BOUNDING A FREE ACTION OF A DIHEDRAL GROUP
R. J. Rowlett

1. RESULTS

Let C be a cyclic group of order 2°*! (n > 1), and let G be one of the non-
abelian split extensions of C by Z,. The dihedral group of order 27t2 is one ex-
ample; there are two others [5, p. 187].

This paper considers smooth actions of G preserving a unitary (that is, weakly
complex) structure on a smooth manifold. Let U,(G) be the bordism of all such ac-
tions, and let fI*(G) be the corresponding bordism of free unitary G-actions. Full
definitions can be found in [10]. By [10, Proposition 2.3}, we know that
0,(G) =2 U,(BG).

THEOREM. The kernel of the forgetful homomorphism s: U,(G) — U(G) is
precisely ﬁ*(BG).

COROLLARY. Let ¢ : GXM — M be a free unitary G-action on a closed mani-
fold. Then [M, ¢]=0 in U(G) if and only if [M] =0 in U,.

To derive the corollary, one uses the analogue of [4, (19.4)] for unitary actions;
this shows that [M] = 0 if and only if [M, ¢] € im U_(BG).

It is worth noticing that to prove the theorem for any group, it suffices to estab-
lish it for the Sylow subgroups (see [7, Proposition 6]). In particular, our results
imply the theorem and corollary for a dihedral group of any order.

2. A TRANSVERSALITY LEMMA

Suppose H is a finite group. Let M and N be smooth H-manifolds, and let
P € N be an invariant submanifold. One says that fransversalify holds for
(M, N, P) if, given an equivariant f: M — N and a closed invariant A C M such that
f is fransverse to P on A, one may deform f by an H-homotopy making if trans-
verse to P on all of M and leaving f fixed in a neighborhood of A.

LEMMA 1. Transversality holds for (M, N, P) if either
(a) H acts freely on M ov

(b) H is nilpotent and the novmal bundle v — P has the property that, if hp = p
for some h € H and p € P, then hx =X for all X € Vp -

Proof. The sufficiency of (a) is fairly well known; a proof is to appear in [8,
Proposition 2.2]. The sufficiency of (b) is a generalization of [10, Lemma 4.2].
Since H is nilpotent, it contains a central cyclic subgroup T of prime order. By
the argument of [10, Lemma 4.2], we may assume that the fixed set MT of T is
empty.
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Now consider f X id: M — N X M, which is an equivariant map of H-manifolds.
Since T acts freely on M, we may divide out its action. By induction on the order
of the group, we may deform the map h: M/T — (N X M)/T of orbit spaces to make
it transverse to (P X M)/T. To finish the argument of [10], we need to lift this H-
homotopy to N X M.

LEMMA 2. Let H act smoothly on a manifold X, and let T be a central sub-
group of H that acts freely on X. Then the projection m: X — X/T is an H-fiber
map.

Proof. By [1, Chapter III, p. 7], we have to verify that if K < H is a subgroup,
then

7| XK xK - (x/T)K

is a fibration. Since T is central, XX is T-invariant, and XX — XK/T is certainly
a fibration. Thus it suffices to verify that XX/T is a union of components in

(X/T)K.

If U is a tubular neighborhood of XK in X, we can think of U — XK as a vector
bundle. If u € U and k € K, then k(u) lies in the same fiber as u, while t(u) is in a
different fiber whenever 1 # t € T. Thus, the equation k(u) = t(u) can only occur if
t =1 and k(u) = u.

It follows that U/T is a neighborhood of XX/T such that (U/T)K = XK/T.
Therefore XK/T is open in (X/T)K; we know that it is closed, since 7 is a closed
map. This completes the proof of Lemma 2 and thus the proof of Lemma 1(b).

3. SOME SMITH CONSTRUCTIONS

Recall that G is generated by elements a and b of orders 20+l and 2, respec-
tively, such that bab =aJ and j=-1 or j=+1+2". The case j = -1 gives the di-
hedral group.

Let £ = exp(wi/21). Then G admits irreducible complex representations w and
p defined by the equations

£ 0 0 1
w@ =1, wb) =-1, pla) = |, ) =
0 & 1 0

Let @ and p represent the actions of G on ck and €2k, respectively, by the
k-fold direct sums of w and p. The symbols & and p will also denote the induced
actions on the unit spheres S2k-1 and S4k-1, respectively.

