BOUNDING A FREE ACTION OF A DIHEDRAL GROUP

R. J. Rowlett

1. RESULTS

Let C be a cyclic group of order 2^{n+1} ($n \ge 1$), and let G be one of the non-abelian split extensions of C by Z_2 . The dihedral group of order 2^{n+2} is one example; there are two others [5, p. 187].

This paper considers smooth actions of G preserving a unitary (that is, weakly complex) structure on a smooth manifold. Let $U_*(G)$ be the bordism of all such actions, and let $\hat{U}_*(G)$ be the corresponding bordism of free unitary G-actions. Full definitions can be found in [10]. By [10, Proposition 2.3], we know that $\hat{U}_*(G) \cong U_*(BG)$.

THEOREM. The kernel of the forgetful homomorphism $s: \hat{\mathbb{U}}_*(G) \to \mathbb{U}_*(G)$ is precisely $\tilde{\mathbb{U}}_*(BG)$.

COROLLARY. Let $\phi : G \times M \to M$ be a free unitary G-action on a closed manifold. Then $[M, \phi] = 0$ in $U_*(G)$ if and only if [M] = 0 in U_* .

To derive the corollary, one uses the analogue of [4, (19.4)] for unitary actions; this shows that [M] = 0 if and only if [M, ϕ] ϵ im $\widetilde{U}_*(BG)$.

It is worth noticing that to prove the theorem for any group, it suffices to establish it for the Sylow subgroups (see [7, Proposition 6]). In particular, our results imply the theorem and corollary for a dihedral group of any order.

2. A TRANSVERSALITY LEMMA

Suppose H is a finite group. Let M and N be smooth H-manifolds, and let $P \subseteq N$ be an invariant submanifold. One says that transversality holds for (M, N, P) if, given an equivariant $f: M \to N$ and a closed invariant $A \subseteq M$ such that f is transverse to P on A, one may deform f by an H-homotopy making it transverse to P on all of M and leaving f fixed in a neighborhood of A.

LEMMA 1. Transversality holds for (M, N, P) if either

- (a) H acts freely on M or
- (b) H is nilpotent and the normal bundle $\nu \to P$ has the property that, if hp = p for some $h \in H$ and $p \in P$, then hx = x for all $x \in \nu_p$.

Proof. The sufficiency of (a) is fairly well known; a proof is to appear in [8, Proposition 2.2]. The sufficiency of (b) is a generalization of [10, Lemma 4.2]. Since H is nilpotent, it contains a central cyclic subgroup T of prime order. By the argument of [10, Lemma 4.2], we may assume that the fixed set \mathbf{M}^{T} of T is empty.

Received October 3, 1974.

Michigan Math. J. 21 (1974).

Now consider $f \times id$: $M \to N \times M$, which is an equivariant map of H-manifolds. Since T acts freely on M, we may divide out its action. By induction on the order of the group, we may deform the map h: $M/T \to (N \times M)/T$ of orbit spaces to make it transverse to $(P \times M)/T$. To finish the argument of [10], we need to lift this H-homotopy to $N \times M$.

LEMMA 2. Let H act smoothly on a manifold X, and let T be a central subgroup of H that acts freely on X. Then the projection $\pi\colon X\to X/T$ is an H-fiber map.

Proof. By [1, Chapter III, p. 7], we have to verify that if $K \leq H$ is a subgroup, then

$$\pi \mid X^K : X^K \rightarrow (X/T)^K$$

is a fibration. Since T is central, X^K is T-invariant, and $X^K \to X^K/T$ is certainly a fibration. Thus it suffices to verify that X^K/T is a union of components in $(X/T)^K$.

If U is a tubular neighborhood of X^K in X, we can think of $U \to X^K$ as a vector bundle. If $u \in U$ and $k \in K$, then k(u) lies in the same fiber as u, while t(u) is in a different fiber whenever $1 \neq t \in T$. Thus, the equation k(u) = t(u) can only occur if t = 1 and k(u) = u.

It follows that U/T is a neighborhood of X^K/T such that $(U/T)^K = X^K/T$. Therefore X^K/T is open in $(X/T)^K$; we know that it is closed, since π is a closed map. This completes the proof of Lemma 2 and thus the proof of Lemma 1(b).

