DIVISIBILITY PROPERTIES IN SEMIGROUP RINGS

Robert Gilmer and Tom Parker

1. INTRODUCTION

It is well known that if D is an integral domain with identity, then the polynomial
ring J = D[{X, }reA] is a unique factorization domain (UFD) if and only if D is a
UFD. Also, J is a GCD-domain if and only if D is a GCD-domain, and J is a prin-
cipal ideal domain (PID) if and only if D is a field and the cardinality ]Al of A is
1. In this paper we consider the problem of determining necessary and sufficient
conditions on D and on an additive abelian semigroup S with zero in order that the
semigroup ring D[X; S] should be a GCD-domain, a UFD, or a PID. Our main re-
sults are contained in Theorems 3.1, 5.2, 6.1, 6.4, 7.17, and 8.4.

For an associative ring R and a semigroup S (written additively), N. Jacobson
[21, Exercise 2, p. 95] defines the semigroup ring of S over R to be the set of func-
tions f from S into R that are finitely nonzero, with addition and multiplication
defined as follows:

(f+g)(s) = i(s) + g(s),

(fg) (s) = 2 f(t) glu),

t+u=s

where the symbol Et+u:s indicates that the sum is taken over all ordered pairs

(t, u) of elements of S such that t +u =s. We adopt the notation of D. G. Northcott
[29, p. 128] and write R[X; S| for the semigroup ring of S over R. In this paper,
we deal only with the case in which the ring R and the semigroup S are commuta-
tive. A polynomial ring over R is a semigroup ring over R; in fact R [{X}\ }AEA] is
isomorphic to the semigroup ring R[X; S], where S is the weak direct sum of |A]
copies of the additive semigroup Z, of nonnegative integers. Hence our results on
divisibility properties of the rings D[X S] are extensions of the results concerning
polynomial rings mentioned in the preceding paragraph.

Following I. Kaplansky [24, p. 32], we say that an integral domain D with iden-
tity is a GCD-domain if each pair of nonzero elements of D has a greatest common
divisor in D; other terms that have been used in the literature for this concept are
pseudo-Bezoutian ving [4, p. 86] and HCF-ring [7]. Moreover, since D is a GCD-
domain if and only if each pair of nonzero elements of D has a least common multi-
ple in D, another natural term for this class of domains would be LCM-domain.
GCD-domains have proved to be of interest at several points in the literature, nota-
bly in the work of H. Priifer [32] and P. Jaffard [22, Chapter 3], see also.[7], [15],
and [38]. In Theorems 6.1 and 6.4 we prove that the semigroup ring D[X; S] is a
GCD-domain if and only if D is a GCD-domain and S is a torsion-free, cancellative
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semigroup with the property that the set of principal ideals of S is closed under
finite intersection. A special case of the preceding result is Theorem 5.2: If G is
an abelian group, then D[X; G] is a GCD-domain if and only if D is a GCD-domain
and G is torsion-free.

Unique factorization domains are precisely the GCD-domains in which the as-
cending chain condition for principal ideals is satisfied. Hence our results on GCD-
domains in Sections 4-6 are useful to us in considering D[X; S] as a UFD. In Theo-
rem 7.17, we prove that the semigroup ring D[X; S] is a UFD if and only if D isa
UFD, the semigroup S is a unique factorization semigroup, and each element of the
maximal subgroup H of S is of type (0, 0, 0, ---) (an equivalent condition on H is
that each subgroup of H of rank 1 is cyclic). Special cases of Theorem 7.17 are
Theorems 7.9 and 7.12: If F is a field and G is a torsion-free abelian group, then
the group ring F[X; G] is a UFD if and only if each element of G is of type
(o, 0, 0, --+).

Theorem 7.12 is useful in constructing examples of non-Noetherian unique fac-
torization domains. It is well known that the group ring F [X; G] is Noetherian if
and only if G is finitely generated (see, for example, [10]). Thus, if F is a field
and G is a nonfinitely generatled, torsion-free group in which each element is of type
(0, 0, 0, ---), then the group ring F[X; G] is a non-Noetherian UFD. Nonfinitely gen-
erated torsion-free groups in which each element is of type (0, 0, 0, -+-) are well
known (see [12, p. 151]). In [18], the first author has used Theorem 7.12 to con-
struct examples of non-Noetherian unique factorization domains of arbitrary char-
acteristic and arbitrary Krull dimension k > 2; for k = 2, it seems that such exam-
ples have not appeared in the literature.

In Section 8 we determine necessary and sufficient conditions under which
D[X; S] is a PID. These conditions are given in Theorem 8.4: D[X; S] isa PID if
and only if D is a field and S is isomorphic either to the additive semigroup Zg of
nonnegative integers or to the additive group Z of integers. Consequently,
D[X; S] is a PID if and only if D is a field and D[X; S] is isomorphic to D[Y] or
to D[Y, Y1].

For emphasis, we repeat a statement already made: all vings and semigroups
consideved in this paper ave assumed to be commuitative.

2. DIVISIBILITY PROPERTIES IN CANCELLATIVE SEMIGROUPS

Before embarking on a study of semigroup rings, we need to develop some pre-
liminary results concerning divisibility properties of semigroups. In order to avoid
complications, we assume that each semigroup S considered in this section is can-
cellative —that is, ax = ay implies x =y for all a, x, y € S. Cancellative semigroups
are precisely those that can be imbedded in a group; we call the smallest such group
G in which a cancellative semigroup S can be imbedded the quotient gvoup of S.