Let (S, o) be the classifying space constructed by R. E. Stong [11, pp. 10-11]
for G-actions in which C acts freely. The essential property of this object is that
if (M, ¢) is a free G-action, then there is an equivariant f: M — S, unique up to
G-homotopy. In addition, the image of f will lie in S4K-1 C 8° for sufficiently
large K, where S4K-1 is the unit sphere in some representation 6 of G in Cc2K,

Let S4K+3 pe the unit sphere in (C2K X €2, 6 X p). By Lemma 1(a), we can
deform f to be transverse to S4K-1 in S4K+3  Agsigning f-154K-1 to M then
defines

8p: 0,,(G) — T,,_4(G).
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The reader can verify that Ap is a well-defined homomorphism.,

Similarly, if we replace S%#K+3 by the unit sphere S4K*! in (€2K x €, 6 x w),
we obtain a homomorphism

Ay: U,,(G) — U,,_2(G).

Next we turn to an application of Lemma 1(b). Let H be nilpotent. Suppose
(N, ) is a smooth H-action and P C N is an invariant submanifold on which H acts
freely. If P is of even codimension, we assume that its normal bundle is of the
form (Ck X P, 6 X ¢). Here and subsequently, it is convenient to use the same sym-
bol for a map and its restriction, so that # X ¢ means 8 X (¢ l Hx P). If P is of
odd codimension, we assume its normal bundle has the form (CKXIR X P, 6 X & X {),
where £: G X IR — IR is the trivial representation.

Given [M, ¢, f] € U,(H) (N, ¢), the equivariant bordism of (N, ¢) as defined in
[10], we can assume that f is transverse to P, and put
Ap(M, ¢,f) = (Q ¢,f) (Q=1"1P).
LEMMA 3. If P is of even codimension, then
is a well-defined homomovphism, and Ap[M, ¢, £] = 0 if and only if [M, ¢, f] lies in
the image of U,(H) (N - P, ¥).

Proof. Most of the proof is obvious. For the “only if” part, suppose
(Q, ¢, £f) =3(Q", ¢', ). We may assume that Q has a neighborhood D2K X Q on which
¢' looks like 6 X ¢, and that

f=idX(f|Q:D%kxQ — D?kx P,
Now paste
(D2kxQ', 8 X ¢', idxf) and (MXI, ¢ Xid, f-proj.)
to the copy of D2k X Q in one end of the latter; the result is a bordism from

(M, ¢, f) to some object in the image of U,(H) (N - P, ¢).

LEMMA 4. Let T C S! be the cyclic group of nth voots of 1, and let
p: T xSl =8l be multiplication. Then U(T)(S1, u) is Uy-free of rank 2, and it
is genevated by the inclusion of T and the identity mapping on S!.

Proof. Clearly, U,(T)(T, ) = Uy with generator [T, u, id]. We have the rela-
tion A¢[S1, u, id] = [T, p, id], and S! - T is equivariantly homotopy equivalent to
T. The result now follows easily from Lemma 3.

4. EVEN DIMENSIONS

Let D < G be the subgroup, isomorphic to Z, X Z,, generated by b and a2,
We use the extension and restriction homomorphisms

e: U (D) — U,(G) and r:U(G) — U(D),

respectively, as defined (for example) by Stong [11, pp. 12-13].
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Fix an integer q > 1. For 1<k < q/2, define
Ol q = [s4k-1x g2a-4kt]l 5y 5] € ﬁZq(G)'

Write 6) ,=1(6) ) € Uy (D).
We must consider the bordism of free D-actions in some detail. By the Kiinneth
theorem,
q
Hpo(BD) = 27 Hp; 1(BZ2) @ Hp(q-1)11(BZ2) .
i=]

By [6, Theorem B], the similar formula for unitary bordism also holds. The Thom
homomorph1sm e Uzq(BD) — qu(BD) is surjective. More precisely, let
a; € Hy;_{(BZ,) be the generator. Then

a;®ag i = 1Ry q),

where Aj,q € U24(D) is represented by S2i-1 x §2(q-i)*1 with the following D-
action: if a', b are generators of D, let a' actas (-1) X 1 and b as 1x (-1).

LEMMA 5. If q is even, 05/5 q =hq,q € f]zq(D).

Proof. Both 6/ q/2,9 and 7\ are represented by D-actions on S29-1 X S1, We
imitate [4, (35.1)]. Let a' act on SZq 1 xSl as (-1) X 1, and let b actas t ><( 1),
where t is any involution commuting with -1. This gives a class x = x(t) € Uzq(D)
it suffices to show that x does not depend on t.

