ON DECOMPOSITION OF OPERATORS
M. Radjabalipour

Throughout this paper, T denotes a bounded linear operator defined on a Banach
space X, and R(T) and N(T) denote the range and the null space of T, respectively.

The following theorem, due to J. G. Stampfli, may be regarded as a generaliza-
tion of the decomposition theorem of F. Riesz.

THEOREM S (see [11, Theorems 1 and 1']). Let D; and D, be two Cauchy do-
mains, let £, and f, be two analytic functions, and suppose that

(1) DyND, = {0} Co(T) €Dy UD, U{0} and o(T)NDj# @ (=1, 2),
(2) dist(z, 0(T)) <K dist (z, Dj) ifzeDe (k+3; k,j=1,2),

(3) fj(z) is a nonzero function analytic on Dj and continuous on ﬁj , and
sup { [ £;(z) (z - T)"!]|: z € aD;\ {0}} <= jor j=1, 2.

Then the expressions

=5 | L@E-Dla (=12

define two nonzevo bounded linear operators on X, and
(a) SlSZ = SZSI =0,
(b) A € o(T|R(S;) if A € Dx and fiA) # 0 (k#j; k, j=1,2).

(In this restatement, we have changed Jordan domains to Cauchy domains; this is
immaterial. For the definition of a Cauchy domain, see [13, page 288].)

In the present paper, we answer the following questions:
(i) What is the spectrum o(T | R(Sj)) G=1,2)?
(ii) If o(T) N D; and o(T) N Dy are fixed, must S; and S, be unique?

(iii) If f; and f, have a common analytic extension f to D; U D,, must
£(T) =S, +8, ?

(iv) If, in Question (iii), f(T) =S; + S,, must R(S;) + R(S,) be closed?

The answer to (i) is that

o(T|R(S)) u {x e DjN o(T): £5(0) =0} = DN o(T) (=1, 2)

(Theorem 1); the answers to (ii), (iii), and (iv) are negative (see Examples 1, 2, and
3, respectively). However, in Theorem 2 we prove that under a slight extension of
the domain of condition (3), the answer to Question (iii) is in the affirmative.
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Some of the results of this paper have already been proved in my thesis at the
University of Toronto. I would like to thank Ch. Davis for his helpful comments.

1. MAIN THEOREMS

We begin with some lemmas. Recall that a (closed) subspace Y is a hyperin-
variant subspace of T if it is an invariant subspace of every operator commuting
with T.

LEMMA 1. Let Y be a hyperinvarviant subspace of T containing R(g(T)) for
some analytic function g defined on a neighbourhood of o(T). Then

o(T) = o(T|Y) U{r € o(T): gd) = 0}.

Proof. Let S be the operator induced on X/Y by T. Since Y is a hyperinvari-
ant subspace of T, it follows from [1, Lemma 1.3.1 (page 1487)] that
o(T) = o(T | Y) U 6(S). Therefore g(S) is the operator induced on X/Y by g(T), and
it equals zero. Thus o(S) € {x € o(T): g(x) = 0}, and hence

o(T) = o(T | Y)U {r € o(T): glh) =0} .

We say that A belongs to the approximate point spectrum o47(T) of T if there
exists a sequence {x,} in X such that x, » 0 and (A - T)x,, —» 0 (as n > =), A
number A belongs to o(T) \ o4(T) if and only if N(A - T) = {0} and R\ - T) isa
proper closed subspace of X {13, Theorems 4.2 - B, E, H, I (pages 177-181)].

LEMMA 2. Let 0 € o(T)\ 04(T). Let Y= ﬂn>0 T"X, and let S be the oper-
ator induced on X/Y by T. Then o(T) = o(T |Y) Uo(S) and 0 € o(S)\ o(T | Y).

