ON NORMAL AND AUTOMORPHIC FUNCTIONS

Ch. Pommerenke

1. INTRODUCTION

Let I' be a Fuchsian group, that is, a discontinuous group of Moebius trans-
formations of the unit disk D = {Iz} < 1} onto itself. The points z, z' € D are
called equivalent if there exists a mapping ¢ € T" such that z' = ¢(z). A domain
F C D is called a fundamental domain of T if it does not contain two equivalent
points and if every point in D is equivalent to some point in F.

The function f(z) will be called charvacter-automovphic (with respect to I') if it
is meromorphic in D and if

(1.1) f(o(z)) = vi(¢) i(z), where |v(<,b)| =1 (zeD, o).

It follows from (1.1) that v{¢poy) = v(¢) v(y) for ¢, ¢ € T, so that v is a character
of T, and (1.1) is equivalent to |[fo¢| = |f| (¢ € I). If v(¢) = 1 for all ¢ € T, then
f(z) is automovphic.

We use the notation

By |f'(z)|
(1.2) £7(z) ——————1 n lf(Z)IZ

for the spherical derivative. It is invariant under spherical rotations. The mero-
morphic function f(z) (z € D) is called normal [8] if

(1.3) sup (1 - |z|2)fH(z) = M < .
z€D

This quantity is invariant under Moebius transformations ¢(z) of D onto D. For
character-automorphic functions, the supremum can therefore be restricted to any
fundamental domain F. In particular, every bounded analytic function is normal. If
f(z) is analytic and normal, then [5], [13]

log*|f(z)| < 2(log*|f(0)| + M)(1 - |z])-1 (z € D).

We denote the non-Euclidean distance by d(z;, z,) (z;, 2z, € D) and the spheri-
cal distance by

W] - W2
1+\771W2

(1.4) d*(wy , w,) = arctan I (w1, wy € d).

If f(z) is normal, then it follows from (1.3) by integration that

(1.5) a*(f(z)), i(z;)) < Md(z,, z,) (z,, z, € D).
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We derive first a simple normality criterion for automorphic functions. Then
we turn to character-automorphic functions and study the normality of a function
connected with the Green’s function; an approximation process allows us to deal with
groups of divergence type. We shall see that for every Fuchsian group there ex#sts
a nonconstant normal character-automorphic function; it remains an open problem
whether there is always a nonconstant normal automorphic function. In the last sec-
tion, we show that every normal character-automorphic function has an angular limit
at every parabolic fixed point.

2. A NORMALITY CRITERION

Let T be a Fuchsian group with fundamental domain F. Our first result is a
slight extension of a normality criterion of P. Montel [10].

LEMMA 1. If a mevomovphic function assumes thvee values in ¢ in at most
finitely many nonequivalent points, then it is normal.

Proof. Let A be the set where the meromorphic function f(z) assumes the
values a, b, c. Since A contains only finitely many equivalence classes, it easily
follows from the discontinuity of I'" that there exists & > 0 such that

d(z, z') > 26 for ze A, z' € A, z#z'.
Hence every non-FEuclidean disk
{z e D: d(z, ) <6} (¢ € D)
contains at most one point of A, and therefore, for every ¢ € D, the function

L+ 06s

1+ Eos (s| <1

ge(s) = £ (
assumes at most one of the values a, b, ¢. Hence it follows from a criterion of

Montel [10] [4, p. 60] that {gg: ¢ € D} is a normal family, and Marty’s criterion
[1, p. 218] shows that

o1~ [g]Hhe) = gf0) <K (¢ e D)

for some constant K. Therefore the condition (1.3) for normality is satisfied.

P. Lappan [7] has shown that an automorphic function is normal if it assumes
every value only finitely often in F. Since an automorphic function assumes the
same value at all equivalent points, we obtain the following generalization from
Lemma 1:

THEQOREM 1. If an automorphic function assumes three values only finitely
often in ¥, then it is normal.

A function automorphic with respect to I'' can be considered as a meromorphic
function on the Riemann surface D/T. The hypothesis of Theorem 1 therefore
means that this function assumes three values only finitely often on D/T. The next
corollary follows at once from Theorem 1. Its hypothesis means that this function
maps D/T onto a surface of finite spherical area.

COROLLARY 1. If f(z) is automorphic and
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(2.1) SSf#(z)Z dxdy < o,
iyl
then £(z) is normal.

If T is finitely generated, then every simple automorphic function (in the sense
of L. R. Ford [3, p. 87]) is normal because it assumes every value only finitely
often in F. More generally there exists a nonconstant, normal automorphic function
if T is of finite genus (see, for instance, M. Mori [11]). On the other hand, there
exist groups for which the integral (2.1) is infinite for all automorphic functions [15,
p. 389]. (I want to thank E. R3ding for these two references.) It remains an open

problem whether, for every Fuchsian group, there is a nonconstant normal auto-
morphic function.