Let S be a cancellative multiplicative semigroup with identity. The concepts
usually considered in connection with unique element factorization in an integral do-
main D with identity are defined in terms of the multiplicative semigroup D - {0},
and hence, they are meaningful for S; Section 3.1 of [8] is a good reference for this

point of view. In particular, if {al y Ap, 0, an} is a finite subset of S, then an ele-
ment s of S is called a greatest common divisor of a, a;, *=, a, (written
s =ged{a,, '~-,a,}) if s divides each a; and s is divisible by each common

divisor of a;, ap, *+, a,; if ay, a,, +--, a, have a greatest common divisor in §,
then it is unique to within unit factors. Similarly, a least common multiple of
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ay, -+, a, (lem{aj, -+, a,}) can be defined, and it is uniquely determined, if it
exists, to within unit factors. In analogy with results that are well known in the case
of an integral domain, we have the following:

2.1. LEMMA. Assume that x,ye S and {a;}7], {b;}]" ave finite nonempty
subsets of S.

(1) lem{ay, -+, a,} exists if and only if lem {xa, -, xa,} exists; if both
exist, then lecm {xal ETTIN xan} =X+ lem {a1 y ttt,An .
(2) If ged {xa1 , 0t xan} exists, then gcd{al RN an} exists and
ng{Xal s "7 Xa‘n} =X ng{al » "%, an}-
(3) If a=ged{ay, «+, a,} and b=ged{b;, -+, by, } exist, then
ged{a;, ---, an, by, **-, bm | exists if and only if ged {a, b} exists; if these two
greatest common divisors exist, they ave equal.

(4) If ¢ =lem {x, y} exists, then xy = cs for some element s in S. Moreover,
s =gcd {x, y}.

It is known that the converses of (2) and (4) of Lemma 2.1 may fail, even if S is
the semigroup of nonzero elements of an integral domain (see, for example, [5, p.
108] or [17, pp. 76-77])—that is, if ged{a;, *--, a,} exists, then ged {xa;, -+, xa,}
need not exist; and if x and y have a greatest common divisor, they need not have a
least common multiple. On the other hand, if each pair of elements of S has a great-
est common divisor, then each pair of elements has a least common multiple; this
statement follows from the next result, Proposition 2.2,

Although the proof of Proposition 2.2 is easy, the result itself seems not to be
well known, even for the multiplicative semigroup of an integral domain (see, how-
ever, (5, pp. 94-96], [24, p. 32], and [17, pp. 75-77]).

2.2. PROPOSITION. Let x and y be elements of S. The following conditions
ave equivalent.

(1) lem {x, y} = xy.

(2) xS N yS = xyS.

(3) For all z in S, x|z and y |z implies that xy | z.

(4) Fov all z in S, ged{zx, zy} = z.

(5) ged{x,y} =1 and ged{zx, zy} exists for each z in S.
(6) For each z in S, x|yz implies that x| z.

Proof. It is clear that conditions (1)-(3) are equivalent, and it is also clear that
(4) implies (5). If lem {x, y} = xy, then lem {xz, yz} = xyz by part (1) of Lemma
2.1, and hence gcd {xz, yz} =z by part (4) of Lemma 2.1; therefore (1) implies (5).

(5) = (4): It is clear that z divides gecd {zx, zy }—say ged {zx, zy} = zt.
Since S is cancellative, it follows that t divides both x and y. Therefore t is a unit
of S, and gcd{zx, zy} =z.

(2) = (6): If yz = xs, then yz € xS N yS = xyS, so that yz = xyt for some t in
S. Since S is cancellative, z = xt and x| z.

(6) = (2): If xa=yb € xSN yS, then x| yb, and by (6), x| b so that b € xS and
yb € xyS. Consequently, xS N yS = xyS.

2.3. COROLLARY. The following conditions are equivalent.
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(1) Each paiv of elements of S has a gveatest common divisor in S.

(2) Each finite set of elements of S has a greatest common divisor in S.
(3) Each paiv of elements of S has a least common multiple in S.

(4) Each finite set of elements of S has a least common multiple in S.

Pyoof. The implications (2) => (1) and (4) = (3) are obvious, and the reverse
implications follow by induction from part (3) of Lemma 2.1. Part (4) of Lemma 2.1
shows that (3) implies (1); we prove that (1) implies (3). Pick x, y € S, let
d = ged {x, y}, and write x =dx;, y=dy;. Then ged {xl ) yl} = 1, by part (2) of
Lemma 2.1, and gecd {le , zyl} exists for each z in S. Therefore,
lem {x,, y,} =x;y;, by Proposition 2.2, and lecm {x, y} =lem {dx,, dy, } =dx; y; .
This completes the proof of Corollary 2.3.

We call a semigroup satisfying the equivalent conditions of Corollary 2.3 a
GCD-semigroup (see [6]). If S is a GCD-semigroup, then part (3) of Lemma 2.1 is
a consequence of the fact that the binary operations “gcd” and “lcm” are associa-
tive [11, p. 34].

For the proof of Theorem 4.4, we need the following two results concerning
GCD-semigroups.

2.4. LEMMA. Assume that S is a GCD-semigrvoup and that a, b, c € S, If
gcd{a, b} =d;, then gcd {a, bc} =ged{a, d;c}.

Proof. Let d =gcd{a, bc}, and let t =ged{a, dyc}. It is clear that t divides
d. But d divides ged {ac, bc} =c - ged{a, b} = cd;, and hence d divides t.
Therefore d =gedq{a, d;c}.

2.5. PROPOSITION. Suppose that S is a GCD-semigvoup, that a;, ***, a, € S
arve such that ged{a;, -+, a,} = 1, and that k,, kp, **, ky, ave positive integers.

k k
Then ged{a;!, -, a "} = 1.