Proof. Since Y is a hyperinvariant subspace of T, we see that
o(T) =o(T|Y) U o(S) 1, Lemma I.3.1]. Let x € Y. For each positive integer n,
there exists y, € X such that x = T?y, . Therefore T(y; - T?y,,;) = 0, and this
implies that y, = T"y_,, for all n. Thus x =Ty, € TY, and hence R(T |Y) =Y.
This shows that 0 ¢ o(T | Y), and since o(T) = o(T | Y) U o(S), we deduce that
0 € o(S)\ o(T | ¥).

The following lemma is extracted from the proof of Theorem 1 of [11].

LEMMA 3. Let D be a Cauchy domain whose boundary intevsects o(T) in at
most finitely many points. Let f be a function analytic on D and continuous on D.

Assume ||f(z) (z - T)"! | < K for all z € (3D) \ o(T), where K is a positive con-

stant. Let A = (2mi)~} S £(z) (z - T)"! dz. Let p be a point in o(T) such that

oD
(1 - T)x, — O for some sequence {x,} in X with |x,]| =1 (n=1,2, ). Then

(a) A is a bounded operator defined on X,
(b) im H (A - f(u))xn" =0if ueD,
(c) lim |Ax,] =04 p ¢ D.

In particular, if f is not identically zevo.on o(T) N D and if o(T) N D # @
(c(T)\D # @), then A # 0 (0 € o(A)).
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The next lemma can be found in [2, page 1] or [6] in different cases. For the
sake of completeness, we include an indication of the proof.

LEMMA 4. Let F be a closed subset of the plane, and let S be a bounded
linear operator defined on some Banach space Y. Define
XdF) = {x € Y: theve exists an analytic function g C\F—Y
such that (» - S)gx() = x} .

Let A be a (bounded linear) operator commuting with S. Let x € Xg(F), and let g,
be as in the definition of Xg(F). Then Xg(F) = Xg(F N o(S)), Ax € Xg(F), and
g.(z) € Xg(F) forall z ¢ F.

The proof follows from the facts that x(h) = ()\ S)-lx for A
(A - 8)(Agx(\)) = Ax for A ¢ F, and (A - 8) [(g8x(A) - gx(2))/(z - )]
and A # z.

p(8),
g.(z) for A ¢ F

m m

The following theorem is an improvement on Theorem S.

THEOREM 1. Let T, Dy, D,, {1, and f, satisfy conditions (1), (2), and (3) of
Theovem S. Then

(@) R(S;) c Xr(Dy) (=1, 2),

(b) o(T | Y;) U {x € D n o(T): £50) = 0} j j N o(T) for all hyperinvariant
subspaces Yj of T such that R(S;) gYJ < X1(Dj) (] =1, 2).

Proof. (a) Let » € D,. Since a change in f>(A) has no effect on f{_@—l), we can
assume without loss of generality that f,(A) # 0. Thus x ¢ o(T I _R_(_S—l)), and hence
o(T | R(S;HCo(T) N Bl . This shows that R(S;) XT(ﬁl). A similar argument for
R(S,) completes the proof of (a).

(b) Let Y; be a hyperinvariant subspace of T such that R(S;) C Y; C XT(ﬁj)
(j = 1, 2). Suppose, if possible, that x € D, is in the boundary of ¢(A), where
A=T|Y,. Let x € Y, and let g,(z) be an analytic function such that
(z - T) gX%z) =x for z € D,. Since each connected component of D, contains un-
countably many points of p(T), it follows that g,(z) = (z - A)-1x € Y; for all
z € p(A) N D; . Thus g.(A) € Y, and hence

=A-T)ger) = A -A)g M) € RL - A).

Also, (A - A)x # 0, because (z - T)-1x has an analytic extension to a neighbourhood
of A. Since x is arbitrary, we conclude that A - A isa bijective operator on Y;
and thus A ¢ o(A), a contradiction. Hence o(T [ Y;) Co(T) N Dl , and by a similar

proof, o(T | Y,) € o(T) N D,. So far, we have shown that
o(T|Y;) U{r e Dy No(T): £50) =0} € DjNo(T) (j=1,2).

