BASES IN COMPLETELY DISTRIBUTIVE
LATTICE-ORDERED GROUPS
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1. INTRODUCTION

An element s of a lattice-ordered group (£-group) G is basic (see [4]) if
s > 0 and the closed interval [0, s] is totally ordered. An {-group G has a basis
if every element g > 0 exceeds some basic element (every maximal disjoint set of
basic elements is then a basis). An f-group G is completely distvibutive (see [2],
[3], [11], [12]) if the relation

/\{\/{gij|jeJ}[i€I} =\/{ /\{gi(if)liel}lfeJI_}

holds whenever {gijl iel je J} C G is such that all the indicated joins and meets
exist. By [8, p. 5.18, Theorem 5.8], every £{-group that has a basis is completely
distributive. We wish to investigate the converse of this result for representable (-
groups. To this end, we define the bi-prime group of an £{-group (Section 2), which
we characterise as the unique convex {-subgroup of G that is maximal with respect
to being generated by its intersections with any two minimal prime subgroups. For
each (-group, the bi-prime group contains all the basic elements (Section 2), but it
may be the whole group, even if the group is nontrivial and abelian and contains no
basic elements. For a completely distributive, representable {-group, however, the
latter situation cannot happen: that is, the bi-prime group of such a group has a
basis (Theorem 3.1). In Section 4, we consider some examples, including one of an
¢-group that is abelian and completely distributive and contains no basic elements.

Notation and Terminology. For terminology and notation left undefined, see G.
Birkhoff [1], L. Fuchs [10], or P. Conrad [8].

A poset in which every pair of elements is comparable is a fofally ovdeved set;
a totally ordered group is an o-group. We write functions on the right, and denote
the empty set by (0. We use N, Z, and R to denote, respectively, the natural num-
bers, the integers, and the real numbers. An L-isomorphism of L-groups,
£: G — H, is a one-to-one function such that both it and its inverse ¢-1: G¢ — H
preserve the group operations and arbitrary meets and joins.

We denote the cardinal product of a collection {Tyl Y € I‘} of ¢-groups by
IHl{T),I y € T}; if T is finite, say T = {1, 2}, then we write T, |><| T,. The

lexicographic product L X T of an £-group L by an o-group T is the group L X T
ordered by (x, y) < (a, b) if y <b or y =b and x < a. Under this ordering,

L% T is an £-group.
Now let G be an ¢-group. If A, B C G, then we denote the convex {-subgroup
generated by A by <A>; <A, B) = <A ) B>. For A C G, we write
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il

At = {ae Ala>o0},

At = {xeG| |x|A|a] =0 forall Ge A}.

Then Al is a convex f-subgroup of G (see [7]). If A= {a}, welet At =at. If
M C G is a convex {-subgroup of G, then L(M), the set of left cosets of M, forms a
lattice under the operations

@+M)Vb+M =(@Vb)+M, {@a+MAMDB+M) =(aaAb)+M.

The convex {-subgroup M of G is prime if and only if L(M) is totally ordered; if
M is normal, then M is prime if and only if G/M is an o-group. Let

{P¢| ¢ € <I>(G)} be the set of minimal prime subgroups of G. If each PfP is normal,
then G is said to be representable. A subset X C G is closed if, whenever

{x¢} € X is such that \/c, Xy € G, then Vs Xg = \/an € X, and similarly for
meets. For each ¢ € &(G), let

P:; = < {g € G[ g = \/Gga for some subset {g,} EP&Q} >

Then by [3, Lemma 3.2], for each ¢ € &(G), P:; is a closed, convex {-subgroup of
G that is normal if Py is normal. An important result of R. D. Byrd and J. T.
Lloyd [3, Corollary 2.8] states that G is completely distributive if and only if

ﬂ {P$| ¢ € ®(G)} = {0}. Thus, if G is completely distributive and representable,

the function p: G — l II ' {G/P$| ¢ € ®(G)}, defined by (¢)(gp) = g + P:;’ is an L-
isomorphism of G into the cardinal product of the o-groups {G/P:;I ¢ € ®(G)} (see
[8, p. 5.16, Corollary].

Convention. Recall that if {Py| @ € A} is an indexed set of subsets of a set X,
and if A = [J, then n{pal @€ A}l =X,

Acknowledgement. We thank Richard Byrd and Paul Conrad for pointing out [8,
p. 5.21, Theorem 5.10]. We also thank Paul Conrad for a critical reading of an
earlier draft of this paper and in particular for suggesting a shorter proof of Propo-
sition 2.1 and the correct argument for Example 2.4.

2. THE BI-PRIME GROUP OF AN (-GROUP

In this section we define a convex (-subgroup of an f-group G in terms of the
lattice of prime subgroups of G. This (-subgroup may be characterised as the
unique convex £-subgroup that is maximal with respect to being generated by its
intersections with any two minimal prime subgroups, and it must contain all the
basic elements of G.

