BASES IN COMPLETELY DISTRIBUTIVE LATTICE-ORDERED GROUPS

R. H. Redfield

1. INTRODUCTION

An element s of a lattice-ordered group (ℓ -group) G is basic (see [4]) if s > 0 and the closed interval [0, s] is totally ordered. An ℓ -group G has a basis if every element g > 0 exceeds some basic element (every maximal disjoint set of basic elements is then a basis). An ℓ -group G is completely distributive (see [2], [3], [11], [12]) if the relation

$$\bigwedge \left\{ \bigvee \left\{ g_{ij} \middle| j \in J \right\} \middle| i \in I \right\} = \bigvee \left\{ \bigwedge \left\{ g_{i(if)} \middle| i \in I \right\} \middle| f \in J^{I} \right\}$$

holds whenever $\{g_{ij} \mid i \in I, j \in J\} \subseteq G$ is such that all the indicated joins and meets exist. By [8, p. 5.18, Theorem 5.8], every ℓ -group that has a basis is completely distributive. We wish to investigate the converse of this result for representable ℓ -groups. To this end, we define the bi-prime group of an ℓ -group (Section 2), which we characterise as the unique convex ℓ -subgroup of G that is maximal with respect to being generated by its intersections with any two minimal prime subgroups. For each ℓ -group, the bi-prime group contains all the basic elements (Section 2), but it may be the whole group, even if the group is nontrivial and abelian and contains no basic elements. For a completely distributive, representable ℓ -group, however, the latter situation cannot happen: that is, the bi-prime group of such a group has a basis (Theorem 3.1). In Section 4, we consider some examples, including one of an ℓ -group that is abelian and completely distributive and contains no basic elements.

Notation and Terminology. For terminology and notation left undefined, see G. Birkhoff [1], L. Fuchs [10], or P. Conrad [8].

A poset in which every pair of elements is comparable is a *totally ordered* set; a totally ordered group is an o-group. We write functions on the right, and denote the empty set by \Box . We use N, Z, and R to denote, respectively, the natural numbers, the integers, and the real numbers. An L-isomorphism of ℓ -groups, $\ell: G \to H$, is a one-to-one function such that both it and its inverse $\ell^{-1}: G\ell \to H$ preserve the group operations and arbitrary meets and joins.

We denote the cardinal product of a collection $\{T_{\gamma} | \gamma \in \Gamma\}$ of ℓ -groups by $\left| \prod | \{T_{\gamma} | \gamma \in \Gamma\}$; if Γ is finite, say $\Gamma = \{1, 2\}$, then we write $T_1 | \times | T_2$. The lexicographic product $L \stackrel{\leftarrow}{\times} T$ of an ℓ -group L by an o-group T is the group $L \times T$ ordered by $(x, y) \leq (a, b)$ if y < b or y = b and $x \leq a$. Under this ordering, $L \stackrel{\leftarrow}{\times} T$ is an ℓ -group.

Now let G be an ℓ -group. If A, B \subseteq G, then we denote the convex ℓ -subgroup generated by A by $\langle A \rangle$; $\langle A, B \rangle \equiv \langle A \cup B \rangle$. For $A \subseteq G$, we write

Received February 10, 1975.

Michigan Math. J. 22 (1975).

$$A^{+} \equiv \left\{ a \in A \mid a \geq 0 \right\},$$

$$A^{\perp} \equiv \left\{ x \in G \mid |x| \land |a| = 0 \text{ for all } G \in A \right\}.$$

Then A^{\perp} is a convex ℓ -subgroup of G (see [7]). If $A = \{a\}$, we let $A^{\perp} = a^{\perp}$. If $M \subseteq G$ is a convex ℓ -subgroup of G, then L(M), the set of left cosets of M, forms a lattice under the operations

$$(a + M) \lor (b + M) = (a \lor b) + M, \quad (a + M) \land (b + M) = (a \land b) + M.$$