Now we prove the inverse inclusions.

Let » € D; N o(T) be such that f;(A) # 0. (Note that f(0) = 0 because
| - T)1|| = © whenever A, —0.) We consider two cases.

Case (i) » € o4(T). Let {x,} be a sequence in X such that [[x[| =1
(n=1,2, ) and lim( - T)x, = 0. In view of Lemma 3, {S; x,} is a sequence in
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Y; such that S;jx, » 0 but (A - T)Slxn—Sl(h T)xn, — 0 (as n — «). Hence
e o (T|Y)).

Case (ii) A ¢ 04(T). Assume, if possible, that X ¢ ¢ (T ] Y ;). We show that this

leads to a contradiction. The assumption implies that Y, C Y = ﬂnzo (x - T)"X.
Let T and S7 be the operators induced on X/Y by T and S, respectively. Ob-
viously, ST = O Since A € D; N o(T") C o(T") € ¢(T) (Lemma 2), and since

Iz -1 < J@-1)t]  for z e p(m),

it follows that T*, D, and f; satisfy the conditions of Lemma 3 and that

S'l“ = (27i) ! f (z)(z - T*)-1dz # 0, a contradiction.
+oD,

In summary, we have shown that
o(T ] Y;) U {X € 51 No(T): £;(0) =0} = _131 N o(T).

A similar verification for o(T | Y;) completes the proof of the theorem.

Remark. Let T, D, f, and A be as in Lemma 3. If f(z) # 0 for all
z € o(T) N D, it follows from the proof of Theorem 1 (cases (i) and (ii)) that
o(T)Nn DcCo(T ] Y) for all hyperinvariant subspaces Y of T such that
R(A) c Y ¢ X1(D). In a future paper, we shall use this, together with the next
proposition, to show that a Hilbert space operator with compact imaginary part in a
Schatten class Cp (1 < p <) is decomposable and that this statement is false if
p =« [2, Problem 5(e), p. 218].

The following proposition shows that the manifolds XT(D ) G =1, 2) of Theo-
rem 1 need not be closed.

Recall that a closed set A is called a spectral sel for T if
| w(T) | < sup { |u(z)|: z € A}

for all rational functions u(z) with poles off A.

PROPOSITION 1. Theve exists an opevator T on a Hilbert space X satisfying
the conditions of Theovem S fov which X1(D1) is not closed. Moveover, T can be
chosen so that o(T) C R.

Proof. Let V be a nonunitary contraction operator on a Hilbert space K with
o(B) = {1} (see [5, Problem 150] for existence). Let ¢ be a conformal mapping
from the unit disc onto the set A = {reif: 0 <r<1 0<06<L 7/4} such that
$(1) =0. Let A =¢(V). Then o(A) = {0} and A; is a spectral set for A [4, Sec-
tion 1.1], [10, proof of Theorem 8 (page 143)]. Similarly, since zl/n is a conformal
mapping from A; onto A, = {reif: 0<r <1, 0< 6 <7/4}, it follows that Al/n

is well-defined, A, is a spectral set for Al/n, and [|Al/n|| <1 (n=1, 2, --). Let
T=-I1MA @Alfn@--- on X=K®K®K® . Since A, isa spectral set for
all Al/k with k > n, we see that |(z - Al/X)-1]|| < 1/dist(z, A,), and thus
o(Al/n@AL/{ntl) (P ...) € A, for all n. Hence o(T) C {-1} U A, for n > 1; this
implies that o(T) = {-1} U E, where E is a subset of the nonnegative numbers. We
show that E # {0}. Let B = A@A1/2® . Since ||(A1/nn|| "AH, it follows
that |B"|| > ||A[| (n=1, 2, --+), and thus lim || B?||? /M > lim lafl/™ = 1. (Note
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that A # 0.) Hence E =0(B) # {0}. (Actually, 1 € o(B) C [0, 1], because A isa
spectral set for B.)