Since BD = BZ, X BZ,, [10, Proposition 2.3] gives us an isomorphism
U,(D) 2U_(2,)(BZ,, trivial). To construct the image of X, note that the projection
S29-1 x 81 — 8! is equivariant. After dividing out the action of b, we have a map-
ping
h: (822-1 xsl)/{1, b} — 8! — BzZ,,

which is Z,-equivariant with respect to the trivial actions on S! and BZ,.

Now U,(Z) (1, trivial) is a free fl*(Z »)-module on two generators, the inclu-
sion of a point, and the identity map on S1. Since (S29-1x81)/{1, b} is even-
dimensional and bounds as a manifold, it follows that x corresponds to a multiple of
(S1, trivial, id). The coefficient is [h-1(*)], where * € S! is a regular point;
clearly, this is S29-! with antipodal action, for any choice of t. This establishes
the lemma.

Let App: Hpo(BD) — Hpq 2(BD) by An(@;® @q-i+1) = @3 &) @q.;. Then clearly
Ay = Agp: Upzg(BD) — Hzq-2(BD).
In fact, one may show, much as in [3, (10.3)], that

i,q-1 and Aw(Gf(’q) = Qllt,q—l

i,q)
for i <q and k < q/2, while

Aplg,q) = 0= A4,(0g/2,9 -
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PROPOSITION 1. For each q, the classes {p(6y o): 1<k <q/2} are Z,-
linearly independent in ﬁzq(BD).

Proof. For q =1, 2, this follows from Lemma 5. Suppose 27 aku(ei(,q) =0,
and use induction on q. Then

S a0 q1) = 5 a0l = an( Dagn(og) ) = 0,
which shows that a; = 0 for k < q/2. To see that ag/2 = 0 for even ¢, we again
apply Lemma 5.

COROLLARY. For each q, the classes {,u(Bk,q): 1<k<q/2} ave Z,-lin-
early independent in Hpq(BG).

This is clear, since it is known that ﬁzq(BG) is also a Z,-vector space
(C. T. C.wWall[12]).

PROPOSITION 2. The Thom homomorphism u: U,q(BG) — Hyq(BG) is suvjec-
live. ﬁz*(BG) is genevated as a U -module by the 0, q’ together with classes in

the image of e: sz*(BD) — I~Jz*(BG) in the case wheve G is dihedval.

Proof. If G is not dihedral (that is, if bab = aJ and j = +1 + 22), then by [12]
the rank of ﬁzq(BG) is [q/2], and Proposition 1 implies that p is surjective.

If G is dihedral, then rank ﬁzq(BG) = q. The image of e can also be computed
from [12]. Specifically, Wall writes ﬁzq(BG) = E?:I Zqi, and in this case each
q; = 2. The cycle representing the generator of Z, is Wall’s rf,, /h;, where

1

m = 2(q - i) + 1. It is easy to see that this cycle falls in Im e if and only if h; = 2,
and that h; = 2 if and only if i is odd.

Thus Im e has rank [(q + 1)/2]. In

() H,(BD) = f,4(BG) = Hpq(BD),

the composition is multiplication by [G: D] = 27, hence is zero. Thus Im e C Ker r.
Since

rank Coker e = q - [(q + 1)/2] = [q/2],

Proposition 1 implies that (*) is exact; also, since p is surjective for D, it is sur-
jective for G.

The remaining assertions follow from the knowledge that p is surjective if we
apply the usual spectral-sequence arguments, as in [4, (15.1) and (18.1)].

This proposition proves our theorem in even dimensions, since the Qk’q and
the elements of Im e all map to zero in U_(G).

5. ODD DIMENSIONS

We prove the theorem in odd dimensions by induction on dimension. To start
the induction, the reader should notice that Propositions 3 to 5 below remain true,
and have simpler proofs, in dimensions 1 and 3. We now assume the theorem in
dimensions less than m, for some odd m.
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PROPOSITION 3. If x € U,,(G), then s(x) = [M, ¢] for some action admitting
an equivariant map £: (M, ¢) — (S3, p).

Proof. Let x =[M/, ¢']. By induction, sAu(x) = 0; therefore we put

A(M', ¢7) = (N, ¢) = B(P, ¥).

Let F C P be the fixed set of a2 . Then P gives us a bordism P' from (N, ¢') to
(Sv, ¥), where Sy is the boundary of a tubular neighborhood of F.

