A PROBLEM IN THE CONFORMAL GEOMETRY
OF CONVEX SURFACES

Dimitri Koutroufiotis

1. INTRODUCTION

A homothety of E3 in the sense of elementary Euclidean geometry is a mapping

of the form x — 7\?; here x and A denote a position vector and a constant. For

subsets A and A of E3 we call a mapping &: A — A a homothety if it is the re-
striction to A of a homothety of E3.

Let S and S denote two smooth (C®), oriented surfaces in E3. Suppose that
there exists a diffeomorphism & between them such that at points and directions
corresponding to each other under &, the normal curvatures k and k satisfy an
equation k = ck, where c is a constant depending on &, but neither on position nor
on direction. If, in addition, S is not a developable surface and has nowhere-dense
umbilics (points where the principal curvatures coincide), then & is a homothety up
to a Euclidean motion. This local result, which actually holds, muialis mutandis,
for hypersurfaces in a space of constant curvature, is a trivial generalization of a
theorem due to R. S. Kulkarni [5, p. 95]. It would be of interest to investigate
whether a similar statement can be made in case the constant ¢ is replaced by a
smooth function ¢ satisfying appropriate assumptions. In this paper we shall show
that if S and S are ovaloids (that is, compact surfaces in E3 with positive Gaussian
curvature), then the condition k = ¢k does indeed imply that S and S are essentially
homothetic, provided we impose on ¢ a certain mild restriction. Several local and
global questions arise naturally; we shall discuss some of them at the end.

We introduce some additional terminology. Let S and S be smooth, two-dimen-
sional Riemannian (or pseudo-Riemannian) manifolds. A diffeomorphism &: S — S
will be called conformal if there exists a smooth function ¢ # 0 on S, the scale
JSunction, with the property < P, a, o, ﬁ>q)(p) = ¢(P) < a, B)p for all points P in S
and all vectors o and B in the tangent space Sp. If (u, v) is a pair of local param-
eters for S, we may carry it over to §, using &, so that corresponding points are
described by the same pair (u, v). We may then say, equivalently, that & is con-
formal if the quadratic forms A and A corresponding to the metrics on S and S
satisfy the condition A = ¢A in these parameters. In the case of surfaces in E3,

“conformal” with no further specification will always mean conformal with respect
to their first fundamental forms.
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2. THE MAIN RESULT

We shall first prove three auxiliary propositions of independent interest.

The following lemma may be viewed as a generalization of the well-known
proposition that the only convex surfaces with conformal spherical-image mapping
are the spheres. See [2] for this and related resulis.

LEMMA 1. Let S and S be connected and ovientable surfaces in E3 with posi-
tive Gaussian curvatuve. Assume that theve exists a conformal diffeomovphism &
between them with the property that at covresponding points the normals ave paral-
lel. Then & is a homothety, modulo a reflection and a lvanslation.

Proof. If a certain quantity on S is denoted by a certain symbol, the same
symbol with a bar denotes the same quantity on S. Consider a point P on S that
either is not an umbilic or is an interior point of umbilics (in other words, if P is
umbilic, let S be spherical near P). We may introduce line-of-curvature param-
eters] (u, v) near P, and the three fundamental forms of S near P then read [3,
p. 63

I=Ede?+Gdv?®, 1=k Edu®+k,Gdv?, II =kZEdu®+k{Gdv?,

where the orientation on S is chosen so that k; > k, > 0 for the principal curva-
tures.

We use the diffeomorphism in question to parametrize also S by (u, v) so that
S,orresponding points are characterized by equal parameter values. By assumption,
I = ¢21 for a certain positive and smooth function ¢ on S. Let

I = Ldu?+2Mdudv +NdvZ.

After a possible reflection on §, we may assume that also I is positive definite.
Since III = (k; + k,)II - k; kI and III = IlI by assumption, we obtain the equation
(El +E2)—M_ =0, hence M = 0. This means that (u, v) is a line-of-curvature param-
eter pair also on S, hence L = ¢2Ek, and N = ¢*Gk,. From the equations III = III
we now deduce that

(21.) kl = (f)kl, kz = (f)kz.