The convex ℓ -subgroup M of G is *prime* if and only if L(M) is totally ordered; if M is normal, then M is prime if and only if G/M is an o-group. Let $\{P_{\phi} \mid \phi \in \Phi(G)\}$ be the set of minimal prime subgroups of G. If each P_{ϕ} is normal, then G is said to be *representable*. A subset $X \subseteq G$ is *closed* if, whenever $\{x_{\alpha}\} \subseteq X$ is such that $\bigvee_{G} x_{\alpha} \in G$, then $\bigvee_{G} x_{\alpha} = \bigvee_{X} x_{\alpha} \in X$, and similarly for meets. For each $\phi \in \Phi(G)$, let

$$P_{\phi}^{*} = \left\langle \left\{ g \in G \middle| g = \bigvee_{G} g_{\alpha} \text{ for some subset } \left\{ g_{\alpha} \right\} \subseteq P_{\phi}^{+} \right\} \right\rangle.$$

Then by [3, Lemma 3.2], for each $\phi \in \Phi(G)$, P_{ϕ}^* is a closed, convex ℓ -subgroup of G that is normal if P_{ϕ} is normal. An important result of R. D. Byrd and J. T. Lloyd [3, Corollary 2.8] states that G is completely distributive if and only if $\bigcap \{P_{\phi}^* | \phi \in \Phi(G)\} = \{0\}$. Thus, if G is completely distributive and representable, the function $\rho \colon G \to \prod \{G/P_{\phi}^* | \phi \in \Phi(G)\}$, defined by $(\phi)(g\rho) = g + P_{\phi}^*$, is an L-isomorphism of G into the cardinal product of the o-groups $\{G/P_{\phi}^* | \phi \in \Phi(G)\}$ (see [8, p. 5.16, Corollary].

Convention. Recall that if $\{P_{\alpha} \mid \alpha \in A\}$ is an indexed set of subsets of a set X, and if $A = \square$, then $\bigcap \{P_{\alpha} \mid \alpha \in A\} = X$.

Acknowledgement. We thank Richard Byrd and Paul Conrad for pointing out [8, p. 5.21, Theorem 5.10]. We also thank Paul Conrad for a critical reading of an earlier draft of this paper and in particular for suggesting a shorter proof of Proposition 2.1 and the correct argument for Example 2.4.

2. THE BI-PRIME GROUP OF AN \(\ell\)-GROUP

In this section we define a convex ℓ -subgroup of an ℓ -group G in terms of the lattice of prime subgroups of G. This ℓ -subgroup may be characterised as the unique convex ℓ -subgroup that is maximal with respect to being generated by its intersections with any two minimal prime subgroups, and it must contain all the basic elements of G.

Let G be an $\ell\text{-group.}$ As in Section 1, let $\left\{\left.P_{\varphi}\,\right|\,\phi\,\in\,\Phi(G)\right\}$ be the set of minimal prime subgroups of G. We let

$$B(G) = \bigcap \left\{ \left\langle P_{\phi}, P_{\omega} \right\rangle \mid \phi, \omega \in \Phi(G), \phi \neq \omega \right\}$$

303

be the *bi-prime group* of G. Although, as is well known, $\bigcap P_{\phi} = \{0\}$, B(G) may be quite large: for instance, B(R |×| R) = R |×| R, and B((R |×| R) × Z) = R × R × $\{0\}$.

PROPOSITION 2.1. B(G) is unique among maximal convex \(\ext{l-subgroups} \) H of G that satisfy the condition

(*) for all $\alpha, \beta \in \Phi(G)$ such that $\alpha \neq \beta$,

$$H = \langle H \cap P_{\alpha}, H \cap P_{\beta} \rangle$$
.