Proof. 1t is clear that we need only consider the case where

Moreover, since
ng{al’ Tt an} = ng{ng {al s T, an-l}’ an} ’

it suffices to establish Proposition 2.5 for the case where n = 2. Thus, assume that
ged {a, b} =1 and that k is a positive integer such that ged {a, bk} =1. By Lemma
2.4, gcd {a, b- bk} = ged {a, 1- bk} = 1, This completes the proof of Proposition
2.5.

3. AN ANALOGUE OF NAGATA’S THEOREM

In this section we prove Theorem 3.1, a result that will subsequently allow us to
reduce several questions concerning semigroup rings to the same questions for
group rings. In [27], M. Nagata has proved the following theorem, which we label
(NT).

(NT) If D is a Noethevian domain with identity, if S is a multiplicative system
in D generated by prime elements, and if Dg is a UFD, then D is a UFD.
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The preceding result is frequently referred to in the literature as Nagata’s
Theorem; the following generalization of (NT) appears in [8, p. 116].

(NT)ﬂ< Assume that D is an integral domain with identity such that each nonzevo
element of D is a finite product of ivveducible elements of D. If S is a multiplica-
tive system in D genervated by prime elements of D, and if Ds is a UFD, then D is
a UFD.,

We seek an analogue of Nagata’s Theorem for GCD-domains. The result we
obtain, Theorem 3.1, uses the following terminology. If S is a nonempty subset of
the set of nonzero elements of an integral domain J with identity, and if x is a non-
zero element of J, then x is LCM-prime o S if xJ N sJ = xsJ for each s in S.

3.1. THEOREM. Lel N be a multiplicative system in an integval domain D
with identity, and let T be the set of elements of D that are LCM-prime to N. As-
sume that the following two conditions are satisfied.

(1) Each pair of elements of N has a least common multiple in D,

(2) Each nonzevo element of D can be expressed as the product of an element
of N and an element of T.

If Dy is a GCD-domain, then D is a GCD-domain.

Proof. We prove first that tDy N D =tD for each element t in T. The con-
tainment tD C tDn N D always holds, and if d € D is such that dn = tm for some
n € N, m € D, then, since (n) N (t) = (nt), n divides m (Proposition 2.2) and d € tD.
Therefore tD =tDyn N D, as asserted.

To prove that D is a GCD-domain, we show that if b and ¢ are nonzero ele-
ments of D, then the ideal bD N ¢D is principal. We write b =n;t; and ¢ =nj,t;,
where n;, n, € N and t,, t, € T. Let n=1cm {n;, n,}. Since the elements of N
are units of Dy, we see that bDy =t Dy and ¢Dy =t2Dn. Moreover, since DN
is a GCD-domain, bDy N cDy =t Dy N t2Dy is a principal ideal of Dy, and hence
is the extension of a principal ideal of D. In fact, we can assume that
bDyn ) eDpy = tDy, where t € T. We prove that bD N ¢D = ntD. Since t € t;Dy for
i=1, 2, we conclude that t € t;Dny 1 D =t;D, and nt € njt;D. Therefore
ntD C bD NeD. If x € bD N ¢D, we write x as ms, where m € N and s € T. Then
ni| ms for i =1, 2, and (n;) N (s) = (n; s), so that n; | m; consequently, n | m. On
the other hand,

xDnyMN D =sD C bDNN eDyMN D = tD,
so that t| s. We conclude that nt | ms = x, and bD N ¢D = ntD, as asserted. This

completes the proof of Theorem 3.1,

Our proof of Theorem 7.17 requires a slight generalization of (NT)*; we es-
tablish this generalization in the next result.

3.2. THEOREM. Let D be an integral domain with identity, and let & = {pg }
be a nonempty set of prime elements of D satisfying the following condition (A):

(&) No nonzevo element of D is divisible by infinitely many of the primes p
or by infinitely many powers of a fixed prime p, .

Let N be the multiplicative system genevaled by the set &,

(a) If the ascending chain condition for principal ideals (a.c.c.p.) is satisfied
in Dy, then a.c.c.p. is satisfied in D.
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(b) If Dy is a GCD-domain, then D is a GCD-domain.
(¢) If DN is a UFD, then D is a UFD.

Proof. Let T be the set of elements of D that are LCM-prime to N (in this
case, T is the set of nonzero elements of D divisible by no pg); T is a multiplica-
tive system in D, and it is straightforward to show that condition (A) implies that
(1) and (2) of Theorem 3.1 are satisfied. Hence (b) follows from Theorem 3.1. To
prove (a), let a; D Ca,D C -+ be an ascending sequence of nonzero principal ideals
of D, and for each i, express a; as njt;, where n; isin N and t; is in T. The
hypotheses on N and T imply that niD C n;4; D and t;D C t;41 D for each i; more-
over, a;jD=a;4+ D if and only if njD =n;4+1D and t;D =tj+; D. Therefore, the
chain a;DC a,D C --- stabilizes if and only if each of the chains n;DC n,D C -
and t; DC t,D C --- stabilizes.

The proof of Theorem 3.1 shows that t; DN N D=1t;D and niDT N D =n; D for
each i. Hence, if a.c.c.p. is satisfied in Dy, then the chain t; DN C t2 DN C -+
stabilizes, and consequently, the chain t; D C t; D C --- also becomes stable. Since
each principal ideal of D7 is the extension of a principal ideal of D, each principal
ideal of Dt is of the form nDT for some n in N. Therefore Dt is a UFD, the
chains ny Dy Cn, D C --- and niDC np; D C --- becomes stable, and a.c.c.p. is
satisfied in D, as asserted. This completes the proof of (a).

Part (c) of Theorem 3.2 follows from parts (a) and (b) and the fact that an inte-
gral domain J with identity is a UFD if and only if J is a GCD-domain in which
a.c.c.p. is satisfied [2], [35, p. 16].