It follows that II = ¢II near P, and by continuity this must be true on the whole of S.
The Codazzi equations in these parameters are (see [3, p. 63])

akl v
v = k2 - k) og
(2.2) o on S,
akz 3 _ u
0 - k1 -k)5g
ok _ _  ($2E)
_1 = (kz - kl) _V
av 2¢2E _
2.3 — S.
(2.3) ok,  _ (62 G),, on
Za - k1 - k)

242G
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Substituting in (2.3) for k, and k, their expressions from (2.1) and using (2.2), we
obtain the equations ¢,k; =0 and ¢, k, = 0, hence ¢ is constant near P. Therefore,
¢ is constant in a neighbourhood of every point on S, with the possible exception of a
nowhere-dense set of umbilics. Now, if P; and P, are two pointson S and C is a
smooth curve connecting them, then by considering ¢ on C we see by a standard
argument that ¢(P;) = ¢(P,), so that ¢ is constant on S.

If S is described in E3 by the vector function 3?, let S* be the surface, homo-
thetic to S, described by qb;; then I* = ¢21 =1 and II* = oIl = II. By the Uniqueness
Theorem of surface theory (which holds also in the large for connected surfaces (see
[3, p. 119]), we conclude that S* can be made to coincide with S by a proper Eucli-
dean motion, which, in fact, must be a translation since S* and S have parallel
normals at corresponding points.

Note that Lemma 1 is not true if we drop the restriction that the curvatures of

S and S be positive; witness pairs of minimal surfaces with the same spherical
image.

LEMMA 2. Let ¥ be a conformal diffeomorphism of the unit sphere = in E3
with scale function ¥. If ¥ is not an isomelry, then F has exactly two critical
points; they are both nondegenerate and occur at antipodes.

Proof. Composing ¥, if need be, with a reflection, we may assume that ¥ is
properly conformal. Without loss of generality, we may further assume that ¥
leaves the north pole P; fixed and that F is critical at P;. Let P, be the south
pole. We shall show that P; is the only critical point of F on Z - {P,} and that it
is nondegenerate. This will imply immediately that P, is the only other critical
point of ¥. Nondegeneracy of P, is now proved in exactly the same manner as for
P, . By means of sterographic projection of Z from P; onto the equatorial plane
(x, y), we represent ¥ as the transformation

Z — a-+Az A #0, z =x+iy)

of the extended complex plane onto itself, since «© — « by construction. We may as-
sume X\ to be a positive number, since multiplication of |A| with a unimodular com-
plex number amounts to a rotation of ~ about the north-south axis.

If we parametrize the sphere by means of stereographic projection from the
south pole onto the equatorial plane, the same mapping ¥ is now represented by the
transformation

7z — f(z) = —>— .

az + A

We can easily verify this by observing that if a point on Z is mapped on z under
stereographic projection from P;, then that same point is mapped on 1/z under
stereographic projection from P, . The point P; now has coordinate z = 0. In
terms of these coordinates, the standard metric of 2 is given by the equation

(2.4) ds2 = —=— |dz|? (dz = dx +idy).

- (1+|z]2)2

This formula can easily be verified by means of the parametric representation of Z
in [1, p. 18], for example.
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2

A (dx? + dy?)

(az +1)2

5 4
(1 + |1(z)] %)

daf
dz

Under ¥, the line element (2.4) at the point z is transformed into the line ele-
2
|z 2 = -

ment
B 2\ 2
1+ )

at the point with coordinate f(z). Now F-~! is given by the ratio of (2.4) to (2.5):

- 2 2\ 2
(2.6) (]az+)\| + |z] ) 1

1+|z|‘2 Az’

-z

az + A

At z = 0, the function (2.6) has a critical point, by assumption. Computing the partial
derivatives at z = 0 and setting them equal to zero, we see that ®(xa) = S (xa) = 0,
hence a = 0. Now (2.6) reduces to the function

122422
vor = 3 )

Setting % =% =0, we see that (1 - A2¢)z =0, hence z = 0 since X cannot be 1.