Proof. It is easy to see that if H is a convex ℓ -subgroup of G satisfying (*), then $H \subseteq B(G)$. Thus, it suffices to show that B(G) satisfies (*). By [8, p. 1.6, Theorem 1.4], the set of convex ℓ -subgroups of G is a distributive lattice when ordered by inclusion. Thus, if $\alpha \neq \beta$ in $\Phi(G)$,

$$\langle B(G) \cap P_{\alpha}, B(G) \cap P_{\beta} \rangle = B(G) \cap \langle P_{\alpha}, P_{\beta} \rangle.$$

But by definition of B(G),

$$B(G) \cap \langle P_{\alpha}, P_{\beta} \rangle = B(G),$$

and hence B(G) satisfies (*).

COROLLARY 2.2. Let G be an ℓ -group. Let α , $\beta \in \Phi(G)$ be such that $\alpha \neq \beta$. Then

$$B(G) = \langle B(G) \cap P_{\alpha}^*, B(G) \cap P_{\beta}^* \rangle.$$

Proof. Clearly, B(G) $\supseteq \langle B(G) \cap P_{\alpha}^*, B(G) \cap P_{\beta}^* \rangle$. Since $P_{\alpha} \subseteq P_{\alpha}^*$ and $P_{\beta} \subseteq P_{\beta}^*$, by Proposition 2.1,

$$B(G) = \langle B(G) \cap P_{\alpha}, B(G) \cap P_{\beta} \rangle \subseteq \langle B(G) \cap P_{\alpha}^*, B(G) \cap P_{\beta}^* \rangle.$$

PROPOSITION 2.3. If s is a basic element of an ℓ -group G, then $s \in B(G)$.

Proof. Let s be a basic element of G. By [8, p. 3.13, Theorem 3.1], s^{\(\pm\)} is a minimal prime subgroup of G. Thus, there exists $\omega \in \Phi(G)$ such that $s^{\perp} = P_{\omega}$. If G is totally ordered, $\Phi(G)$ has only one element, and hence $s \in G = B(G)$, by definition of B(G). Otherwise, suppose that $\phi \in \Phi(G) \setminus \{\omega\}$ is such that $s \notin P_{\phi}$. If $t \wedge s = 0$, then $t \in P_{\phi}$, since P_{ϕ} is prime. Thus $P_{\omega} = s^{\perp} \subseteq P_{\phi}$. Since P_{ϕ} is minimal and P_{ω} is prime, this implies that $P_{\phi} = P_{\omega}$. This contradicts our choice of ϕ , and thus $s \in P_{\phi}$. Therefore, for all α , $\beta \in \Phi(G)$ with $\alpha \neq \beta$, $s \in \langle P_{\alpha}, P_{\beta} \rangle$; that is, $s \in B(G)$.

Example 2.4. We construct an ℓ -group E such that B(E) = E contains no basic elements.

Let
$$L = |\Pi| \{Z \mid n \in N\}$$
, and let

$$E = \{ f \in L \mid \text{ there exists } k \in N \text{ such that } (k+n)f = (n)f \text{ for all } n \in N \}.$$

Clearly, E is an ℓ -subgroup of L, and it is easy to see [9, p. 165, Example 1] that E contains no basic elements. Furthermore, since each $g \in E$ is periodic, there exists $m_g \in N$ such that $(n)g \leq m_g$ for all $n \in N$. Thus, if $f, g \in G^+ \setminus \{0\}$, then $(n)g \leq m_g(n)f$ for all $n \in N$ such that $(n)f \neq 0$. By [8, p. 2.17, Theorem 2.4], this

implies that each proper prime subgroup is both maximal and minimal. Therefore, B(E) = E.

3. COMPLETELY DISTRIBUTIVE, REPRESENTABLE \(\ell \)-GROUPS

This section is devoted to showing that the pathology of Example 2.4 disappears in completely distributive, representable ℓ -groups. Specifically, we shall prove the following result.

THEOREM 3.1. If G is a completely distributive, representable ℓ -group, then B(G) has a basis.

If G is an o-group, then G is representable and completely distributive, and B(G)=G has a basis. Thus, we may assume for the proof of Theorem 3.1 that G is not an o-group. In particular, this means that $\Phi(G)$ has at least two distinct elements.