We remark that the analogue of Theorem 3.2 for cancellative semigroups with
identity is valid. Part (b) of Theorem 3.2 has been obtained independently by M.
Schexnayder [37].

4. A REDUCTION TO THE CASE OF A FIELD

We now have the results needed to determine conditions under which D[X; S] is
a GCD-domain. The main result of this section is Theorem 4.4, which states that
D[X; S] is a GCD-domain if and only if D and K[X; S] are GCD-domains, where K
is the quotient field of D.

It is known that if R is a commutative ring and S is an additive abelian semi-
group, then the semigroup ring R[X; S] is an integral domain if and only if R is an
integral domain and S is torsion-free and cancellative [1], [14]. (To say that S is
torsion-free means that there do not exist distinct elements x, y of S and a positive
integer n such that nx = ny; S is torsion-free if and only if the quotient group of S
is torsion-free.) Hence, in trying to determine conditions under which a semigroup
ring is a GCD-domain, we restrict ourselves to the case where the coefficient ring
is an integral domain with identity and the semigroup is torsion-free and cancella-
tive.

4.1, LEMMA. Let D be an integral domain, and let S be a tovsion-free, can-
cellative , additive semigroup. If f and g ave nonzevo elements of D|X; S| and if fg
is a monomial, then £ and g ave monomials.

Proof. Since S is torsion-free and cancellative, it admits a total order < com-
patible with the semigroup structure [29, p. 123]. We write
S 1 Sn t tm

X and g=g1X1+---+ng ,
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where f; and f,, are nonzero and s; < --- < sp, and where g and g,, are nonzero
and t; < --- <t,,. Because D is an integral domain and'S is cancellative, it is then
clear that fg is not a monomial if either n > 1 or m > 1.

4.2. COROLLARY. If D is an integral domain with identity and S is a torsion-
free, cancellative semigroup, then the group of units of D[X; S] is

{uXSI u is a unit of D and s has an additive inverse in S} .

In our next result, Theorem 4.4, we use the following terminology. If D is a

n .
GCD-domain and f = 21:1 fiXS1 is a nonzero element of D[X; S], then we say that
f is primitive if ged{f,, £, ---, f,} = 1. Our proof of one part of Theorem 4.4 will
use a generalization of the so-called Dedekind-Mertens Lemma (see [17, Section 28]);
the following result, which we label Theorem 4.3, is proved by D. G. Northcott in [28,
pp. 286-287] (generalizations of Theorem 4.3 appear in [19, Theorem 3.7] and in

[30]).

4.3. THEOREM. Let R be a commulative ving, and let S be a torsion-free,
cancellative semigroup. For h € R[X; S, let By, be the additive group genevated
by the coefficients of h. If f and g are nonzero elements of R[X; S], then theve
exists a positive integer K such that BlfBg = Blf(‘l Bfg Jor each k > K.

4.4, THEOREM. Assume that D is an integral domain with identity having
quotient field K, and S is a torsion-free, cancellative, additive semigroup with zevo.
The following conditions ave equivalent.

(1) D[X; S] is a GCD-domain.
(2) D and K[X; S] are GCD-domains.

Proof. If D[X; S] is a GCD-domain, then K[X; S] is a GCD-domain, for
K[X; S] = D[X; S]y, where N is the set of nonzero elements of D. Moreover, if
dj, dp € D, then the ideal

d;D[X; 8] Nd,D[X; S] = (d;D A dpD)[X; S]

is principal. Since the ideal (d; D N d2D)[X; S] contains monomials, it follows from
Lemma 4.1 that (d;D N d2D)[X; S] is generated by a2 monomial, say dXS. It is then
easy to show that dD =d D N d,D and that s has an additive inverse in S. At any
rate, d;D N d,D is principal, and D is a GCD-domain.

We prove that if D and K[X; S] are GCD-domains, then D[X; S] is a GCD-
domain (by proving that D[X; S] and the multiplicative system N=D - {0} of
D[X; S] satisfy conditions (1) and (2) of Theorem 3.1). If n;, n, € N and n is the
least common multiple of n; and n, in D, then n is the least common multiple of
n; and n, in D[X; S} this is true since extension of ideals distributes over inter-
section, in passage from D to D[X; S]. We let T be the set of primitive elements
of D[X; S]. It is clear that each nonzero element of D[X; S] is of the form nt, for
some n € N, t € T. To prove that (n) N (t) = (nt) for n € N and t € T, we take f,
g € D[X; 8] - {0} such that nf = tg. By Theorem 4.3, there exists a positive
integer k such that

Bf By = By "' By, = By ' By = By 'nB.
It follows that if g: is a nonzero coefficient of g and {tl y T tr} is the set of non-
zero coefficients of t, then n divides t%‘ g; for each i between 1 and r. Hence n
divides
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k k k k k
ged {t7gj, t2gj, =, trgjt = g - ged {ty, -, tr },

and by Proposition 2.5, ged {tlf, cee tllf} = 1. Therefore n divides each gj, so that
g € nD[X; S] and tg € (nt), as we wished to show. We have proved that N and T
satisfy the conditions of Theorem 3.1, and since D[X; Sly = K[X; S] isa GCD-
domain, Theorem 3.1 shows that D[X; S] is a GCD-domain.

4.5. COROLLARY. (See [17, Theorem 34.10].) The polynomial ving D[{Xy }]
is a GCD-domain if and only if D is a GCD-domain.