Let

1l

D, = {reif: 0<r<2, 21/3< 6 <4n/3},

D, = {reif:0<r <2, -7/3< 6 <n/3}.

It is easy to see that sup {|z(z - T)-1]|: z € a(D) U D2) \ {0}} < and that T, D;,
and D, satisfy the conditions of Theorem S with fj{(z) =z (j =1, 2). We claim that
X1(D;) is not closed. Since o(Al/n) = {0}, each direct summand K is a subset of
XT(ﬁl), and thus XT(ﬁl) is dense in X. Therefore, since T has the single-valued-
extension property [3, Lemma XVI. 5.1 (page 2149)] and o(T) ¢ D; N o(T), it fol-

lows from [2, Theorem 1.5 (page 31)] that X(D,) is not closed (T is said to have
the single-valued-extension property if there exists no nonzero X-valued analytic
function f such that (A\ - T)f(x) = 0). The proof of the proposition is complete.

In the remainder of this paper, we assume that the functions f; and f; of Theo-
rem S have a common analytic extension f to a neighbourhood of ¢(T). If follows
at once from the analyticity of f in a neighbourhood of the origin that condition (3) in
Theorem S is equivalent to the condition

(3%) sup { [|z7(z - T)-1f|: z € a(D, U Dy \ {0}} < =,

where n is a positive integer. (Write f(z) = zng(z) with g(0) # 0 in a neighbourhood
of 0.) Therefore we can assume, without loss of generality, that f(z) = z® for some
positive integer n (see also the conclusions (d) and (e) of Theorem 2.)

Since o(T) C D; U D, U {0}, it is attractive to conjecture that f(T) =S; + S
(compare Theorem R below). Example 2 of the next section reveals that such hopes
are ill-founded. However, with a slight modification of condition (3*), we can state
the following theorem.

THEOREM 2. Let T satisfy conditions (1) and (2) and the following stronger
Jorm of condition (3) of Theorem S:

(3%*) [z°z - T)-'| <M (z € a\(D;UDy),

wheve M is a positive constant, n is a positive integer, and A is a deleled neigh-
bouvhood of the ovigin. Let

8; = —21— S Pz -T)ldz (=1,2).
m
+8Dj

Then

(a T" =8, +S, and S1S, =528, =0,

(b) N(S1) N N(Sz) = N(T") and N(T") Vv R(T") C X1(D;) V XT(D;),

(¢) o(T ] Yj) U {o} =_13j N o(T) for all hyperinvariant subspaces Y;of T such
that R(S;) € Y5 € X1(D;) (5 =1, 2).

Moreover, if g is an analytic function defined in a neighbourhood of Bl ) 1_52
and if 1(z) = zn g(z), then
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(d) £(T) = U, + Uy, where

U, = L

_ -1 — . s
T 1o, f(z)(z - T) ' dz = g(T)SJ G=1,2)),

(e) o(U) =1(D; 0 o(T)) (=1, 2).

Note. We can alter the Cauchy domains D; and D, so that they lie in any pre-
scribed neighbourhood of ¢(T), without affecting the operators S;, Sz, U;, and U,
and the manifolds X(D;) and X(D,).

Proof of Theovem 2. That S; and S, are well-defined and S;S; =S, 8; =0 is
proved in Theorem S. We show that T" =8; +S,. For each n > 0, let

D(n) =D; UDy U {z: \zl <7p}. When 7 is small enough, D(7) is a Cauchy domain
containing ¢(T), and

27 || T - (S, +8,)] S z%(z - T) 'dz - 2 S z"(z - T) ! dz

+d D(17) j=1,2 +8DJ

= ' S zn(z - T)-ldz

+I(n)

<M|rm)|,

where I'(n) is a curve consisting of two subarcs of the circle 'zl =7 and the por-
tion of 3(D; U D,) lying in the disc |z| <7, and where | ()| denotes the length
of I'(n). Letting n — 0, we find that lim | I(n)| = 0, and thus T® =S, +S,. This
proves (a).