3. SOME SMITH CONSTRUCTIONS

Recall that G is generated by elements a and b of orders 2^{n+1} and 2, respectively, such that bab = a^j and j=-1 or $j=\pm 1+2^n$. The case j=-1 gives the dihedral group.

Let $\xi = \exp{(\pi i/2^n)}$. Then G admits irreducible complex representations ω and ρ defined by the equations

$$\omega(a) = 1, \qquad \omega(b) = -1, \qquad \rho(a) = \begin{bmatrix} \xi & 0 \\ 0 & \xi^{j} \end{bmatrix}, \qquad \rho(b) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Let $\widetilde{\omega}$ and $\widetilde{\rho}$ represent the actions of G on \mathbb{C}^k and \mathbb{C}^{2k} , respectively, by the k-fold direct sums of ω and ρ . The symbols $\widetilde{\omega}$ and $\widetilde{\rho}$ will also denote the induced actions on the unit spheres S^{2k-1} and S^{4k-1} , respectively.

Let (S^{∞}, σ) be the classifying space constructed by R. E. Stong [11, pp. 10-11] for G-actions in which C acts freely. The essential property of this object is that if (M, ϕ) is a free G-action, then there is an equivariant $f: M \to S^{\infty}$, unique up to G-homotopy. In addition, the image of f will lie in $S^{4K-1} \subset S^{\infty}$ for sufficiently large K, where S^{4K-1} is the unit sphere in some representation θ of G in \mathbb{C}^{2K} .

Let S^{4K+3} be the unit sphere in $(\mathbb{C}^{2K} \times \mathbb{C}^2, \ \theta \times \rho)$. By Lemma 1(a), we can deform f to be transverse to S^{4K-1} in S^{4K+3} . Assigning $f^{-1}S^{4K-1}$ to M then defines

$$\Delta_{\rho} : \hat{\mathbb{U}}_{\mathrm{m}}(G) \rightarrow \hat{\mathbb{U}}_{\mathrm{m-4}}(G)$$
.

The reader can verify that Δ_0 is a well-defined homomorphism.

Similarly, if we replace S^{4K+3} by the unit sphere S^{4K+1} in ($\mathbb{C}^{2K} \times \mathbb{C}$, $\theta \times \omega$), we obtain a homomorphism

$$\Delta_{\omega}$$
: $\hat{\mathbb{U}}_{\mathrm{m}}(G) \rightarrow \hat{\mathbb{U}}_{\mathrm{m-2}}(G)$.

Next we turn to an application of Lemma 1(b). Let H be nilpotent. Suppose (N, ψ) is a smooth H-action and $P \subseteq N$ is an invariant submanifold on which H acts freely. If P is of even codimension, we assume that its normal bundle is of the form $(\mathbb{C}^k \times P, \ \theta \times \psi)$. Here and subsequently, it is convenient to use the same symbol for a map and its restriction, so that $\theta \times \psi$ means $\theta \times (\psi \mid H \times P)$. If P is of odd codimension, we assume its normal bundle has the form $(\mathbb{C}^k \times \mathbb{R} \times P, \ \theta \times \epsilon \times \psi)$, where $\epsilon \colon G \times \mathbb{R} \to \mathbb{R}$ is the trivial representation.

Given $[M, \phi, f] \in U_*(H)(N, \psi)$, the equivariant bordism of (N, ψ) as defined in [10], we can assume that f is transverse to P, and put

$$\Delta_{P}(M, \phi, f) = (Q, \phi, f) \qquad (Q = f^{-1} P).$$

LEMMA 3. If P is of even codimension, then

$$\Delta_{\rm P}$$
: $U_*(H)(N, \psi) \rightarrow U_*(H)(P, \psi)$

is a well-defined homomorphism, and $\Delta_{P}[M, \phi, f] = 0$ if and only if $[M, \phi, f]$ lies in the image of $U_{*}(H)(N - P, \psi)$.

Proof. Most of the proof is obvious. For the "only if" part, suppose $(Q, \phi, f) = \partial(Q', \phi', f')$. We may assume that Q has a neighborhood $D^{2K} \times Q$ on which ϕ' looks like $\theta \times \phi$, and that

$$f = id \times (f \mid Q): D^{2k} \times Q \rightarrow D^{2k} \times P$$
.