In the proof of the implication (2) => (1) in Theorem 4.4, it is possible to avoid
the use of Theorem 4.3. Note that Theorem 4.3 was used in the proof of Theorem
4.4 to establish the containment (n) N (t) € (nt), where n € N and t is primitive. A
more elementary proof of this containment can be based on the fact that a product of
primitive elements is primitive (this result is well known in the case of polynomial
rings; see [17, p. 425], [24, Exercise 8, p. 42], [39, Lemma 4.2]). Thus, if
h = nf = tg € (n) N (t), then we write g =n;t;, where n; is the greatest common
divisor of the coefficients of g and t; is primitive. Since tt; is primitive, it fol-
lows that n; is divisible by n. and h =tn;g; € (nt). The following proof that a
product of primitive elements of D[X; S] is primitive is a modification of a proof
given by Eduardo Bastida in the case of polynomial rings.

4.6. PROPOSITION. Assume that D is a GCD-domain and that S is a torsion-
free, cancellative semigvoup. If { and g ave primitive elements of D[X; 8], then fg
is also primitive.

Proof. We assume that the relation < on S is a total order compatible with
the semigroup structure of S, and we write

m n
. t.
f=27a,X%" and g= 2bX?,
i=0 i=0

where sg <s; <+ sy, to <t; <.+ <ty,, and each a; and each bj is nonzero.
To prove Proposition 4.6, we prove that if d is a nonzero nonunit of D, then d fails
to divide some coefficient of fg.

Without loss of generality, we may assume that gcd{ao, d} # 1, for if
ged{ag, d} = ged{bg, d} = 1, then ged {agbp, d} =1 and d does not divide agbg,
a coefficient of fg. We consider the sequence {d;}jzo, where

d_] = ng{ao, aj, *°°, aj, d}.

Since f is primitive, there is a smallest integer i such that d; = 1, and by assump-
tion, i > 1. Thus d;_; is a nonunit divisor of d, and to prove that d fails to divide
some coefficient of fg, it suffices to prove this assertion for d;_;; hence we assume
that d =d;_;. If k is chosen minimal with respect to the property that

ged{bg, by, ***, bx, d} = 1, then by replacing d by d'=ged{bg, by, -, bx_1, d}
(if k =0, then d =d"), we can assume that d is a nonunit divisor of
ag, ay, -+, aj-1, bg, b1, **+, bx-1 and that ged {aj, d} = ged{bk, d} = 1. If ¢ is

the canonical homomorphism of D onto D/dD and if ¢* is the canonical extension
of ¢ to a homomorphism from D[X; S] onto (D/dD)[X; S}, then it follows that

$H0) = 2 papxT = T papxT  and  ¢%(@) = 1 o)X .
0 j=k

j=i
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Moreover, since gcd{ai, d} = gcd{bk, d} = 1, and consequently ged {ai by, d} =1,
it follows that ¢(a; by) # 0, ¢*(fg) # 0, and d {fails to divide some coefficient of fg.
This completes the proof of Proposition 4.6.

5. THE CASE OF A GROUP

The next step in determining conditions under which D[X; S] is a GCD-domain
is the treatment of the case where S is a group; we prove in Theorem 5.2 that
D[X; G] is a GCD-domain if D is a GCD-domain and G is a torsion-free group.
The proof of Theorem 5.2 uses a proposition that is of interest in itself.

5.1. PROPOSITION. Assume that S is an additive abelian semigvoup with zevo
and that G is a subsemigvoup of S such that G contains 0 and G is a gvoup. If R
is a commultative ving with identity, then the semigvoup ving R[X; S] is a free
R [X; G]-module.

Pyoof. 1f {Sa} is a complete set of representatives of the cosets of G in S,
then it is easy to verify that {X°®} is a free R[X; G]-module basis for R[X; S].

We remark that the proof of Proposition 5.1, for groups, is essentially contained
in the proof of Lemma 2.4 of [31, p. 6]; see also Theorem A of [4].

5.2. THEOREM. If D is a GCD-domain and G is a ltovsion-free abelian grvoup,
then DI[X; G] is a GCD-domain.
n S m t.
Proof. Consider nonzero elements f = Ei:l I; X " and g = Ei:l g;X ' of
D[X; G], and let H be the subgroup of G generated by the set

{Sl: ***y Sn» tl, ) tm};

H is a direct sum of k copies of Z for some k < n + m, and hence D[X; H] isa
guotient ring of a polynomial ring in k indeterminates over D. Consequently,

D[X; H] is a GCD-domain. Let Jg;= D[X; H], let J=D[X; G], and let {y)} be a
free module basis for J over Jy. If h generates the principal ideal £J N gJ¢y of
Jg (that is, if h is the least common multiple of f and g in Jyy, then

f(Z}E JHYA) ﬂg(E)\ JHYA) = (?fJHyK) n (Z}E gJHy?&)

g Nedg

il

27 (fJgNglyyy = 2 hiyy = h(E JHyA) = hdg.
Y A A

We conclude that the set of principal ideals of D[X; G] is closed under finite inter-
section--that is, D[X; G] is a GCD-domain.

Our original proof of Theorem 5.2 was much more complicated than the proof
given above. Through conversations with J. Brewer, D. Costa, and A. Grams, the
first author became aware of Proposition 5.1, and that result simplified our pre-
vious proof.
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6. A RESOLUTION OF THE PROBLEM FOR GCD-DOMAINS

In this section we solve the problem of determining necessary and sufficient
conditions in order that a semigroup ring should be a GCD-domain (Theorems 6.1
and 6.4). We begin with the easier half of the problem.

6.1. THEOREM. Assume that D is an integval domain with identity and that S
is an additive semigvoup with zevo. If the semigroup ving D[X; S] is a GCD-
domain, then D is a GCD-domain and S is a tovsion-free GCD-semigroup.

Proof. With S written additively, the condition that S is a GCD-semigroup
translates, of course, to the condition that for all a, b € S, there is an element ¢ in
S suchthat (a+S) N(b+$S)=c+8.