Let G be an ¢-group. As in Section 1, let {P¢| ¢ € ®(G)} Dbe the set of mini-
mal prime subgroups of G. We let

B(G) = n {<P¢, Pw>| ¢, w € ®(G), ¢ # w}
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be the bi-prime group of G. Although, as is well known, ﬂ Py = {0}, B(G) may be
quite large: for instance, B(R |x| R) =R [x| R, and B((R |x| R) X Z) =R xR x {0}.

PROPOSITION 2.1. B(G) is unique among maximal convex (-subgroups H of G
that satisfy the condition

(*) for all «, B € ®(G) such that a # B,
=(HNPy, HN Pg) .

Proof. It is easy to see that if H is a convex f£-subgroup of G satisfying (*),
then H C B(G). Thus, it suffices to show that B(G) satisfies (*). By [8, p. 1.6, Theo-
rem 1.4], the set of convex (-subgroups of G is a distributive lattice when ordered
by inclusion. Thus, if ¢ # 8 in ®(G),

(B(G) N Py, B(G) N Pg) =BG N Py, Pg).
But by definition of B(G),
B(G) N { Py, Pg) = B(G),

and hence B(G) satisfies (*).

COROLLARY 2.2. Let G be an {-grvoup., Let a, B € ®(G) be such that a + B.
Then

B(G) = { B(G) N P}, B(G) N P§).

Proof. Clearly, B(G) 2 {B(G) N P}, B(G) N P}). Since Py C P} and
Pg C PE, by Proposition 2.1,

B(G) = {B(G) N Py, B(G) N Pg) < {B(G) N P%, B(G) N P§).

PROPOSITION 2.3. If s is a basic element of an 0-group G, then s € B(G).

Proof. Let s be a basic element of G. By [8, p. 3.13, Theorem 3.1], s* isa
minimal prime subgroup of G. Thus, there exists w € ®(G) such that st = Py,. If
G is totally ordered, #(G) has only one element, and hence s € G = B(G), by defini-
tion of B(G). Otherwise, suppose that ¢ € ®(G) \ {w} is suchthat s ¢ Pg. If
tNs=0,thent ¢ Py, since Py is prime. Thus Py, = st C Py . Since Py is mini-
mal and P, is prime, this implies that Py = P, . This contradicts our choice of ¢,
and thus s € Py. Therefore, for all @, 8¢ ®(G) with @ # 8, s € (Py, Pg); that

is, s € B(G).

Example 2.4. We construct an (-group E such that B(E) = E contains no basic
elements.

Let L = lHl {Z| n € N}, and let
= {f € L| there exists k € N such that (k +n)f = (n)f for all n € N}.
Clearly, E is an ¢-subgroup of L, and it is easy to see [9, p. 165, Example 1] that E
contains no basic elements. Furthermore, since each g € E is periodic, there

exists m, € N such that (n)g < m, for all n € N. Thus, if f, g € GT\ {0}, then
(n)g <mg(n)f for all n € N such that (n)f # 0. By [8, p. 2.17, Theorem 2.4], this
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implies that each proper prime subgroup is both maximal and minimal. Therefore,
B(E) = E.

3. COMPLETELY DISTRIBUTIVE, REPRESENTABLE (¢-GROUPS

This section is devoted to showing that the pathology of Example 2.4 disappears
in completely distributive, representable {-groups. Specifically, we shall prove the
following result.

THEOREM 3.1. If G is a completely distrvibutive, vepresentable (-gvoup, then
B(G) has a basis.

If G is an o-group, then G is representable and completely distributive, and
B(G) = G has a basis. Thus, we may assume for the proof of Theorem 3.1 that G is
not an o-group. In particular, this means that &(G) has at least two distinct ele-
ments.

The proof of Theorem 3.1 then relies on the notation described in Section 1.

Thus, recall that if F = ’H I {G/Pi] ¢ € &(G)}, then p: G > F is an L-isomor-
phism of G into F. If h € G’ and w € &(G), we define h* € F by

h+Pl if ¢ =w,
(¢)h® =
P$ if ¢ # w,
and H(h, w) € G by
H(h, w) = {f € G| (w) (fp) > h+ P} }.

LEMMA 3.2. Let G be a completely distribulive, representable {-grvoup that is
not an o-grvoup. Then, for all w € &(G), and for all h € B(G)",

N\ [Hb, w)p] = h®,

Proof. Clearly, h%¥ < fp for all f € H(h, w). Conversely, suppose that £ € F is
such that £ < fp for all f € H(h, w). Since h € H(h, w),

wl < (w)(hp) = h+P:, = wh"¥.

Let ¢ € #(G) \ {w}. By Corollary 2.2, B(G) = <P$ N B(G), PZ: N B(G)> , and since
G is representable, both Pj;; N B(G) and P}, N B(G) are normal in B(G). Thus,
since h € B(G),

h=k+t for some k € P$ N B(G) and some t € P}, N B(G).

Therefore
h+ P}, = k+ P}, = () (kp),

and hence k € H(h, w). Thus, £ < kp, and hence

¢¢ < (¢)(kp) = Py = ¢h®.
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Therefore, £<h?, and the result follows.