Now paste

$$(D^{2k} \times Q', \theta \times \phi', id \times f)$$
 and $(M \times I, \phi \times id, f \cdot proj.)$

to the copy of $D^{2k} \times Q$ in one end of the latter; the result is a bordism from (M, ϕ, f) to some object in the image of $U_*(H)(N - P, \psi)$.

LEMMA 4. Let $T \subseteq S^1$ be the cyclic group of nth roots of 1, and let $\mu \colon T \times S^1 \to S^1$ be multiplication. Then $U_*(T)(S^1, \mu)$ is U_* -free of rank 2, and it is generated by the inclusion of T and the identity mapping on S^1 .

Proof. Clearly, $U_*(T)(T, \mu) \cong U_*$ with generator $[T, \mu, id]$. We have the relation $\Delta_T[S^1, \mu, id] = [T, \mu, id]$, and S^1 - T is equivariantly homotopy equivalent to T. The result now follows easily from Lemma 3.

4. EVEN DIMENSIONS

Let $D \le G$ be the subgroup, isomorphic to $Z_2 \times Z_2$, generated by b and a^{2^n} . We use the extension and restriction homomorphisms

e:
$$\hat{\mathbf{U}}_*(D) \rightarrow \hat{\mathbf{U}}_*(G)$$
 and $\mathbf{r}: \hat{\mathbf{U}}_*(G) \rightarrow \hat{\mathbf{U}}_*(D)$,

respectively, as defined (for example) by Stong [11, pp. 12-13].

Fix an integer $q \ge 1$. For $1 \le k \le q/2$, define

$$\theta_{\rm k,q} = [S^{4k-1} \times S^{2q-4k+1}, \, \tilde{\rho} \times \tilde{\omega}] \in \hat{\mathbb{U}}_{2q}(G)$$
.

Write $\theta'_{k,q} = r(\theta_{k,q}) \in \hat{U}_{2q}(D)$.

We must consider the bordism of free D-actions in some detail. By the Künneth theorem,

$$\widetilde{H}_{2q}(BD) = \sum_{i=1}^{q} \widetilde{H}_{2i-1}(BZ_2) \otimes \widetilde{H}_{2(q-i)+1}(BZ_2).$$

By [6, Theorem B], the similar formula for unitary bordism also holds. The Thom homomorphism $\mu \colon \widetilde{U}_{2q}(BD) \to \widetilde{H}_{2q}(BD)$ is surjective. More precisely, let $\alpha_i \in \widehat{H}_{2i-1}(BZ_2)$ be the generator. Then

$$\alpha_{i} \otimes \alpha_{q-i+1} = \mu(\lambda_{i,q}),$$

where $\lambda_{i,q} \in \hat{U}_{2q}(D)$ is represented by $S^{2i-1} \times S^{2(q-i)+1}$ with the following Daction: if a', b are generators of D, let a' act as $(-1) \times 1$ and b as $1 \times (-1)$.

LEMMA 5. If q is even,
$$\theta'_{q/2,q} = \lambda_{q,q} \in \hat{U}_{2q}(D)$$
.

Proof. Both $\theta_{q/2,q}$ and $\lambda_{q,q}$ are represented by D-actions on $S^{2q-1}\times S^1$. We imitate [4, (35.1)]. Let a' act on $S^{2q-1}\times S^1$ as (-1) \times 1, and let b act as $t\times (-1)$, where t is any involution commuting with -1. This gives a class $x=x(t)\in \hat{\mathbb{U}}_{2q}(D)$; it suffices to show that x does not depend on t.

Since BD = BZ₂ × BZ₂, [10, Proposition 2.3] gives us an isomorphism $\hat{\mathbf{U}}_*(D) \cong \hat{\mathbf{U}}_*(\mathbf{Z}_2)$ (BZ₂, *trivial*). To construct the image of x, note that the projection $S^{2q-1} \times S^1 \to S^1$ is equivariant. After dividing out the action of b, we have a mapping

h:
$$(S^{2q-1} \times S^1)/\{1, b\} \rightarrow S^1 \rightarrow BZ_2$$
,

which is \mathbf{Z}_2 -equivariant with respect to the trivial actions on \mathbf{S}^1 and $\mathbf{B}\mathbf{Z}_2$.