If D[X; S] is a GCD-domain, then clearly S is torsion-free and cancellatwe
and Theorem 4.4 implies that D is a GCD-domain. I a, b € S, then (X*) N (x® ) is
a principal ideal of D[X; S]. Because X2tP ¢ (X3) N (Xb), it follows from Lemma
4.1 that (X?) N (XP) is generated by XC for some element ¢ in S. But (Xt), for
tes,is s1mp1y the semigroup ring D[X; t +S]. Therefore, the equality
(xX2) N (XP) = (X°) implies that (a +S) N(b+S) =c +8S, and S is a GCD- semigroup.

In order to establish the converse of Theorem 6.1, we must first establish an
analogue of Theorem 4.3 for exponents of elements of a semigroup ring; we use the
following notation. If R is a commutative ring and S is a semigroup, then for

n
f=2 £, X e R[X; 8],

i=1

Efr denotes the set of elements s; of S such that f; # 0 (that is, Ef is the support
of f); if A and B are nonempty subsets of S, then A + B denotes the subset
{a+b‘ ae€A be B} of S.

6.2. PROPOSITION. Let D be an integral domain, and let S be a torsion-free,
cancellative, additive semigroup. If £ and g ave nonzevo elements of D{X; S), then
kEf +Eg = =(k - 1)E¢ + Efg , wheve k is the number of nonzero monomials that ap-
pear in g (that is, k is the cardinality of E )

Proof. We assume that < is a total order on S compatible with its semigroup
structure, and we write

k
. b.
=2 fiXal and g = 2 g; X 1,
i=1 i=1
where Ef={a1 <ap <+ <a, } and E ={b1<b2<---<bk}.

Since Efg C Ef+ Eg, we see that (k - 1)E¢+ Efg C kEgs + Eg . To prove the
reverse inclusion, we cons1der the set & of all (k + 1) -tuples o of the form

a=(; ,,a ,b,a ,a, ), where a, <--- <a. ;note that b, is the

1] ip? Tt ipg? i i] = — Ty
(t + 1)-st coordinate of a. Each such element o of & gives rise to an element
a*=a-l+ - +a; +bt+a1t+l ---+aik of kEf+Eg. The mapping o — a* of &

into kE;s+ E is surjective, but it may not be one-to-one. We order the finite set &
1ex1cograph1ca11y by requiring that each element of E, precedes each element of Eg
(note that we are, in effect, considering the disjoint union of the sets E and Eg¢; if,
for example, a; =b; and a, = b,, then (a;, by, a5, a3, -+, a;) and
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(a;, a;, by, a3, ==+, a;) are distinct elements of &, although, as (k + 1)-tuples,
they are identical) and that a; precedes aj if and only if i <j. As described, this
is a total order on &. We take an element m of kKE¢+ E,, and we let

{,ul y Tt ue} be the finite set of elements u of & such that m = u*; we assume
that of these e elements of &,

Hy = (ail’ Ttty a4, bJ7 aj.

is first in the lexicographic order on &. We show that this implies that the repre-
sentation of the element a; +b; of Ef+ E, in the form a,+ b, is unique. Suppose
J

not. Then aij +bj=ay+by, where u # ij and v # j.
We claim that if o is the element of & with coordinates

a-

a iy

il’ Ty aij—l, A4, bv’ aij-l—l’ Tty

then « precedes p; in the lexicographic order.

Case 1. If bj> by, then by occurs as the (v + 1)-st coordinate of «. Since
j+1>v+1 and b, precedes each element of E¢ (in particular, by, precedes aiv),

it follows that o precedes pu .

Case IL. If b; <b,, then aij> a,. If a;,

i1 < ay, then

and it is clear that o precedes p;. Otherwise, ¢ can be written as
(-, a,, ait, ETIN aij-l’ -+, by, -*-), where u<i; < i;-1, and again it is clear that

o precedes .

The contradictions that follow in Cases I and II substantiate our claim concern-
ing the representation of aij +bj as an element of Ef + Eg . Since D is an integral

domain, it follows that aij + bj € Efg , and consequently,

m=ajl

toetag +aij+1 o ay tay +bj € (k- 1)Ef + Egg .
This establishes the inclusion kE¢ + Egg (k - 1)Ef + Efg , and therefore Proposition
6.2.

It is interesting to note that while the Dedekind-Mertens Lemma (Theorem 4.3)
is valid for arbitrary semigroup rings, Proposition 6.2 fails without the hypothesis
that D is an integral domain. In fact, if R is a commutative ring with identity and
containing a nonzero element r such that r2 = 0, then in the semigroup ring
R[Y]=R[X; Z¢], the elements f=r +Y and g=r - Y are such that 0 € kE¢ + Eq
for each positive integer k, while 0 € (k - 1)E¢ + Efg for no k; this problem is not
alleviated if Ey, Eg, and Ef, are replaced by the subsemigroups of Zo that they
generate or if they are replaced by the subgroups of Z, the quotient group of Z,,
that they generate.

Our next result, Proposition 6.3, is the analogue of Proposition 4.6. We use the
following terminology. Let D be an integral domain, S a GCD-semigroup, and
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n S
f= Ei:l d;X ' a nonzero element of D[X; S], where no d; is 0. We say that f is
e-primitive (exponent-primitive) if gcd{sl, Sp, -, sn} = 0.

6.3. PROPOSITION. Assume that D is an integral domain and that S is a
GCD-semigroup with zevo. If £ and g ave e-primitive elements of D[X; S), then fg
is also e-primitive.

