; thatis, x - w € A. Thus s <X and so
6 < (s-0" <x-0)"eW.

But then by [2, Lemma 3.1, p. 28], (s - )t ¢ W for all the Fatou neighborhoods

W1 of zero of L with W; C V;. Hence (s - )" = 0; that is, 6 < s <, and the
proof is finished.

Altevnate proof. Assume again 6 <u<u e L. Pick a Fatou neighborhood V;
of zero of L with G ¢ V; and choose a sequence of Fatou neighborhoods {V,} of
o]

zero of (L, 7) with V,; +V,, CV, for n=1, 2, ---. Note that A=nn ) Vn is
a band of L. and, since L is Dedekind complete, a projection band of L. Thus

L = A@Ad and by [1, Lemma 7.1, p. 122] L= A@ (A)d =A® Ad. Write

u=uj; +up with § <] ¢ A and 6 <up € (A)d = Ad and observe that .

6 <{, < <u. Now pick a net {vq} C Ad, 6 <vy <u for all a, with v, 5 i,.
Choose a sequence of indices {a,} c {a} with a, <ayyy for n=1, 2, -+, and
Vo ~ Vg € Vpyo, U Uy ~ Vg € Vpyp for a, B> a,. Note that w —hmsupva in L

satisfies w €. Ad and uz -w e V, for all n. Hence Uz - W € Ad = (A)d. We will
now show that uz - w € A. To this end, let W) be a Fatou neighborhood of zero of
L with W; C V;. Choose a sequence of Fatou neighborhoods of zero {W,} of L
with W 41 + W41 €W, and W, €V, for n=1, 2, ---. Now proceed as above to
select an element x ¢ L with i, - x € W, for all n and with w - x € A. In particu-
lar, it follows that

(ﬁz-W)—(X-W) = az-XEWl,

which implies that G, - w € A, Hence (i, -w e AN(A)d={6}, andso i =w € L.
Thus ¢ <w <u and the second proof is finished.

REFERENCES
1. C. D. Aliprantis, On the completion of Hausdovff locally solid Riesz spaces.
Trans. Amer. Math. Soc. 196 (1974), 105-125.

2. C. D. Aliprantis and O. Burkinshaw, A new proof of Nakano's theorem in locally
solid Riesz spaces. Math. Z. 144 (1975), 25-33.

3. C. Goffman, Completeness in topological vector lattices. Amer. Math. Monthly
66 (1959), 87-92.

4. W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, I. North-Holland Publ.
Co., Amsterdam-London, 1971.

5. H. Nakano, Linear topologies on semi-ovdered linear spaces. J. Fac. Sci.
Hokkaido Univ. Ser. I. 12 (1953), 87-104.



176 C. D. ALIPRANTIS and O. BURKINSHAW

6. A. L. Peressini, Ordeved topological vector spaces. Harper and Row, New York,
1961.

7. H. H. Schaefer, On the completeness of topological vector lattices. Michigan
Math. J. 7 (1960), 303-309.

Department of Mathematical Sciences
Indiana University - Purdue University at Indianapolis
Indianapolis, Indiana 46205