In (b), the inclusion N(S;) N N(S;) c N(T™) is obvious from the relation
TP =8, +S,. Conversely, if T"x = 0 for some x € X, then

27

S x = o= ES zpk-lrtkxdz =0 (=1, 2).
k=0 “+2D

Thus N(T") = N(S;) N N(S;). It is easy to see that N(T?) C X.({0}), and thus, by
Theorem 1, N(T") vV R(T") C X1(D;) V X1(D;). Statement (b) is proved.

Statement (c) is established in the proof of Theorem 1.

Finally, for (d) and (e) we observe that

()—gT)S=1S fz)(z - T dz = U; (=1, 2).
+8DJ

(For more detail, see a similar calculation in the proof of Theorem 1' of {11].) Thus
f(T) = T" g(T) = U} + Uz . Also, since o(T | R(S;j)) C o(T), we see that

£(T) ] R(Sj) =f(T 1 R(S;) (=1, 2) [9, Theorem 2.12 (page 32)]. Thus, in view of
Lemma 1 and the fact that 0 € o(Uj) (Lemma 3), we have the equations

o(U;) = o(U; | RES;)) U {0} = o(f(T | R(Sj)) v {0} = ED; N a(T) (=1, 2)

(apply (c), the spectral mapping theorem, and the fact that R(S;) D R(U;) for
j =1, 2). The proof of the theorem is complete.
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COROLLARY 1. Let T be as in Theorem 2. Assume X is veflexive and n = 1.
Then X = XT(DI) \V4 XT(DZ)'

Proof. The growth condition ||z(z - T)-!|| < M, together with the reflexivity of
X, implies that X = N(T) ®R(T) [7, Lemma 3.1 (page 62)]. Therefore, in the light of
Theorem 2(b), X 2 X7(D;) V X7(D2) 2 N(T) @ R(T) = X; this completes the proof.

2. EXAMPLES

In this section we illustrate some of the differences between Theorem 2 and the
Riesz decomposition theorem. First we restate the decomposition theorem in a
form suitable to our investigations.

THEOREM R (Riesz, Dunford, ---). Let o(T) be the disjoint union of two non-
empty closed sets o, and 0, . Let f be an analytic function defined in a neighbor-
hood of 0(T), and let D1 and D2 be two Cauchy domains in the domain of f contain-

ing ¢ and o,, vespectively. Let Pj= (27i) -1 ‘S‘ (z-T)Ydz (=1, 2). Then
+6Dj
(a) 1=P) + Pz and P{ = P; (j =1, 2).
(b) R(Pj) =X(oy) (5 =1, 2) and X = X7(0) DX1l02),
(©) o(T | Xplog) =0 (=1, 2),

(d) £(T) =U; + Uy, where Uj = (2mi) ! S (z) (z - T)"! dz = £(T) P; (=1, 2),
+9Dj

(e) o(U;) =£(0;) U {0} (=1, 2).

In Theorem R, the operators P; and P, and (consequently) U; and U, are

unique as long as the sets ¢, and o, are fixed. This is not the case in our decom-
position, as the following example shows.

Example 1. Let V be a completely nonunitary contraction operator on a Hilbert
space H with o(V) = {1} (see the proof of Proposition 1). Let ¢ be a conformal
mapping from the unit disc onto the triangular plate 6 with vertices 0, 1, 1 +1i such

that ¢(1) = 0. Let W = ¢(V); then o(W) = {0} and 6 is a spectral set for W. In
particular,

(*) Iz -w)t| < 1/dist(z, o)

for z outside 6. Let X=HAHOHOHPH and T=WAIWD-WOHID-1,
and let D; and D, be as in one of the following cases:

Case (i). D, = {relf: 0<r <2, 20/5 < 6 <3n/2},
D, = {rel?:0<r<2, -1/4 <06 <n/3}.