Now $\hat{\mathbf{U}}_*(\mathbf{Z}_2)$ (S¹, trivial) is a free $\hat{\mathbf{U}}_*(\mathbf{Z}_2)$ -module on two generators, the inclusion of a point, and the identity map on S¹. Since $(S^{2q-1}\times S^1)/\{1, b\}$ is even-dimensional and bounds as a manifold, it follows that x corresponds to a multiple of (S¹, trivial, id). The coefficient is $[h^{-1}(*)]$, where $*\in S^1$ is a regular point; clearly, this is S^{2q-1} with antipodal action, for any choice of t. This establishes the lemma.

Let
$$\Delta_H$$
: $\widetilde{H}_{2q}(BD) \to \widetilde{H}_{2q-2}(BD)$ by $\Delta_H(\alpha_i \bigotimes \alpha_{q-i+1}) = \alpha_i \bigotimes \alpha_{q-i}$. Then clearly
$$\mu \Delta_{\omega} = \Delta_H \mu \colon \widetilde{U}_{2q}(BD) \to \widetilde{H}_{2q-2}(BD) .$$

In fact, one may show, much as in [3, (10.3)], that

$$\Delta_{\omega}(\lambda_{i,q}) = \lambda_{i,q-1}$$
 and $\Delta_{\omega}(\theta_{k,q}) = \theta_{k,q-1}$

for i < q and k < q/2, while

$$\Delta_{\omega}(\lambda_{\rm q,q}) = 0 = \Delta_{\omega}(\theta_{\rm q/2,q}).$$

PROPOSITION 1. For each q, the classes $\{\mu(\theta_{k,q}): 1 \le k \le q/2\}$ are Z_2 -linearly independent in $\widetilde{H}_{2q}(BD)$.

Proof. For q = 1, 2, this follows from Lemma 5. Suppose $\sum a_k \mu(\theta_{k,q}) = 0$, and use induction on q. Then

$$\sum a_k \mu(\theta'_{k,q-1}) = \sum a_k \mu \Delta_{\omega}(\theta'_{k,q}) = \Delta_H \left(\sum a_k \mu(\theta'_{k,q})\right) = 0,$$

which shows that $a_k = 0$ for k < q/2. To see that $a_{q/2} = 0$ for even q, we again apply Lemma 5.

COROLLARY. For each q, the classes $\left\{\mu(\theta_{k,q})\colon 1\leq k\leq q/2\right\}$ are $Z_2\text{-linearly independent in $\widetilde{H}_{2q}(BG)$.}$

This is clear, since it is known that $\widetilde{H}_{2q}(BG)$ is also a Z_2 -vector space (C. T. C. Wall [12]).

PROPOSITION 2. The Thom homomorphism $\mu\colon \widetilde{U}_{2q}(BG)\to \widetilde{H}_{2q}(BG)$ is surjective. $\widetilde{U}_{2*}(BG)$ is generated as a U_* -module by the $\theta_{k,q}$, together with classes in the image of $e\colon \widetilde{U}_{2*}(BD)\to \widetilde{U}_{2*}(BG)$ in the case where G is dihedral.

Proof. If G is not dihedral (that is, if bab = a^j and $j = \pm 1 + 2^n$), then by [12] the rank of $\widetilde{H}_{2q}(BG)$ is [q/2], and Proposition 1 implies that μ is surjective.

If G is dihedral, then rank $\widetilde{H}_{2q}(BG)=q$. The image of e can also be computed from [12]. Specifically, Wall writes $\widetilde{H}_{2q}(BG)=\sum_{i=1}^{q}Z_{q_i}$, and in this case each $q_i=2$. The cycle representing the generator of Z_{q_i} is Wall's rf_m/h_i , where m=2(q-i)+1. It is easy to see that this cycle falls in Im e if and only if $h_i=2$, and that $h_i=2$ if and only if i is odd.

Thus Im e has rank [(q+1)/2]. In

(*)
$$\widetilde{H}_{2q}(BD) \stackrel{e}{\to} \widetilde{H}_{2q}(BG) \stackrel{r}{\to} \widetilde{H}_{2q}(BD)$$
,

the composition is multiplication by $[G\text{:}\ D]$ = $2^n,$ hence is zero. Thus Im e \subseteq Ker r. Since

rank Coker e = q -
$$[(q + 1)/2]$$
 = $[q/2]$,

Proposition 1 implies that (*) is exact; also, since μ is surjective for D, it is surjective for G.

The remaining assertions follow from the knowledge that μ is surjective if we apply the usual spectral-sequence arguments, as in [4, (15.1) and (18.1)].