The proof of Theorem 3.1 then relies on the notation described in Section 1. Thus, recall that if $F = |\Pi| \{G/P_{\phi}^* | \phi \in \Phi(G)\}$, then $\rho: G \to F$ is an L-isomorphism of G into F. If $h \in G^+$ and $\omega \in \Phi(G)$, we define $h^{\omega} \in F$ by

$$(\phi) h^{\omega} = \begin{cases} h + P_{\omega}^{*} & \text{if } \phi = \omega, \\ P_{\phi}^{*} & \text{if } \phi \neq \omega, \end{cases}$$

and $H(h, \omega) \subseteq G$ by

$$H(h, \omega) = \{f \in G^+ \mid (\omega)(f\rho) > h + P_{\omega}^* \}.$$

LEMMA 3.2. Let G be a completely distributive, representable ℓ -group that is not an o-group. Then, for all $\omega \in \Phi(G)$, and for all $h \in B(G)^+$,

$$\bigwedge_{\mathrm{F}} [\mathrm{H}(\mathrm{h}, \, \omega) \rho] = \mathrm{h}^{\omega}.$$

Proof. Clearly, $h^{\omega} \leq f \rho$ for all $f \in H(h, \omega)$. Conversely, suppose that $\ell \in F$ is such that $\ell \leq f \rho$ for all $f \in H(h, \omega)$. Since $h \in H(h, \omega)$,

$$\omega \ell \leq (\omega) (h\rho) = h + P_{\omega}^* = \omega h^{\omega}.$$

Let $\phi \in \Phi(G) \setminus \{\omega\}$. By Corollary 2.2, $B(G) = \langle P_{\phi}^* \cap B(G), P_{\omega}^* \cap B(G) \rangle$, and since G is representable, both $P_{\phi}^* \cap B(G)$ and $P_{\omega}^* \cap B(G)$ are normal in B(G). Thus, since $h \in B(G)$,

 $h = k + t \quad \text{for some } k \in P_{\phi}^* \cap B(G) \text{ and some } t \in P_{\omega}^* \cap B(G).$

Therefore

$$h + P_{\omega}^* = k + P_{\omega}^* = (\omega) (k\rho),$$

and hence $k \in H(h, \omega)$. Thus, $\ell < k\rho$, and hence

$$\phi \ell \leq (\phi) (k\rho) = P_{\phi}^* = \phi h^{\omega}.$$

Therefore, $\ell \leq h^{\omega}$, and the result follows.

Proof of Theorem 3.1. Let G be a completely distributive, representable ℓ -group that is not an o-group, and suppose that $h \in B(G)^+ \setminus \{0\}$. Since G is completely distributive, $\bigcap \{P_{\phi}^* | \phi \in \Phi(G)\} = \{0\}$ (see Section 1). Thus, $h \notin P_{\omega}^*$ for some $\omega \in \Phi(G)$. Suppose that $\bigcap_G H(h, \omega) = 0$. Since ρ is an L-isomorphism, this implies by Lemma 3.2 that

$$h^{\omega} = \bigwedge_{F} [H(h, \omega) \rho] = \left[\bigwedge_{G} H(h, \omega) \right] \rho = 0\rho.$$

This contradicts our choice of h and ω , and hence there exists $s \in G$ such that $0 < s \le f$ for all $f \in H(h, \omega)$. Therefore $0\rho < s\rho \le f\rho$ for all $f \in H(h, \omega)$, and thus by Lemma 3.2,

$$0\rho < s\rho \leq \bigwedge_{F}[H(h, \omega)\rho] = h^{\omega}.$$

Since G/P_{ω}^* is totally ordered, $[0\rho, h^{\omega}]$ is totally ordered, and hence $[0\rho, s\rho]$ is totally ordered. Thus, since ρ is an ℓ -isomorphism, [0, s] is totally ordered; that is, s is a basic element of G. Since $h \in H(h, \omega)$, $s \leq h$, and hence h exceeds a basic element. Therefore, B(G) has a basis.