3. NORMALITY AND THE GREEN’S FUNCTION

Let T be a Fuchsian group with identity ¢ for which 0 is not an elliptic fixed
point. The group T is said to be of convergence type if

2 (1-¢(@]) < (zeD),
Y

otherwise of divevgence type. It is of convergence type if and only if the Riemann
surface D/I" has a Green’s function [12][17, p. 522]. If T is of the second kind,
that is, if the set of limit points of I' is nowhere dense on 9D, then I is of con-
vergence type [3, p. 106].

THEOREM 2. Lel {[z‘ < p} contain no I'-equivalent points. If ® C I isa
subgroup of convevgence type, then the function

(3.1) ) =2z I B8 _,1.. (eD)
o OR
dFL

is character-automovphic and satisfies the inequality

(3.2) (1-|z|2)i*(z) <40/p (z € D).

If we consider the harmonic function

3.3 1 27 0)| = 27 1
(3.3) o8 |f(Z)I e d Ogl¢( )l ped o8 |¢(Z)l
bEL

and identify ®-equivalent points, we obtain the Green’s function of D/®. We post-
pone the proof of Theorem 2 to the next section and derive first some consequences.

THEOREM 3. Lel T be infinitely genevated. Then I' is the union of an in-
creasing Sequence of finitely generated subgvoups U, such that the functions
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(3.4) f(z) =2z II 2%; =z+-- (zeD)
¢eI',
bF L

converge locally uniformly in D fo a novmal funclion that is chavacter-automorphic
with vespect to T, and

(3.5) lim 27 (1- {#(0)]%)¢(0)

n—oo ¢peI'y

exists for k=1, 2, -,

The only interesting case is the case where I is of divergence type. Here (3.5)
means that the series

(3.6) 2 (1-]6(0)]2) 00k (k=1,2, )
¢oell

converges in a very weak sense, namely if we restrict ourselves to suitable partial
sums; of course, (3.6) does not converge absolutely.

Proof. Since T is countable, we can write I' as the union of an increasing se-
quence of finitely generated subgroups I',. Now the normal fundamental domain
(with respect to 0) has finite non-Euclidean area if and only if the group is finitely
generated and of the first kind [16, p. 39]. Since the normal fundamental domain F,
of I',, contains that of T, it follows that F likewise has infinite non-Euclidean
area. Hence I', is of the second kind and therefore of convergence type.

Thus we can apply Theorem 2 with & = I';. Since 0 is not an elliptic fixed
point, some disk {lzl < p} contains no I'-equivalent points, and we deduce from
(3.2) that
(3.7) (1- ]z|2)ff1(z) <40/p (zeD, n=1,2, ).

By Marty’s criterion [1, p. 218], we can therefore find {n,} such that

(3.8) fnv(z) — f(z) as v — o, locally uniformly in D.

The limit function f(z) is character-automorphic with respect to each I', and
therefore with respect to the union I'. It is normal, because it follows from the

condition £'(0) = 1 and from (3.7) that

(3.9) 1 < sup (1-|z]|2)iH(z) < 40/p .
z€D

We change the notation and write I', and f, instead of an and an . By log-

arithmic differentiation, we deduce from (3.4) and (3.8) that

fn(z) _ ¢'(z) _, , £'(z) o
(3.10) 25 @ - gr e o A

uniformly near z = 0. Writing
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¢(z) = ¢ 1a-_az (le| =1, |a] < 1),

we see that, near z =0,

f’(Z) oo i 1
zn—=1+2[ D ak——-]zk.
fn(z) k=1"-¢el ( ak )

oFL

By (3.10), each coefficient of the power series on the right tends to a limit as
n — «, Since

27 (1-]60)])2 <= and a=¢"}0)
¢pe "

(see [3, p. 104]), we easily deduce that

lim 27 (1-]a|®ak (=1, 2, )
n—o ¢e 'y

exists. Since a = ¢-1(0) and since T, is a group, it follows that the limit (3.5)
exists.

COROLLARY 2. For every infinitely genevated Fuchsian group, theve exists a
charactev-automorphic function g(z) with

(3.11) 1 < sup (1- |z[?)g#(z) < K, < =,
z€D

wheve K is an absolute constant.