This proposition proves our theorem in even dimensions, since the $\theta_{k,q}$ and the elements of Im e all map to zero in $U_*(G)$.

5. ODD DIMENSIONS

We prove the theorem in odd dimensions by induction on dimension. To start the induction, the reader should notice that Propositions 3 to 5 below remain true, and have simpler proofs, in dimensions 1 and 3. We now assume the theorem in dimensions less than m, for some odd m.

PROPOSITION 3. If $x \in \hat{U}_m(G)$, then $s(x) = [M, \phi]$ for some action admitting an equivariant map $f: (M, \phi) \to (S^3, \rho)$.

Proof. Let $x = [M', \phi']$. By induction, $s\Delta_{\rho}(x) = 0$; therefore we put

$$\Delta_{\rho}(\mathbf{M}', \phi') = (\mathbf{N}, \phi') = \partial(\mathbf{P}, \psi).$$

Let $F \subseteq P$ be the fixed set of a^{2^n} . Then P gives us a bordism P' from (N, ϕ') to $(S\nu, \psi)$, where $S\nu$ is the boundary of a tubular neighborhood of F.

As in [9, Proposition 5], we compare $[M',\phi']$ and $[S(\nu \oplus \mathbb{C}^2),\psi']$, where ψ' is the obvious action derived from ψ on $D\nu$ and ρ on \mathbb{C}^2 . Pasting $M' \times I$, $P' \times D^4$, and $D(\nu \oplus \mathbb{C}^2)$, one produces a bordism from (M',ϕ') to an action whose classifying map into (S^∞,σ) has image in some S^{2K+3} - S^{2K-1} . The latter retracts equivariantly onto (S^3,ρ) , whence the result.

Next we need to know something about the equivariant bordism of (S^3, ρ) . Let $X \subset S^3$ be the union of the circles

$$\{(w, 0): |w| = 1\}$$
 and $\{(0, z): |z| = 1\}$.

Then X is an invariant submanifold satisfying the hypotheses of Lemmas 1(b) and 3. Let $T^2 \subset S^3$ be the torus $\{(w, z): |w| = |z| = 1/\sqrt{2}\}$.

PROPOSITION 4. If $x \in U_m(G)(S^3, \rho)$ and m is odd, then

$$x = [P][S^3, \rho, id] + [M', \phi', f']$$

for some action [M', ϕ '] admitting an equivariant map f': (M', ϕ ') \rightarrow (T², ρ).

Proof. Using [2, Proposition II. 3.2], we see that

$$U_{m-2}(G)(X, \rho) \cong U_{m-2}(C)(S^1, \psi),$$

where $\psi(a, z) = z \cdot \exp(\pi i/2^n)$ for some generator $a \in C$. Since m - 2 is odd, Lemma 3 implies that $\Delta_X x = [P][X, \rho, id]$. Applying Lemma 3, we find that

$$x = [P][S^3, \rho, id] + [M', \phi', f'],$$

where Im f' misses X. But T^2 is an equivariant deformation retract of S^3 - X.

Put $\eta = \exp(\pi i/2^{n+1})$ and consider the following subsets of T^2 :

$$\begin{split} Y &= \big\{ (w, z) \colon z = \eta^k \, w, \, k \, odd \big\} \,, \\ S &= \big\{ (w, z) \colon z = \eta \, w \big\} \,, \\ N &= \big\{ (w, z) \colon z = w \cdot \exp i\theta; \, -\pi/2^{n+1} < \theta < \pi/2^{n+1} \big\} \,. \end{split}$$

Y is invariant and G acts freely in a neighborhood of Y. Given $[M, \phi, f] \in U_*(G)$ (T^2, ρ) , we can thus assume, by Lemma 1(b), that f is transverse to Y. The submanifold $f^{-1}Y$ has trivial normal bundle and is thus a unitary manifold, but ϕ may fail to preserve the induced unitary structure (note that $f^{-1}Y$ has codimension 1).

To dodge this difficulty, let $Z_2 < G$ be the subgroup generated by a^{2^n} . Since Z_2 acts trivially in the normal bundle of S, we see that $f^{-1}S$ is a unitary manifold with unitary Z_2 -action. Assigning $f^{-1}S$ to M, we obtain the mapping

$$\Delta_{\rm S} \colon \operatorname{U_{\rm m}(G)}(\operatorname{T}^2,\,\rho) \,\to\, \operatorname{U_{\rm m-1}(Z_2)}(\operatorname{S},\,\,\theta)\,,$$

where θ describes the antipodal involution (w, z) \rightarrow (-w, -z).

