THE SCHWARTZ-HILBERT VARIETY
Steven F. Bellenot

1. INTRODUCTION

Let 6 be the collection of locally convex topological vector spaces (LCS) that
are embeddable as subspaces of a power XI, for each infinite-dimensional Banach
space X. It is known that 6 contains all nuclear spaces (S. A. Saxon [16]), that only
Schwartz spaces are in 6 (J. Diestel and R. H. Lohman [4]), and that there are
Schwartz spaces not in 6 (the author [1] and D. J. Randtke [15]). We shall show
(Theorem 4.1) that 6 coincides with the Schwartz-Hilbert variety (see below). Thus
6 is strictly larger than the nuclear variety [1].

Our main tool (see the Lemma) is A. Dvoretsky’s theorem [6] (see [12, p. 42])
on the existence of near—ﬂrzl—subspaces in any Banach space. Using Dvoretsky’s
theorem, we show that each compact map into Hilbert space can be factored through
a subspace of any infinite-dimensional Banach space (Theorem 3.3). For similar
results, see C. P. Stegall and J. R. Retherford [18].

2. NOTATION AND PRELIMINARIES

X, Y, and Z are reserved for infinite-dimensional Banach spaces. We write £,
for the Hilbert space of squared-summable sequences. R, S, T, U, V are reserved
for bounded linear maps. Each T = T) represents a diagonal map on £, (that is,

X =(@,) and Ty(a,) = (A, @,)). We note that T) is a positive compact map if and
only if An > 0 for all n and (A,) belongs to the space cg of null sequences. To say
S: X — Y factors through Z means that there are maps U: X = Z and V:Z — Y
such that S = VU.

A prevariety [2]is a collection of LCS’s that is closed with respect to the for-
mation of subspaces and arbitrary products. A vaviely [5] is a prevariety that, in
addition, contains all its separated quotients. If X is a Banach space, we denote by
pv(X) (respectively v(X)) the smallest prevariety (variety) containing X.

It follows from Theorem 1.1 of [5, p. 209], that for each LCS E and each
Banach space X, E € pv(X) if and only if E is a subspace of some power of X. A
universal genevator [5]for a variety « is an E € « suchthat each F € & is
embeddable as a subspace of a power of E.

Let & be the variety of Schwartz spaces (see [8, p. 271]), let & be the variety
v(L,), and let & o be their intersection, the Schwartz-Hilbevt variety. From
Theorem 4.4 of [5, p. 219] and the definition of Schwartz spaces it follows that each
E € ¥o¢ has a neighborhood basis % such that the completion of the norm space
Ey [17, p. 53] is a Hilbert space, for each U € % . Furthermore, for each U € %,
there is a V € # such that the canonical map Ey — Ey [17, p. 53] is precompact.
In the language of [14] and [15], each E € ¥2¢ is a subspace of a compact projec-
tive limit of ¢,-spaces. Finally, let .4 be the variety of nuclear spaces (see [13]).
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3. FACTORING COMPACT MAPS INTO HILBERT SPACE

With the exception of the Lemma, the results of this section deal with compact
maps into Hilbert spaces. It is shown (Theorem 3.3) that every compact map from a
Banach space X into Hilbert space can be factored through a subspace of any Banach
space. For convenience, we break the proof of Theorem 3.3 into propositions.

The Lemma is a consequence of Dvoretsky’s theorem. A proof can be modelled
on the standard construction of a basic sequence in any Banach spaces as given in
[12, p. 10]. Similar results are used in [3] and [18, p. 468].

LEMMA. Corresponding to every k > 1, every Banach space X, and every in-
creasing sequence 0 =ng <nj < --- of integers, theve is a subspace Y of X with a
basis {en} such that

1/2
L2 a2 ] < 1D anenll < ¢ 2 fan)? ]
for all sequences (o) with support in N(k) = {nk+ 1, n +2, -, nkH} for
k=0,1, .

PROPOSITION 3.1. Let X be a Banach space, and let Ty: L, — £, be a posi-
tive compact diagonal map. Then Ty factors thvough a subspace of X.

1/2

Proof. Let (u,) € co be such that w, >0 and ,u,zl =X1,. Let ng =0, and for
k > 1, choose ny > ny_; inductively so that j > ny implies p; < 27K, Let « =2,
and let Y be the subspace of X, with basis {e,}, given by the Lemma. Define
U: £, = Y by Ulay) = 2 LnQnen, and define V: Y — £, by V(E 3nen) = (LnBun).
We complete the proof by showing U and V are bounded linear maps, since clearly
T =VU.