Furthermore, H() = Yy, Wy, - ¥4, > 0 at z = 0. This completes the proof of
Lemma 2.

COROLLARY. Let ¥ be a conformal diffeomovphism of % wilth scale function
F. If at some critical point of F the value of ¥ is 1, then ¥ is an ovthogonal
transformation,

Proof. Note first that an isometry of Z is the restriction to Z of an orthogonal
transformation of E3; this fact is a special case of the Congruence Theorem for
ovaloids [3, p. 129]. Now, if ¥ were not an isometry, F would have exactly two
critical points, by Lemma 2: its absolute maximum and its absolute minimum.
Thus, the point P where F =1 and dF = 0 would be an extremum, say the maxi-
mum, and 1 - F > 0 except at P. Consider now the metric ds2 given by (2.4) and
the metric F ds?; they both have Gaussian curvature 1. Therefore, by the Gauss-
Bonnet theorem [3, p. 47],

4'n=S dw=S Fdw,
2 2

where dw stands for the area element with respect to ds2. It follows that 1 - F
must change sign on %, which is a contradiction.

Lemma 2 can also be deduced from a general result by W. O. Vogel on con-
circular mappings of Riemannian manifolds [9, p. 237, Korollar 4].

The following lemma generalizes Kulkarni’s Lemma 1 in [5]:

LEMMA 3. Let S and S be oriented surfaces in E>, and let S5 be a dif-
feomorphism. Denote by k(P, a) the normal cuvvature of S at P in the divection
a. Let ¢ #+ 0 be a smooth real-valued function on S. If S has nowherve-dense um-
bilics and k(®(P), &y (a)) = ¢(P) - k(P, «) for all P and «, then & is I-conformal
and II-conformal.
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Proof. Take a point P € S that is not an umbilic. Introduce line-of-curvature
parameters u and v on S near P, and carry them over to S via &: the assump-

tions imply that u and v are again line-of-curvature parameters on S, since prin-
cipal directions correspond under . Denote by k) and k; (k7 # kp) the principal

curvatures of S, and by 1‘:1 and k2 those of S in the corresponding directions. Then
d)kl s kZ ¢k2, and

Edu? + Gdv?, I

il
1l

I E du? + Gdv?,

I

I

ki Edu? +k,GdvZ, T = ¢(k; Edu? +k,Gdv2).

Recall that the normal curvature k of a surface S at the point P and in the direc-
tion a = (du, dv) is defined by

) = II(P; du, dv)

k(P, @) = J5qn, av)

We may assume without loss of generality that E = G =1 at P. By hypothesis
and construction, we have at P the equation

¢(k; E du? + k, G dv?) k; du? + k, dv2
TaZ 1Ga? | du tav2

for any direction du: dv. Cross-multiplying and simplifying, we see that
(k; - k,) (G - E)du?dv? = 0,

hence G = E at P. Thus, -I-/I is independent of direction at P, and therefore 1= o 1

for some smooth positive function ¢; and I = ¢, II, with ¢, = ¢¢; on an everywhere-
dense set of points on S. By continuity, this is true on the whole of S.

Note that, conversely, I = ¢; I and TI = ¢, II imply k = ¢, ¢7' k
We are now ready to prove the main result.
THEOREM 1. Let S and S be oviented ovaloids, let S have nowhere-dense

b —
umbilics, let S — S be a diffeomovphism, and let ¢ be a smooth point-function on S
with the properties:

(a) k(@(P), &, (a)) = ¢(P) - k(P, @) for all points P and divections a;
(b) not all local extrema of ¢ occur at umbilics.
Then ¢ is constant and ® is a homothety, modulo a Euclidean motion.