Proof. A. Marden [9] has shown that there exists an absolute constant pg > 0
such that, for every Fuchsian group I' and a suitable Moebius transformation ¢ of
D onto D, the disk {|z| < po} contains no points equivalent under the conjugate

group I'* = Yooy -1, We consider again the function f(z) constructed in the proof
of Theorem 3, with I'" replaced by I'*. It is character-automorphic with respect to
I'* and satisfies (3.9) with p = pg. The function

g(z) = f(Y(z)) (z € D)

is character-automorphic with respect to I' = -1l o I* oy and satisfies (3.11) with
K¢ = 40/po, because this supremum is invariant under ¥.

Our method of proof forces us to exclude the case where I' is finitely generated
and of the first kind, because there I' cannot be written as the union of finitely gen-
erated subgroups. On the other hand, we have seen in Section 2 that for every finitely
generated group there exist normal automorphic functions. We do not know, however,
whether sup(1 - |z |2) f#(z) is bounded by an absolute constant for these functions.

In the case where I' is of divergence type and the normal fundamental domain F
is not relatively compact, we obtain another example of a normal character-auto-
morphic function if we complete the Evans-Selberg function of D/T" [15, p. 352] to
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an analytic function and then exponentiate. . The resulting function satisfies the
condition

|#(z)] —» » as |z] > 1 (ze F).

4. PROOF OF THEOREM 2

We need some lemmas that are already known. A function h(f) analytic in D is
called (civcumferentially) mean univalent if

(4.1) S v(w) |[dw| < 27R (0 <R < +w),
IW| =R
where v(w) (w € C) denotes the number of zeros of h(¢) - w in D. W. K. Hayman
[6, p. 99] has proved the following.
LEMMA 2. If h(¢) =€ + --- is mean univalent in D, then

¢ e
(1+ ¢z — [n©)] < (1-|¢)?

' 1+ el
(4.3) [h'(©)] <———= (eD.
(1- ¢

(4.2) (€ e D),

The next lemma follows easily by elementary transformations from the lemma
in [13, p. 8].

LEMMA 3. Let 1(z) be analytic in D. Let theve exist a set G C D such that
(4.4) l#z)] > a (z€G), ((1-|z]2)|t'@)] <B (zeD\G
Jor some constants a and B (0 <o <1/2, > 0). Then

B+2
2a (z

(4.5) (1-|z|2)t#=) < € D).

Proof of Theovem 2. The product (3.1) converges, because & is of convergence
type and because each factor has the value 1 when z = 0. It is character-auto-
morphic because, for ¥ € &,

60 (@) ‘H@ Ix ()|
lt(2)]| = |w=)| 1 - X = |i(z)] .
| sea |90 I |¢(0)]
d#L e d
b1

It remains to prove the estimate (3.2). We may restrict ourselves to the case where
® is finitely generated; the general case follows if we write & as the union of such
groups, as in the proof of Theorem 3.

The function (3.3) becomes the Green’s function of D/®, if we identify ®-
equivalent points. Hence we obtain from results of M. Brelot and G. Choquet [2] [15,
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p. 197-202] the existence of a fundamental domain G of & (the Green’s star domain)
that is mapped by f(z) one-to-one onto a disk of center 0 from which a finite number
of radial slits has been removed.

By hypothesis, the disk {|z| < p} contains no I'-equivalent points and there-
fore no ®-equivalent points. For 0 <R < «, every point in {Iz| < p, If(z)l =R}
(with a finite number of exceptions) is equivalent to exactly one point z* € G, and
lf(z*)| = ]f(z)] =R. If v(w) and v*(w) denote the number of zeros of
f(z) - w in {|z| < p} and G, respectively, we conclude that

(4.6) §

because f(z) is univalent in G, we have the inequality v*(w) < 1. Hence, by (4.1),
the function

| v(w) |dw| = Sl | v¥w) |dw| < 27R;
wi=R w|=R

h(g) = p~li(pg) = ¢+ (J¢g| < 1)
is mean univalent, and we deduce from Lemma 2 that

|z

(4.7) |tz)| > —, |f'(2)]| < Ltpl|al

(1-p-tz])?

4| (|z] < p).

Let B = {|z| gp/B}. We denote the elements of & by ¢, (k=0, 1, ---), with
¢ =t. For m =1, 2, .-+, let

6n=D\U 6.8, c=p\U sm.
k=1 k=1

We see from (3.1) that, for z € D N 3G,
o0

II o(@)| > 1] I |1 (0)] > {5 I [ (0)]
k=0 k=1 k=1

because, by (4.7), |f(¢(z))| = |f(z)| > p/12 for z € 0B, ¢ € &. Since the product

m
szo |qbk(z)] has the value 1 for z € 9D and is different from 0 for z € G,,, we
conclude from the minimum principle that

H ¢k(Z)

2—192- Il |¢,(0)] for ze G,
k:O k:].

hence for z € G. Letting m — «©, we deduce that
(4.8) |£z)] > p/12  (z € G).
Since |¢'t'(¢)| = |£'(z)| for ¢ € &, we see by (4.7) that
(1- |¢=2)]%) |£(o=)]| = (1 - |2]®)|t'(=)] < 9/2 (z € B),

and hence that
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(4.9) (1-1z|?) |t'@)] <9/2 for ze U ¢B) =D\ a.
eI’

We obtain inequality (3.2) from Lemma 3 by (4.8) and (4.9).

