ON THE OVALS OF EVEN-DEGREE PLANE CURVES
R. W. Sharpe

1. INTRODUCTION

Let P(xq, x;, X,) be a real homogeneous polynomial of degree d. In 1876, Axel
Harnack showed that the real locus A C IRPZ of the equation P = 0 has at most
g + 1 components, where g = genus = (d - 1}(d - 2)/2. In the same paper [3], he gave
a construction in every degree for a curve with the maximal number of components
(an M-curve).

If P is nonsingular on IRPZ, then A consists of disjoint circles. In even de-
grees, the sign of P is well defined on IRP2, so that each of these circles is two-
sided. In odd degrees, exactly one of these circles fails to be two-sided.

Two-sided circles are called ovals, and each oval divides RP2 into a disc and
a Mobius band. Thus we can say that one oval lies in another if the first lies in the
disc component of the complement of the second.

Our aim here is to publicize some recent Russian work describing the mutual
disposition of the ovals of a plane curve, and also to provide an independent proof of
an inequality due to V. A. Rohlin.

Let P (respectively, N) be the number of ovals properly contained in an even
(respectively, odd) number of ovals. In 1938, I. Petrovsky [4] showed that for a non-
singular curve of even degree d = 2Kk, |2(P - N) - 1| < 3k% - 3k + 1. In particular,
this implies that N > (k - 1)(k - 2)/4.

V. 1. Arnol’d [1] has suggested that for M-curves 'P -N - 1| < k2 - 1, which
implies that N > (k - 1)(k - 2)/2. We give here an inequality, due to Rohlin [8], that
is independent of Petrovsky’s theorem, but would follow from Arnol’d’s inequality.

Let the complexity of a curve be the number of proper inclusions among its
ovals.

THEOREM. A nonsingular M-cuvve of even degree 2k has complexity at least
(k - 1)(k - 2)/2, and these numbers are equal mod 2.

In the series of M-curves constructed by Harnack, in odd degrees no oval con-
tains any other oval, while in even degree 2k, there are g+ 1 - (k - 1)(k - 2)/2 ovals
all exterior to each other, and one of these contains the remaining (k - 1)(k - 2)/2
ovals, which themselves are mutually exterior to each other. Thus not only is the
bound on complexity exact in every even degree, but also there can be no direct
analogue of the theorem in odd degrees.

Recently, Arnol’d [1] and Rohlin ([5], [6], and [7]) have proved Gudkov’s conjec-
ture [2] that a nonsingular M-curve of even degree 2k satisfies the condition
P - N = k2 (mod 8). Rohlin [8] gives a new proof of the Gudkov conjecture, but only
mod 4. The novelty in our proof lies in the fact that it invokes only the geometry of
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CP? itself, whereas all other proofs use a certain twofold cover of CP2 ramified
along the complex locus of P = 0.

2. PROOF OF THE THEOREM

Let o: CP2 — CP2 denote complex conjugation, and let CA denote the complex
locus P = 0. We may assume CA is nonsingular (after a slight shift of the coeffi-
cients of P, which will not alter the disposition of the ovals). The proof of Harnack’s
theorem [3] shows that A divides CA into two components CA, that are inter-
changed by complex conjugation. Choose one of these, say CA,. The orientation of
CA, orients the ovals (which form its boundary), so that we can compare the orien-
tations of two related ovals. Now we number the ovals 0, 1, ---, g, and the inclusion
relation among the ovals gives a partial ordering (written i < j) on these indices.
Let

&; = { % 1 according as the orientations of the ith and jth ovals agree,

disagree, or cannot be compared.
The theorem will follow from the following result.
PROPOSITION 1. 2 ;< &5 = - (k - 1)(k - 2)/2.

g
Proof, Let D= Eizo D; be the integral chain on IRP2 made up of the discs

bounded by the g+ 1 components of A. We orient these discs so that z=CA, +D
is an integral cycle. We obtain the proposition by computing z -z in two ways.
First note that o, = -1 on H,(CP2; Z), since it reverses the orientation of the
generator [CPl]. Thus

2z ~ z-0z ~ CA, +D-0CA, - oD = CA, +CA_ = CA ~ 2kCP!.

Therefore [z] =k [CP], so that z-z = k2.
Next we compute z-z = - z- 0z by pushing z into a new position z' where it
meets oz in isolated points, and counting geometric intersections.

We choose a vector field £ along IRPZ2, and tangent to it, so that & | A is tan-
gent to CA (the same is then true of i | A) and oriented so that i | A points into
CA, (rather than CA_). Thus & | A is the opposite of the orientation on A induced
from the chain D. Now, using i{, we deform z to a new position z', where CA, has
shrunk back from its boundary and the discs D have tilted into the complex direction

to a new position D' = Eigzo Di', so that they now meet IRP2 only at the zeros of the
vector field & Indeed, the cycles oz and z' now meet only at these zeros. Thus

-Zz'-07Z = _ED{-Dj = Z)Sij = 2’§‘81j+g+1.
1)

Since g = (2k - 1)(2k - 2)/2, this implies the proposition.

The theorem follows on the observation that

k- )(k-2)/2= 27 - £i5 < 2 |Sij| = complexity,
i<j 1i<j
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and the inequality is clearly an equality mod 2.

We remark that in general it is difficult to obtain the numbers ¢;;. However,
they do satisfy the relation €ijejk = €ik if i <j <k. Can one use this property to
obtain new information about M-curves?

3. THE GUDKOV CONJECTURE mod 4

PROPOSITION 2. Let n; = 2J; < &35, and let B; be the component of RP2 - A
whose outer boundary is the ith oval. Then 27 ni2 X(Bi) = k2,
Proof. Let J; ={j| j <i, j maximal}. Then x(B;) =1 - |J;|, and if j € Jy,
then n; = 1+ n; g;;, so that n? = nJ.Z - 2n; + 1. Thus
Tngx@®) =D (n2- D @f-am+1)) =Znf- T @F-omy+1)

j€Jq j <max

= 2 nf+2 2 n- 2 1=22n;- 21

i=max j<max j <max

il

22 g5-21=2 L ey +201=-(k-1Dk-2+g+1=k2,
i < 1<

COROLLARY. P - N = k2 (mod 8).

Proof. We call B; positive or negative according as its outer boundary is
properly contained in an even or odd number of ovals. Thus n; is odd or even ac-
cording as B; is positive or negative. Thus

k2 = 2in?x(B,) = 2;  x(B) = P-N(mod4).

i
B; positive

We note that we could also prove Proposition 2 directly by mimicking the proof
of Proposition 1 in the twofold cover of CP2 ramified along CA.
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