Case (ii). D; = {rel?: 0 <r <2, 97/10 < 0 < 371/2},

D, = {rel?: 0<r<2, -1/4< 0 <51/6}.

Since 0D; and 9D, are not tangent to the edges of the triangles 9§, id, and -6,
it follows from the relation (*) that there exists a constant M such that

[z(z - T)"1 | < M for z outside D; U D,. Therefore, in each case, T, D;, and
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D, satisfy the conditions of Theorem 2 (for n = 1), and D; N o(T) = {-1, 0},
D, n o(T) = {0, 1}. By a proof similar to that of Theorem 2(a), one can see that

(%) SC z(z-W) ldz = 0

for all closed paths C such that CC {reif:r >0, @ < 6 <B} for some a, B8 in
(7/4, 2m). Thus, in Case (i) S; = 0@ iW D - W@ 0@ -1, and in Case (ii)
S;1=0 @ 0-w ®o @ - I. This disproves the uniqueness of our decomposition.

The next example shows that, in Theorem 2, one cannot replace condition (3**)
by its weaker form (3*); more precisely, the condition ||z2(z - T)-!| < M along
the boundaries of D; and D, alone does not guarantee the equality of T™ and
S; +8S;.

Example 2. Let T be as in Example 1, but choose D; and D, as follows:
Case (iii). D; = {relf: 0 <r <2, 57/6 < 6 < 37/2},

D, = {reif: 0<r <2, -71/4< 06 <n/3}.

It is easy to see that T, D;, and D, satisfy conditions (1), (2), and (3*) (for
n = 1). In view of the formula (*¥*) obtained in Example 1, we see that

S;=0M0D-WHOD-I and S, =WHIDODIDO.

Thus S) +8S; =W@HO0®-WHI@-1I, and hence T # S; +S;.

Theorem 2 does not apply here, because the growth condition ||z (z - T)-1 " <M
is not satisfied for z € id.

Another difference between Theorem R and Theorem 2 is in the decomposition of
the underlying Banach spaces. In Theorem R, the Banach space X is the direct sum

of the closed subspaces XT(ﬁj) (j =1, 2), whereas the manifolds XT(—ﬁj) of Theorem
2 may not even be closed (see Proposition 1 above). The following example shows

that the manifolds XT(DJ-) (j = 1, 2) of Theorem 2 can be asymptotic even if they are
closed and have trivial intersection. First we need a definition.

Definition. An invariant subspace Y of T is called a maximal spectval sub-
space of T if M C Y for all invariant subspaces M of T such that
o(T | M) C o(T I Y). The operator T is called decomposable if for each finite open

covering G; (i=1, 2, .-+, n) of o(T) there exist maximal spectral subspaces Y;
(i=1,2, -, n) of T such that

(a) G(TIYi)EGi (i.:]., 2, "',n) and (b) X=Y+Y,+ " +Y,.
If Y is decomposable, then X(F) is a maximal spectral subspace of T and

o(T | X(F)) € F n o(T) [2, Theorem 1.5 (page 31)].

Example 3. Let X be a Hilbert space with an orthonormal basis {en}
(n=+1, £2, ---), and let {z,} (n=+1, +2, ---) be a sequence of real numbers such
that

(1) -1<z_,<2_,.1<0<z24,<z2,<1 (=12 ),

(ii) imz, =0 as |n| - .



ON DECOMPOSITION OF OPERATORS 2173

Find a sequence {6,} (n=1, 2, ---) such that 0 < 0, <7/2, lim 6, =7/2, and
(z, - z_,)tan 6, <1 (n=1, 2, ---). Define T on X by the rule

(z,-z_tan 6_,e_, if n<O,
Te, = znen+
0 ifn>0.