Proof. Let X*h =fg, where a € S and h is e-primitive. By Proposition 4.6,
there exists a positive integer k such that
kE(+E, = (k- DE;+Ep, = (k - DE(+E , = (k- DE¢+ {a} +E,.
If s; € Eg and if {t;, tz, **-, t, | = E¢, then it follows that a divides kt; + s for

each i between 1 and r (since the notation is addition, the statement that x divides
y in S means there exists z such that x + z =y). Hence a divides

ged {kt; +s;, ktp + 55, -, ktr+sj} = s;+ged {kt), -, kt, };

moreover, by Proposition 2.5, ged {ktl, e ktr} =0, since f is e-primitive.
Therefore a divides each sj. Since g is e-primitive, the only divisor of each S;
is 0. Consequently, a = 0 and h = fg is primitive.

We have all the tools necessary to establish the converse of Theorem 6.1.

6.4. THEOREM. If D is a GCD-domain and S is a torsion-free GCD-semi-
group with zevo, then the semigroup ving D[X; S] is a GCD-domain.

Proof. To prove that D[X; S] is a GCD-domain, we intend to apply Theorem
3.1. Let N be the multiplicative system {Xa) a € S}. As observed in the proof of
Theorem 6.1, the hypothesis that S is a GCD-semigroup implies that each pair of
elements of N has a least common multiple in N. We let T be the set of e-primi-
tive elements of D[X; S}; clearly, each nonzero element of D[X; S] is expressible
as a product nt, where n € N and t € T. We prove that (X?) n (t) = (X®t) for each
a in S and each t in T. Let h = X2f = tg be a nonzero element of (X2) N (t), and
write g = ngl, where g; is e-primitive. Then X?f = thgl, where tg; is e-
primitive. It follows that X# divides Xb, and therefore divides g. Thus h belongs
to (X?t). Since (X?t) is contained in (X?) N (t), it follows that (X?) N (t) = (X®1).
We have shown that conditions (1) and (2) of Theorem 3.1 are satisfied, and since
D[X; 8]y = D[X; G] is a GCD-domain (Theorem 5.2), where G is the quotient group
of S, the domain D[X; S] is a GCD-domain.

Except for the assertion “D[X; S| a GCD-domain implies that D is a GCD-
domain”, Theorem 4.4 is included in Theorems 6.1 and 6.4, whereas Theorem 4.4
has not been used in an essential way to prove these two results. On the other hand,
the proof of Theorem 4.4 is of interest in itself, because of the insight it yields con-
cerning divisibility properties of D[X; S], for a GCD-domain D.

7. SEMIGROUP RINGS AS UNIQUE FACTORIZATION DOMAINS

In this section, we determine necessary and sufficient conditions in order that a
semigroup ring should be a UFD (Theorem 7.17). Since the semigroup ring is to be
an integral domain, we assume thvoughout the section that all coefficient rings con-
sidered ave integval domains wilh identity and that all semigvoups ave tovsion-free
and cancellative, and that they contain a zevo element.
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In the preceding section, we determined necessary and sufficient conditions in
order that a semigroup ring should be a GCD-domain: D[X; S] is a GCD-domain if
and only if D is a GCD-domain and S is a GCD-semigroup. Since the unique fac-
torization domains are precisely the GCD-domains satisfying a.c.c.p. [9], [20], it
is natural to consider the question of determining what semigroup rings satisfy
a.c.c.p. To begin, we establish some preliminary results concerning the a.c.c.p.
Using these results, we are able to establish analogues of Theorems 6.1 and 6.4;
moreover, we are able to reduce the problem to the case where the ring of coeffi-
cients is an algebraically closed field. The next result is elementary and its proof
will be omitted.

(7.1) Assume that D and J ave integral domains with identity, that D is a sub-
ving of J, and that K is the quotient field of D.

(a) If nonunits of D are nonunits of J and if a.c.c.p. is satisfied in J, it is
also salisfied in D.

(b) If J N K =D and if a.c.c.p. is satisfied in J, it is also satisfied in D.

7.2, COROLLARY. Assume that D and J ave integval domains with identity
and that D is a subring of J. Assume that S1 is a subsemigyvoup of the semigroup
S, . Moveover, assume that nonunits of D ave nonunits of J and that noninvertible
elements of S| are noninvertible in S,. If a.c.c.p. is satisfied in J[X; S,], it is
also satisfied in D[X; Sq].

Proof. Apply part (a) of (7.1) and Corollary 4.2.

7.3. COROLLARY. Assume that ¥ is a subfield of the field K and that H is a
subgrvoup of the group G. If K[X; G| is a UFD, then F[X; H] is a UFD.

Proof. Since F([X; H] is a GCD-domain, it suffices to prove that a.c.c.p. is
satisfied in F[X; H]; this follows from Corollary 7.2—a.c.c. p. is satisfied in the
UFD K[X; G].

7.4. LEMMA. Assume that D and J ave integral domains with a common iden-
tity, that D is a subving of J, and that S is a subsemigvoup of the semigroup S;.
If a.c.c.p. is satisfied in D and in J[X; S;| and if noninvertible elements of S
ave noninvertible in Sy, then a.c.c.p. is satisfied in D[X; Si].

Proof. Assume that (f;) C (f,) C --- is an infinite, strictly ascending sequence
of principal ideals of D[X; S;]. Since a.c.c.p. is satisfied in J[X; S;], we assume
without loss of generality that (0) # £;J[X; Sp] = fiJ [X; Sz2] for each k. Hence, if
f; = g;,11f;4 for each i, where g;;; is in D[X; S;], then each g;;, is a unit of
J[X; Sy]—say gj4q = uiHXSlH, where uj41 € D, Sj+1 € Sy, uj+] is a unit of J, and
Si+1 is invertible in S;. Thus sj;; is invertible in S; and each uj4; is a nonunit
of D. Moreover, if a; is a nonzero coefficient of f|, then a; =uza, for some non-
zero coefficient of f,, and a, = ujzasz for some nonzero coefficient of f3, and so
forth. It follows that a;D Ca,D Ca3zD C ---, contrary to the assumption that
a.c.c.p. is satisfied in D. Consequently, a.c. c.p. is satisfied in D[X; S;].