5. THE BEHAVIOR AT PARABOLIC FIXED POINTS
A function f(z) (z € D) is said to have the angular limit a € C at € € aD if
f(z) >a asz—¢, |arg(l-tzx)| <7/2-6

for every 6 > 0. A normal function f(z) has the following important property: If
f(z) — a as z tends to the point ¢ € 9D along some Jordan arc in D, then f(z) has
the angular limit a at ¢ (see [8]); in particular, existence of the radial limit im-
plies existence of the angular limit.

Let T" be a Fuchsian group. Then
S = (D U {parabolic fixed points })/T

is a Riemann surface, and we obtain the Riemann surface D/T from S by removing
certain isolated points. Thus the parabolic elements of I' give rise to punctures. If
an automorphic function has an angular limit at all parabolic fixed points, then it be-
comes a meromorphic function on S.

We prove now that a normal character-automorphic function has an angular limit
at all parabolic fixed points. More generally, we assert the following.

THEOREM 4. Let f(z) be normal in D. Let ¢ be a parabolic Moebius tvans-
Jormation with ¢(D) =D and fixed point ¢, and let

(5.1) f(¢(z)) = Y(i(z)) (z € D)

for some Moebius transformation Y. Then 1(z) has an angular limit at §. Fuvther-
move, if Y(w) # w, then this angular limit is a fixed point of .

Proof. We may assume that { = 1. Let A be the radial cluster set at 1, so that
f(z) has the radial (and therefore angular) limit a at 1 if and only if A = {a}. Let
now a € A. Then there exists a sequence {xk} such that %, — 1 -0 and f(xk) —a
as k — oo,

(a) We consider first the case where ¥(w) # w. Since ¢ is parabolic, we easily
see that the non-Euclidean distance satisfies the condition d(¢(xy), x,) — 0 as
k — «. Hence, by (5.1) and (1.5), the spherical distance satisfies the condition

d*(Wli(xy), £(x))) = d*(f(g(x), £(x))) < Md(p(xy), x) — 0.

It follows that d*(y¥(a), a) = 0 and therefore that ¥(a) = a. Thus a is a fixed point of
Y. Hence A contains at most two points, and since A is connected, we conclude
that A = {a}.

(b) We consider now the case where ¥ (w) = w. We can make a = 0 by a spher-
ical rotation. The circle

Cr = {lz- (1+x9/2] =(1-x/2} (k=12 )
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through xy is tangent to 9D at 1, and ¢(Cy) = C. For every z € C,, there exists
v € Z such that d(z, ¢¥(x;)) < d(xk, #(xy)). Since f(p¥(xy)) = £(x;) — 0 (k — =), we
deduce from (1.5) that

d*(i(z), 0) < d*(i(z), £(¢¥ (%)) + d*(f(p¥ (xy)), 0) — 0
uniformly for z € Cy (k — «) and therefore that

(5.2) sup |f(z)] = 0 (k& — ).
z€Ck

Since the segment (x,, 1) is a diameter of Cy, it follows from (5.2) and the maxi-
mum principle of O. Lehto and K. I. Virtanen [8] [14, Theorem 9.1] for normal func-
tions that
sup lf(x)l -0 (k— ).
xp <x <1

Thus f(z) has the radial limit a = 0 at 1.

COROLLARY 3. Let T be finitely generated and of the fivst kind. A character-
automorphic function is novmal if and only if it has an angular limit at each parabolic
fixed point,

Proof. In one direction this is a special case of Theorem 4. _Conversely, let the
character-automorphic function f(z) have an angular limit a, € € at each of the

finitely many parabolic vertices ¢, (v =1, ---, n) of the normal fundamental domain
F. Then

(5.3) (1 - lzlz)f#(z) -0 asz—U, (z¢F).

Hence f(z) is normal, because F n D = {¢;, ---, £, } and

sup (1 - |2|2)f(z) = sup (1 - |2|2)ff(z) < .
z€D zeR

We give the standard proof of (5.3). We may assume that a;, # «. If z; — ¢,
and zj; € F, then, as k — «,

f.(z) = f(z +(1/2) (€, - z)s) — a,  uniformly in |s| < 1.

It follows that

(1- |z ) [#'@)] < @€y - 2 £'(z)] = 2|f(0)] — 0.
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