Suppose [[(ap)] 2 < 1; then

10t = |2 unanen] < 2 |2 wnanea] <220 2 u2janz]’”
k N(k) k N(k)
<o 2 %[ 2 jan?) e ml 2 1e 1)
k>1 N(k) N(0)

<20+ T

Now suppose Zﬁn en € Y and ”EBn en” < 1. ¥ K is the basis constant of

{e,} [12, p. 10], then IIEN(k) Bn en“ <K+1 for k=0, 1, ->-. Thus
/
v (Z 6pen) Il = Jomel, <20 = w2 paa2 ]
k N{k)

1/2

k> 1 N(k

<2 2 ) il B s ]
) N(0)

< T 29| B gl Imla] 2 preall < s+ nize2ml,
K>1 N(k) N(o)
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PROPOSITION 3.2. If S: X — £, is a compact map, then theve is a positive,
nonincreasing null sequence X = (\) and a map R: X — £ such that S = T) R.
Furthermove, R can be chosen to be compact.

Proof. Let B be the unit ball of X; then K = S(B) is relatively compact. Let
PN be the Nth partial-sum operator on £2. For € > 0 (see [12, p. 12]), there is an

N such that ||Pjx - x| <& for x € K and j > N.

Let ng = 0, and for k > 1, choose ny > nx._; inductively so that j > ni and
x € K imply ”ij - x| <2°k. Let Ap =k-! for nx_; <n<ng, and let X = (1,).

For x € B, define Rx to be the sequence (\;![Sx],), where [Sx], is the nth coordi-
nate of Sx. Then

IRx[|? = 2 r;! [sxla|®

< TE+DE|P, (Sx) - P, (S0 < Dk+1)227F <,
K k+1 Kk = X

Hence the linear extension of R is bounded, and clearly T) R =S.
If R is not already compact, let u, > 0 be such that ,urzl =An. Then
Ty =Ty Ty, S=Tyu(TyR), and Ty R is compact.
Combining Proposition 3.1 and Proposition 3.2, we obtain the following result.

THEOREM 3.3. Let S: X — £ be compact, and let Y be a Banach space; then
S factovs thvough a subspace of Y.

In [7], A. Grothendieck asked: ¢if all operators from X to Y [Banach spaces]
are nuclear, must either X or Y be finite-dimensional?” From Propositions 3.1
and 3.2, we can easily deduce that for each infinite-dimensional X and Y, there are
compact nonnuclear maps from X to a subspace of Y and from a subspace of X to
Y. This is essentially Theorem II.3 of C. P. Stegall and J. R. Retherford [18, p. 472]
(their main tool is also Dvoretsky’s theorem). For other results on Grothendieck’s
question, see [3], [9], and [11].

4. THE SCHWARTZ-HILBERT VARIETY

Our main result, Theorem 4.1, is somewhat surprising in that the set (4) is
neither «# nor &. The fact that & # ¥# + 4 is in [1]. Let # denote the class
of all infinite-dimensional Banach spaces.

THEOREM 4.1. The following classes ave equal:
(1) sor,

@ M x e zPvX)

3) MNxeuv®
(4) {E: E is embeddable in some power of X, for each X € @}

Proof. From Section 2, we have the relations (2) = (4) ¢ (3). The results of [4]
imply that (3) is contained in ', the variety of Schwartz spaces. Since £, € &, it
follows that (3) € (1). To complete the proof, it suffices to show (1) C (2).
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Let E e ¥, and let X € 8. The class E has a neighborhood basis %/ such
that

(a) EU, the completion of Eyj, is isomorphic to £,, for each U € % ; and

(b) for each U € %, there is a V € % such that the canonical map Ey — Ey is
compact (see Section 2).

For each such U and V in (b), Theorem 3.3 provides a subspace Z of X through

which ﬁv — Ey factors. Hence [17, p. 53], E is a subspace of a projective limit of
subspaces of X, and so E € pv(X) [17, p. 54]. Therefore (1) C (2).

COROLLARY (Saxon). Each nuclear space is embeddable as a subspace of
some power of each infinite-dimensional Banach space.

We explicitly mention Saxon’s result because Theorem 4.1 provides a proof that
does not appeal to the profound result of T. KOmura and Y. Komura [10]: ¢ze space of
rvapidly decreasing sequences is a univevsal genevatov for 4. There is a trade-off,
however, since we require Dvoretsky’s theorem.

Our final result gives a universal generator for ¢ . Here (,[¥] is (>
equipped with the topology of uniform convergence on (norm) null sequences. A
proof of Theorem 4.2 can be obtained from Theorem 2 of D. J. Randtke [14]. Just
replace cg by £, and Schwartz space by Schwartz-Hilbert space. (See also [15,
Theorem 1].)

THEOREM 4.2. (3[¢] is a universal genevator for I .
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