Proof of Theovem 3.1. Let G be a completely distributive, representable £-
group that is not an o-group, and suppose that h € B(@G)t \ {0}. Since G is com-

pletely distributive, N {P$| ¢ € (G)} = {0} (see Section 1). Thus, h ¢ P for

some w € ®(G). Suppose that /\G H(h, w) = 0. Since p is an L-isomorphism, this
implies by Lemma 3.2 that

he = /\F [H(h, w)p] = l:/\GH(h, w) :‘p =0p.

This contradicts our choice of h and w, and hence there exists s € G such that
0<s<f forall fe H(h, w). Therefore Op < sp <fp for all f € H(h, w), and thus
by Lemma 3.2,

0p < sp < /\F[H(h, w)p] = h¥.

Since G/P}, is totally ordered, [0p, h®] is totally ordered, and hence [Op, sp] is
totally ordered. Thus, since p is an {-isomorphism, [0, s] is totally ordered; that
is, s is a basic element of G. Since h € H(h, w), s <h, and hence h exceeds a
basic element. Therefore, B(G) has a basis.

PROPOSITION 3.3. Let G be an L-group. If G has a basis, then B(G)* = {0}.
Conversely, if B(G)" = {0}, and if G is completely distvibutive and vepresentable,
then G has a basis.

Proof. If G has a basis, then every g > 0 exceeds a basic element s € G. By
Proposition 2.3, s € B(G), and hence, since s > 0, g ¢ B(G)*. Therefore,
B(G)* = {0}. Conversely, suppose that G is completely distributive and repre-
sentable and that B(G)L = {0}. Then each g € G"\ {0} is not in B(G)' and hence
exceeds some b € B(G)Y \ {0}. Since by Theorem 3.1, b exceeds a basic element of
the convex (-subgroup B(G), g exceeds a basic element of G. Therefore, G has a
basis.

COROLLARY 3.4. A completely distributive, representable L-group G has a
basis if and only if B(G)* = {0}.

4. EXAMPLES

Example 4.1. We noted in Section 2 that the bi-prime group can be very large
in the cases of R |><| R and the group E of Example 2.4. Now, R |><| R is repre-
sentable and completely distributive, and it has a basis. Since B(R |X| R) =R |x| R,
the last two properties are derivable from each other via Theorem 3.1. The {-group
E is certainly representable but has no basic elements. Thus, by Theorem 3.1,
since B(E) = E, E is not completely distributive.

Example 4.2 (see [9, p. 166, Example 5]). We construct a completely distribu-
tive, abelian (and hence representable) £-group G that contains no basic elements

and such that Py = [1{{Py, P, )| w e 2(G) \ {¢}} for all ¢ € &(G).
Note. We shall use much of the terminology from [6] and [9] without explanation.

Let A be a root system in which each element covers exactly two elements and
such that {x € A| x>} is finite for all X € A. Let G = W(A, R). (That is, let G
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be the group 27 {R | X € A} with lattice-order determined as follows: f > 0 in

G if and only if Af > 0 for all x € A suchthat Af # 0 but af =0 for all @ >\.) For
each g € G' \ {0}, it is easy to find s, t € G"\ {0, g} suchthat s\Vt=g and

s At =0, and therefore G contains no basic elements. Let I'(G) (I';(G)) be the set
of all (regular) convex f£-subgroups of G. Then, by [6, Lemma 4.1], there exists a
unique minimal plenary subset of I';(G), and hence by [9, Theorem 5.4] and [5, Theo-
rem], G is completely distributive.

It remains to show that Py = Ty = N {<P¢, Py)| w e ®(@)\ {¢}} for all

¢ € ®G). Note first that B(G) = {0}, by Theorem 3.1. By [6, Section 2], A may be
considered as the set of completely meet-irreducible elements of the set A' of all
dual ideals of A, and furthermore, in this case, A freely generates A'. Thus, by [6,
Theorem 4.2], I'; (G) is lattice-isomorphic to A and freely generates I'(G). There-
fore {C € I'|(G)| C D> M} is finite for all M € I';(G), and hence every nonregular
prime subgroup of G must be a minimal prime subgroup (see [8, p. 1.14, Theorem
1.7(7)]). Suppose now that Py # T4 for some ¢ € &(G). Then Ty € I'{(G), and
hence there exists H € I'|(G) such that Py C H C Ty and H # Ty . Suppose that
T, C H for some w € (G) \ {¢}. Then P, C T, C H, and thus

Ty € {Py, Py C H.
This contradicts our choice of H, and thus T, ¢ H for all w € (G). Let
A ={FeI'(G)| TyCF for some w € &(G)}.

Then H ¢ A. Clearly, A is a dual ideal of I';(G), and since each T, is prime,
Tw = n {F € A| Ty C F} (see [8, Theorem 1.7 (7)] again). Thus

{0} = B(G) = ﬂ{Twl we &(GQ)} = Na.

Since I';(G) freely generates I'(G), I';(G) is itself the only dual ideal E C I';(G)

such that n B = {0}, and therefore A = I'[(G). Since H ¢ A, this means that
H ¢ T';(G), which is a contradiction. We conclude that Py = Ty for all ¢ € &(G).
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