Proof. We may assume that S and S are oriented by interior normals. It fol-
lows that ¢ > 0. By Lemma 3, we see that I =¢; I and II = (¢¢;)II for some smooth

¢; > 0. Furthermore, H = ¢H (mean curvatures) and K = ¢2 K (Gaussian curva-
tures); therefore

IO = 2(¢H) (¢¢; IT) - ($2K) (¢, I) = (92 ¢;) I,
and the induced mapping ¥ l 2 between the spherical images of S and S — which by

Hadamard’s theorem [3, p. 54] is a diffeomorphism -- is also conformal. Consider
first the case where ¥ | 2, is an isometry, that is, the restriction to Z of an
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orthogonal transformation ¥ on E3. The mapping ¥-! o &: S — ¥-1(S) is clearly a
I-conformal diffeomorphism between S and ¥-1(S) with the property that at corre-
sponding points the normals are parallel. Therefore Lemma 1 applies, and & is
essentially a homothety. We shall complete the proof by showing that the assumption
that ¥ is not an isometry contradicts hypothesis (b) of the theorem.

We claim first that the functions ¢;, ¢¢;, and ¢2¢1 have the same critical
points. To see this, introduce isothermic parameters (x, y) locally on S, so that
I = E(dx2 + dy?2), and write the Codazzi equations for S and S in these parameters
[3, p. 79]. Making use of I=¢;I and II = ¢ II, where ¢2 = ¢, we obtain after
some straightforward manipulations the system

0

L 52 (Iog #2) - M 5% (log ¢2)
(2.7

2 3 - 9
M3y (log ¢5) - N = (log ¢) = -EH o (log ¢1),
whence we deduce that ¢; and ¢, have the same critical points, since K # 0.
Clearly, if ¢, and ¢, are critical at P, then so is ¢5/¢; = $%¢;. Conversely, if

qb%/qsl is critical at P, then (2.7) shows that grad ¢; =0 at P; we shall not use this
in the proof, however.

Assume now that ¥ | 2 is not an isometry, and consider a nonumbilic point P
where ¢ has a local extremum. If we introduce line-of-curvature parameters near

P and use Ei = ¢k; (i =1, 2), we easily obtain from the Codazzi equations (2.2) for
S and S near P

=2 (10g ¢) %(—- 1) 2% (log 1),

(2.8)

d 17k ?
—;(logqb) = E(k—l- - 1) ﬁ(log ¢1).

Thus, ¢; is also critical at P, and since c,b2¢>1 has only two critical points, by
Lemma 2, so does ¢;. Therefore ¢; has an extremum at P, and for its Hessian
determinant we have the inequality H(¢;) > 0 at P. Recall that H(¢) > 0 at P, by
our choice of P. Now, if we eliminate ¢ from the equations (2.8), we obtain the
equation

% ¢,
ouov

=0 atP;

therefore, again by virtue of equations (2.8),

9% ¢
ouov

=0 at P.

If we differentiate the first equation of (2.8) with respect to u and the second with
respect to v and multiply the ensuing equations, we now obtain at P the relation

H(¢) = -c2H(¢;) (c# 0).
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Therefore H(¢) = H(¢;) = 0 at P; hence H(¢2¢) =0 at P, which contradicts Lemma
2, according to which H(¢2¢;) > 0 at both critical points.

3. REMARKS AND QUESTIONS

(i) Perhaps the condition (b) of Theorem 1 is not necessary for the conclusion
to hold. Counterexamples are lacking. In any case, the proof implies that if there

exist pairs of nonhomothetic ovaloids S and S admitting a diffeomorphism with

I= ¢1I and o= ¢21II, then ¢1 and ¢2 must have the same critical points, exactly
two in number, which must be antipodes (that is, points with parallel normals) on 8,

mapped onto antipodes on S. In addition, each type of extremum is attained by ¢,
and ¢, at the same point: this last assertion follows from the formula

(3.1) (—- 1)K = - 3 Allog 9)),

(where A denotes the Laplace-Beltrami operator with respect to I), since the maxi-
mum of d)qu'l is greater than 1 and occurs at a critical point of both ¢, and ¢,.
One deduces (3 1) readily from the Theorema Egregium for S and S.

The proof of Theorem 1 does not go through, if one relaxes the assumption of
strict convexity (K > 0) to K> 0. Whether it remains valid more generally for
arbitrary compact sufraces is, of course, also not known to the author.