PROPOSITION 3.3. Let G be an ℓ -group. If G has a basis, then $B(G)^{\perp} = \{0\}$. Conversely, if $B(G)^{\perp} = \{0\}$, and if G is completely distributive and representable, then G has a basis.

Proof. If G has a basis, then every g>0 exceeds a basic element $s\in G$. By Proposition 2.3, $s\in B(G)$, and hence, since s>0, $g\notin B(G)^{\perp}$. Therefore, $B(G)^{\perp}=\left\{0\right\}$. Conversely, suppose that G is completely distributive and representable and that $B(G)^{\perp}=\left\{0\right\}$. Then each $g\in G^{+}\setminus\left\{0\right\}$ is not in $B(G)^{\perp}$ and hence exceeds some $b\in B(G)^{+}\setminus\left\{0\right\}$. Since by Theorem 3.1, b exceeds a basic element of the convex ℓ -subgroup B(G), g exceeds a basic element of G. Therefore, G has a basis.

COROLLARY 3.4. A completely distributive, representable ℓ -group G has a basis if and only if $B(G)^{\perp} = \{0\}$.

4. EXAMPLES

Example 4.1. We noted in Section 2 that the bi-prime group can be very large in the cases of R \times R and the group E of Example 2.4. Now, R \times R is representable and completely distributive, and it has a basis. Since B(R \times R) = R \times R, the last two properties are derivable from each other via Theorem 3.1. The ℓ -group E is certainly representable but has no basic elements. Thus, by Theorem 3.1, since B(E) = E, E is not completely distributive.

Example 4.2 (see [9, p. 166, Example 5]). We construct a completely distributive, abelian (and hence representable) ℓ -group G that contains no basic elements and such that $P_{\varphi} = \bigcap \{ \langle P_{\varphi}, P_{\omega} \rangle \mid \omega \in \Phi(G) \setminus \{\phi\} \}$ for all $\phi \in \Phi(G)$.

Note. We shall use much of the terminology from [6] and [9] without explanation.

Let Λ be a root system in which each element covers exactly two elements and such that $\{x \in \Lambda \mid x \geq \lambda\}$ is finite for all $\lambda \in \Lambda$. Let $G = W(\Lambda, R)$. (That is, let G

be the group $\sum \{R \mid \lambda \in \Lambda\}$ with lattice-order determined as follows: $f \geq 0$ in G if and only if $\lambda f \geq 0$ for all $\lambda \in \Lambda$ such that $\lambda f \neq 0$ but $\alpha f = 0$ for all $\alpha > \lambda$.) For each $g \in G^+ \setminus \{0\}$, it is easy to find $s, t \in G^+ \setminus \{0, g\}$ such that $s \vee t = g$ and $s \wedge t = 0$, and therefore G contains no basic elements. Let $\Gamma(G)$ ($\Gamma_1(G)$) be the set of all (regular) convex ℓ -subgroups of G. Then, by [6, Lemma 4.1], there exists a unique minimal plenary subset of $\Gamma_1(G)$, and hence by [9, Theorem 5.4] and [5, Theorem], G is completely distributive.

It remains to show that $P_{\phi} = T_{\phi} \equiv \bigcap \left\{ \left\langle P_{\phi}, P_{\omega} \right\rangle \middle| \omega \in \Phi(G) \setminus \left\{ \phi \right\} \right\}$ for all $\phi \in \Phi(G)$. Note first that $B(G) = \left\{ 0 \right\}$, by Theorem 3.1. By [6, Section 2], Λ may be considered as the set of completely meet-irreducible elements of the set Λ' of all dual ideals of Λ , and furthermore, in this case, Λ freely generates Λ' . Thus, by [6, Theorem 4.2], $\Gamma_1(G)$ is lattice-isomorphic to Λ and freely generates $\Gamma(G)$. Therefore $\left\{ C \in \Gamma_1(G) \middle| C \supseteq M \right\}$ is finite for all $M \in \Gamma_1(G)$, and hence every nonregular prime subgroup of G must be a minimal prime subgroup (see [8, p. 1.14, Theorem 1.7(7)]). Suppose now that $P_{\phi} \neq T_{\phi}$ for some $\phi \in \Phi(G)$. Then $T_{\phi} \in \Gamma_1(G)$, and hence there exists $H \in \Gamma_1(G)$ such that $P_{\phi} \subseteq H \subseteq T_{\phi}$ and $H \neq T_{\phi}$. Suppose that $T_{\omega} \subseteq H$ for some $\omega \in \Phi(G) \setminus \left\{ \phi \right\}$. Then $P_{\omega} \subseteq T_{\omega} \subseteq H$, and thus