We claim that $\Delta_S = 0$ if m is odd. Since m - 1 is then even, it suffices, by Lemma 4, to show that $f^{-1}S$ bounds as a unitary manifold. For this, consider $f^{-1}N$. This manifold is invariant under the action of b, which is a unitary involution, and its boundary consists of two copies of $f^{-1}S$ interchanged by b. Hence $2[f^{-1}S] = 0$, so that $[f^{-1}S] = 0$.

Since $\Delta_S = 0$, we see by the proof of Lemma 3 that we can assume Im f misses S, and in fact Y. But

$$W = \{(w, z): z = w \cdot \exp(k\pi i/2^n), k \in Z\}$$

is an equivariant deformation retract of T^2 - Y. We have proved the following result.

PROPOSITION 5. If $x \in \hat{U}_m(G)$ and m is odd, then $s(x) = [M, \phi]$ for some (M, ϕ) admitting an equivariant map into (W, ρ) .

Consider the circle $S_1 = \{(w, w)\}$ contained in W, which is D-invariant, and the circle $S_2 = \{(w, \xi w)\}$ contained in W, which is invariant under the subgroup E generated by a^{2^n} and a^{-1} b. Observe that $W = G \times_D S_1 \cup G \times_E S_2$. Using again [2, Proposition II. 3.2], we obtain the isomorphism

$$U_*(G)(W, \rho) \cong U_*(D)(S_1, \rho') \oplus U_*(E)(S_2, \rho'),$$

where ρ' denotes the actions induced on the circles S_i by ρ . The following proposition will complete the proof of the theorem.

PROPOSITION 6. If m is odd and $[M, \phi, f] \in U_m(D)(S_1, \rho')$, then $[M, \phi] = 0 \in U_m(D)$.

Proof. Put $T = \{(w_0, w_0), (-w_0, -w_0)\} \subset S_1$ for some specific w_0 . Then $U_*(D)(T, \rho') \cong U_*(Z_2)$, and, just as in the proof of Lemma 4, we see that $U_*(D)(S_1, \rho')$ is a $U_*(Z_2)$ -module on two generators, the identity map on S_1 and the inclusion of T. Since m is odd, and since $U_*(Z_2)$ is U_* -free on even-dimensional generators [10], $[M, \phi, f]$ must be a multiple of $[S_1, \rho', id]$. This completes the proof.

REFERENCES

- 1. G. E. Bredon, *Equivariant cohomology theories*. Lecture Notes in Mathematics, No. 34. Springer-Verlag, Berlin, 1967.
- 2. ——, Introduction to compact transformation groups. Pure and Appl. Math., Vol. 46. Academic Press, New York, 1972.
- 3. P. E. Conner, Seminar on periodic maps. Lecture Notes in Mathematics, No. 46. Springer-Verlag, Berlin, 1967.

- 4. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 33. Springer-Verlag, Berlin, 1964.
- 5. M. Hall, Jr., The theory of groups. Macmillan, New York, 1959.
- 6. P. S. Landweber, Künneth formulas for bordism theories. Trans. Amer. Math. Soc. 121 (1966), 242-256.
- 7. ——, Complex bordism of classifying spaces. Proc. Amer. Math. Soc. 27 (1971), 175-179.
- 8. C.-N. Lee and A. G. Wasserman, On the groups JO(G). Mem. Amer. Math. Soc. (to appear).
- 9. R. J. Rowlett, Bounding a free action of an abelian group. Duke Math. J. 41 (1974), 381-385.
- 10. R. E. Stong, *Complex and oriented equivariant bordism*. Topology of Manifolds. Proceedings of the University of Georgia Topology of Manifolds Institute, 1969; pp. 291-361. Markham, Chicago, 1970.
- 11. ——, Unoriented bordism and actions of finite groups. Memoirs of the American Mathematical Society, No. 103 (1970).
- 12. C. T. C. Wall, Resolutions for extensions of groups. Proc. Cambridge Philos. Soc. 57 (1961), 251-255.

Princeton University Princeton, New Jersey 08540

Current address:

University of Tennessee Knoxville, Tennessee 37916