As in [9, Proposition 5], we compare [M', ¢'] and [S(v(® €?), ¥'], where ¢ is
the obvious action derived from ¥ on Dy and p on C2. Pasting M'Xx1I, P'x D%,
and D(v () €2), one produces a bordism from (M', ¢') to an action whose classify-
ing map into (8%, o) has image in some S2K+3 - §2K-1  The latter retracts equi-
variantly onto (S3, p), whence the result.

Next we need to know something about the equivariant bordism of (S3, p). Let
X C 83 be the union of the circles

{(w, 0): IWI =1} and {(0, z): Izl =1}.

Then X is an invariant submanifold satisfying the hypotheses of Lemmas 1(b) and 3.
Let T2 c 83 be the torus {(w, z): |w| = |z| = 1/V2}.

PROPOSITION 4. If x € U,,(G)(S3, p) and m is odd, then
x = [P][s?, p, id] + [M", ¢, £']

Sfor some action [M', ¢'] admitting an equivariant map £': (M', ¢') — (T2, p).

Proof. Using [2, Proposition II. 3.2], we see that
U, 26 (X, p) = U, _,(C)St, ),

where Y(a, z) = z - exp(ni/2") for some generator a € C. Since m - 2 is odd,
Lemma 3 implies that Ayx = [P][X, p, id]. Applying Lemma 3, we find that

x = [P][S3, p, id] + [M!, ¢', '],

where Im f' misses X. But T2 is an equivariant deformation retract of S3 - X.

Put 1 = exp(ni/27*1) and consider the following subsets of T?Z2:

Y = {(w, z): z=nkw, kodd},
S={(w,z):z=qw},
N = {(w, z): z=w - expif; -n/22*! < g <m/2ntl}.

Y is invariant and G acts freely in a neighborhood of Y. Given
[M, ¢, f] € U,(G) (T2, p), we can thus assume, by Lemma 1(b), that f is transverse
to Y. The submanifold f-!Y has trivial normal bundle and is thus a unitary mani-
fold, but ¢ may fail to preserve the induced unitary structure (note that £-!Y has
codimension 1).
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To dodge this difficulty, let Z, < G be the subgroup generated by a2” . Since
Z, acts trivially in the normal bundle of S, we see that -1 S is a unitary manifold
with unitary Zj-action. Assigning f -1S to M, we obtain the mapping

Ag: U (GI(T?, p) — U, 1(Z,)(, 6),

where 6 describes the antipodal involution (w, z) — (-w, -z).

We claim that Ag =0 if m is odd. Since m - 1 is then even, it suffices, by
Lemma 4, to show that f-1 S bounds as a unitary manifold. For this, consider f-1 N.
This manifold is invariant under the action of b, which is a unitary involution, and
its boundary consists of two copies of f-1S interchanged by b. Hence 2[f-18] =0,
so that [f-18] = 0.

Since Ag =0, we see by the proof of Lemma 3 that we can assume Im f misses
S, and in fact Y. But

W= {(w, z):z=w - exp(kni/2"), k € Z}

is an equivariant deformation retract of T2 - Y. We have proved the following re-
sult.

PROPOSITION 5. If x € U,(G) and m is odd, then s(x) = [M, ¢] for some
(M, ¢) admitting an equivaviant map into (W, p).

Consider the circle S; = {(w, w)} contained in W, which is D-invariant, and
the circle S, = {(w, £w)} contained in W, which is invariant under the subgroup E

generated by 22" and a-!b. Observe that W = G XpS; U G Xg S,. Using again [2,
Proposition II. 3.2], we obtain the isomorphism

U(G) (W, p) = UD)(S;, p') DULE) (S, p"),

where p' denotes the actions induced on the circles S; by p. The following proposi-
tion will complete the proof of the theorem.

PROPOSITION 6. If m is odd and [M, ¢, f] € U,,(D)(S;, p'), then

Proof. Put T = {(wg, wo), (-wg, -wg)} €S for some specific wy. Then
U, (D) (T, p') = U,(Z,), and, just as in the proof of Lemma 4, we see that
U,(D)(S;, p') is a U,(Z,)-module on two generators, the identity map on S; and
the inclusion of T. Since m is odd, and since U,(Z,) is U,-free on even-dimen-
sional generators [10], [M, ¢, f] must be a multiple of [S;, p', id]. This completes
the proof.
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