$$T_{\phi} \subseteq \langle P_{\phi}, P_{\omega} \rangle \subseteq H.$$

This contradicts our choice of H, and thus $T_{\omega} \not\subseteq H$ for all $\omega \in \Phi(G)$. Let

$$\Delta \,=\, \big\{\, \mathbf{F} \,\in\, \, \Gamma_1(\mathbf{G}) \,\big|\, \, \mathbf{T}_{\omega} \subseteq \mathbf{F} \ \, \text{for some} \ \, \omega \,\in\, \Phi(\mathbf{G}) \,\big\} \;.$$

Then $H \not\in \Delta$. Clearly, Δ is a dual ideal of $\Gamma_1(G)$, and since each T_{ω} is prime, $T_{\omega} = \bigcap \{ F \in \Delta \mid T_{\omega} \subseteq F \}$ (see [8, Theorem 1.7 (7)] again). Thus

$$\{0\} = B(G) = \bigcap \{T_{\omega} | \omega \in \Phi(G)\} = \bigcap \Delta.$$

Since $\Gamma_1(G)$ freely generates $\Gamma(G)$, $\Gamma_1(G)$ is itself the only dual ideal $\Xi \subseteq \Gamma_1(G)$ such that $\bigcap \Xi = \{0\}$, and therefore $\Delta = \Gamma_1(G)$. Since $H \not\in \Delta$, this means that $H \not\in \Gamma_1(G)$, which is a contradiction. We conclude that $P_{\phi} = T_{\phi}$ for all $\phi \in \Phi(G)$.

REFERENCES

- 1. G. Birkhoff, Lattice theory. Third Edition. American Mathematical Society Colloquium Publications, Vol. 25; Amer. Math. Soc., Providence, R.I., 1967.
- 2. R. D. Byrd, Complete distributivity in lattice-ordered groups. Pacific J. Math. 20 (1967), 423-432.
- 3. R. D. Byrd and J. T. Lloyd, Closed subgroups and complete distributivity in lattice-ordered groups. Math. Z. 101 (1967), 123-130.
- 4. P. Conrad, Some structure theorems for lattice-ordered groups. Trans. Amer. Math. Soc. 99 (1961), 212-240.
- 5. ——, The relationship between the radical of a lattice-ordered group and complete distributivity. Pacific J. Math. 14 (1964), 493-499.
- 6. ——, The lattice of all convex \(\ell\)-subgroups of a lattice-ordered group. Czechoslovak Math. J. 15 (90) (1965), 101-123.

- 7. P. Conrad, Lex-subgroups of lattice-ordered groups. Czechoslovak Math. J. 18 (93) (1968), 86-103.
- 8. ——, Lattice-ordered groups. Tulane University, New Orleans, 1970.
- 9. P. Conrad, J. Harvey, and C. Holland, The Hahn embedding theorem for abelian lattice-ordered groups. Trans. Amer. Math. Soc. 108 (1963), 143-169.
- 10. L. Fuchs, *Partially ordered algebraic systems*. Pergamon Press (Addison-Wesley Pub. Co., Inc.), New York, 1963.
- 11. E. C. Weinberg, Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334-346.
- 12. ——, Completely distributive lattice-ordered groups. Pacific J. Math. 12 (1962), 1131-1137.

Simon Fraser University Burnaby, Canada