(ii) Does Theorem 1 remain true if we replace the word “ovaloids” in it by
“pieces of strictly convex surfaces”? We may formulate this problem as follows:
does there exist a strictly convex surface S with

I = E(u2+dvd and 1II = Ldu?+2Mdudv + Ndv?

and with a nonumbilic point P on it such that the system of partial differential equa-
tions

LgV—Mgu=(L;N)fu, Mgv-Ngu=-(L“2LN)fv, Af = 2EK(1 - e2g-1)

has a nonconstant solution (f, g) in the vicinity of P? Here A signifies the ordi-
nary Laplacian in the (u, v) -plane. One verifies easily that, should such a solution

exist, the quadratic forms I=efl and II = e8Il define a surface S in E3 hence the

mapping S — s by equal parameters satisfies the condition k = ¢k but is not a
homothety, since ¢ is not constant.

(iii) Quite generally, mappings between S and s satisfying both conditions
I= ¢;1 and II = ¢, II seem to have been investigated for the first time by P. Stickel,
who called them conformal-conjunctive in [6, p. 560]. There exist surfaces admit-
ting local, conformal-conjunctive automorphisms that are not homotheties. One
such class consists of all surfaces with K < 0 whose asymptotic lines intersect at a
constant angle 6 [7, pp. 490-497]. Actually, Stiickel later showed [8, pp. 10-12] that
up to stretchings and motions, there exists exactly one such surface for each 6
(0 < 6 < 7/2), namely the surface of revolution
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x = (cosh u)# cos v,

(3.2) y = (cosh u)¥ sin v,

7 = \/ﬁ—j Vir - (¢ - 1) (cosh u)2 (cosh w)H-1 du,

where u = cot?(6/2). In the limiting case 6 = 7/2 (minimal surfaces), equations
(3.2) are those of the catenoid. Of course, in this case we can easily see directly,
using line-of-curvature parameters, that each small piece of a minimal surface
without flat points can be mapped conformal-conjunctively onto any other such
surface.

It is also easy to construct examples of pairs of nonhomothetic, complete,
developable surfaces (K = 0), with no flat points, and admitting a global, conformal-
conjunctive diffeomorphism that is not a homothety [5, p. 100].

In the case of convex surfaces, however, the only examples known to the author
of pairs admitting nontrivial conformal-conjunctive mappings are furnished by
pairs of spheres. Are there any others?

(iv) We can view two ovaloids S and S as Riemann surfaces of genus 1 in the
usual way, namely by restricting our attention to certain isothermal parameter sys-
tems on them. The Uniformization Theorem, therefore, guarantees the existence of
a I-conformal diffeomorphism between them. If we orient S and S by interior
normals, their second fundamental forms define new Riemann-surface structures on
them (biisothermal parameters; see [4], for example), hence, again by the Uniformi-
zation Theorem, there exist diffeomorphisms between them that are II-conformal.
We may ask whether there exist pairs of ovaloids admitting diffeomorphisms that
are both I-conformal and II-conformal. Note that every pair of homothetic surfaces
admits such a mapping with ¢; = const, ¢, = const, and qb%cbil = 1. We shall now
state a converse of this fact, which may be interpreted as saying that if a diffeo-
morphism is I-conformal and II-conformal and a homothety up to second order at a
single point, then it is a homothety everywhere.

THEOREM 2. Let S and S be ovaloids, and let S E’,g be a diffeomorphism
with 1=¢11 and 10 = ¢ II. Assume in addiltion that theve exists a point wheve
¢%¢Il =1 and d(¢%¢{1) = 0. Then & is a homothety.

Proof. As in the proof of Theorem 1, the induced mapping ¥ between the
spherical images of S and S is conformal with scale function d)%qbl'l . Thereiore,
by the corollary to Lemma 2, ¥ is an isometry and & is a homothety.

Quite likely, some other normalization instead of the point-normalization in this
theorem (some integral-normalization, say) will again ensure that & is a homothety.
It is clear from the proof that this amounts to finding normalizations on a conformal
mapping ¥ of the unit sphere that will guarantee that ¥ is in fact an orthogonal
transformation. It is conceivable, however, that no normalization is necessary if we
assume in addition that the nonumbilics on S are dense.
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