It is easy to see that N(T) = {0} and that for Iz # 0 (in fact, for z # z,)

: - : 1 (z-2zp)'l-(z-z_p !tanbd e, ifn<o0,
z-T) ey, =1(z2-2y) e+
0 ifn>0.

These formulas show that o(T) = {z,} U {0}, and that |[(z - T)"1 | <M/|3z|? for
3z # 0, where M is a positive constant. Thus, in view of [2, Theorem 4.3 (page
159)] , T is a decomposable operator. Let D; and Dj be the interiors of the tri-
angles (0, -1+1i, -1-1i) and (0, 1 +1i, 1 - i), respectively. It is easy to verify that

T, D1, D2 satisfy the conditions of Theorem 2 for n = 2, that the manifolds X (D j)
(j = 1, 2) are closed, and that X(D;) N X1(D;,) = X1({0}). Since

(t|x({0}) c {0},
it follows from the proof of Lemma 4 of [10, page 138] that (T | X({0}))? = 0; since
N(T) = {0}, we have the relations X1(D;) N X (D) = Xr({0}) = {0}.
To show that XT(_D—I) and XT_(BZ) are asymptotic, we note that Te, =z, e, for
n > 0; this implies that e, ¢ X7(D;) for n > 0. Also,
T(sin 0, e, +cos 0, e_,) = z_p(sin 0, e, +cos 6,e_,) for n>0,
and this implies that sin 6, e, + cos 6, e_p € X7(D}) for n > 0. Now, since

lim (ey, | sin 6, en +cos Bp e_n) = 1 = ||en| = || sin 65 en +cos 6, e_nl ,

it follows that X(D;) and X7(D;) are asymptotic,

The ideas for constructing X1(D;) and X1(D,) are borrowed from [12, pages
21—22].

Remark. In Example 3, N(T*) = {0}, and therefore R(S;) V R(S;) = R(T) = X;
thus, in view of Theorem 2, R(S;) + R(S;) is not closed. This answers Question (iv).

In [8, Proposition 1] we have shown that if T is a decomposable operator whose
spectrum lies on a Jordan curve J, then X¢(F; U Fy) = X(F;) + X(F,) for any
two closed subarcs F; and F, of J such that F; N F, contains no isolated point.
The following corollary shows that this assertion is not true if ¥; N F, contains an
isolated point.

COROLLARY 2. The opevator T of Example 3 is a decomposable operator
with the properties

(a) o(T) is a countable subset of [-1, 1],
(b) Xp([-1, 0]) +X ([0, 1]) is not closed.

Note that the operator T of Example 3 is even an % -self-adjoint operator [2, Theo-
rem 4.3, page 159].
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3. PROBLEMS

Problem 1. Let T be as in Theorem 2. Is X = XT(ﬁl) \Y4 XT(BZ) ?
Problem 2. Let T be as in Corollary 1. Is X = X¢(D;) + X1(D,) ?
Let T satisfy the growth condition

(rokk) sup { [[(Sz)(z - T)"!|: Sz # 0} < =,

It follows from [2, Theorem 4.3, page 159] that T is an % -self-adjoint operator that
resembles a self-adjoint operator in many aspects. A. S. Markus [7, page 71] has
constructed a Hilbert-space operator T satisfying (***) that is not similar to a self-
adjoint operator (that is, T # SAS™! for all (boundedly) invertible operators S and
all self-adjoint operators A). However the Markus example, like any operator simi-
lar to a self-adjoint operator, has the property that

(k) Xq([a, b] U [c, d]) = Xy([a, b]) +X1([c, d])

for a <b and ¢ <d. Therefore it is reasonable to conjecture that an operator T
satisfying (***) will (at least in a Hilbert space) have the property (****), It is easy
to see that a counter-example to this conjecture will contain a negative answer to
Problem 2 (note that, in view of Corollary 1 and the properties of decomposable
operators, Xr([a, b] U [c, d]) = Xt(a, b]) V X([c, d])).
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