7.5. THEOREM. Assume that D is an integval domain with identity and S is a
semigrvoup. The semigvoup ving D[X; S| is a UFD if and only if D is a UFD and
K[X; S] is a UFD, wheve K is the quotient field of D.

Proof. First assume that D[X; S] is a UFD. By Theorem 4.4, D is a GCD-
domain. Moreover, since nonunits of D are nonunits of D[X; S] by Corollary 4.2, it
follows from (7.1) that a.c.c.p. is satisfied in D. Consequently, D is a UFD, and
since K[X; S] is a quotient ring of D[X; S}, the domain K [X; S] is also a UFD.
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Conversely, if D and K[X; S] are unique factorization domains, then Theorem
4.4 implies that D[X; S] is a GCD-domain, while Lemma 7.4 implies that a.c.c.p.
is satisfied in D[X; S]. Therefore, D[X; S] is 2 UFD, as asserted.

In view of Theorem 7.5, we restrict our considerations in the rest of this sec-
tion to the case in which the coefficient ring is a field. We first determine conditions
under which a group ring over a field is a UFD.

7.6. LEMMA. Lel F be a field, and let G be an abelian group (not necessarily
torsion-free). If A is a nonempty subset of G, then the ideal 1 of F[X; G] gen-
evated by the set {1 - Xal a € A} is the kevnel of the homomorphism
¢*: F[X; G| — F[X; G/H], wheve H is the subgroup of G genevaled by A and ¢* is
the canonical extension to F[X; G)] of the canonical homomorphism ¢: G — G/H
(see [25, Lemma 1, p. 153] or [10]).

7.7. COROLLARY. Let F be a field, and let G be a torsion-free abelian gvoup.
If g € G, then 1 - X8 is prime in F[X; G] if and only if the subgroup <g> of G
generated by g is pure in G.

Proof. For a subgroup H of a torsion-free group G, H is pure in G if and
only if G/H is torsion-free. Thus F[X; G]/(1 - X&) ~ F[X; G/(g)] is an integral
domain if and only if G/ <g > is torsion-free; that is, if and only if 1 - X8 is prime
in F[X; G].

7.8. LEMMA. Lef D be an integral domain with identity, and let G be a
torsion-free group. If g =nh, wherve g and h ave nonzevo elements of G and n is

an integey gveatev than 1, then the principal ideal of D[X; G] genevated by 1 - X
is properly contained in the principal ideal genevated by 1 - Xh,

Proof. The result follows from the equality

1 - Xg — (1 _ Xh)(1+Xh+XZh+ .. _l_X(n—l)h)

and the fact that 1+ X"+ -« + X D0 i5 not a unit of D[X; GI.

Our next result refers to the {ype of an element of an abelian group G (for the
definition, see [12, p. 147], [13, p. 109], or [34, p. 203]). To say that each element
of G has type (0, 0, 0, :-+) is equivalent to the condition that for each nonzero ele-
ment g of G, there is a largest positive integer ng such that the equation n gX =g
is solvable in G, or to the condition that each subgroup of G of rank 1 is cyclic. We
have resisted the temptation to attach a title to this class of groups; instead, we con-
tinue to describe them as “groups, each of whose elements is of type (0, 0, 0, --+)”.

7.9. THEOREM. If the group ving ¥ [X; G| of G over the field ¥ is a UFD,
then G is lorsion-free and each element of G is of type (0, 0, 0, *-+).

Proof. Clearly, G is torsion-free. If some element g of G is not of type
(0, 0, 0, *++), then there is a sequence g =g, g2, g3, - of elements of G and a
sequence kj, kp, --- of integers greater than 1 such that g; = k;g;;, for each i.

g g
It then follows from Lemma 7.8 that (1 - X 1) c(1-X 2) C .-+ is a strictly in-
creasing sequence of principal ideals of F[X; G]. Therefore F[X; G] is not a UFD
since a.c.c.p. is not satisfied in F[X; G].

In Theorem 7.12, we establish the converse of Theorem 7.9-—that is, we prove
that if F is a field and G is a torsion-free group in which every element is of type
(0, 0, 0, -+), then F[X; G] is a UFD. By Corollary 7.3, it will suffice to prove the
preceding statement under the additional hypothesis that F is algebraically closed.
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7.10. LEMMA. Le! H be a pure subgvoup of the torsion-free group G. If F is
a field, then prime elements of F[X; H] are prime in F[X; Gl.

Proof. Let p be a prime element of F[X; H], and assume that p divides a
product fg in F[X; G]—say fg = ph, where h € F[X; G]. Let K be the subgroup of
G generated by H and the exponents that occur in the canonical forms of 1, g, or h.
Then H is pure in the torsion-free group K; moreover, K/H is torsion-free and
finitely generated, so that K/H is a finite direct sum of infinite cyclic groups. Con-
sequently, H is a direct summand of K [23, p. 15]—say K =H@® K;. The element
p is prime in F[X; H], and hence in F[X; K] ~ (F[X; H]) [Y; K;]. Moreover, p
divides fg in F[X; K], and consequently, p divides f or g in F[X; K], and in
F[X; G]. Therefore p is prime in F[X; G], and our proof of Lemma 7.10 is
complete.

Most of the work required for the proof of Theorem 7.12 is contained in the next
result.

7.11, PROPOSITION. Let F be an algebraically closed field, lel G be a
torsion-free group such that each element of G has type (0, 0, 0, --+), and let H be
a finitely genevated subgvoup of G such that G/H is a torsion group. Then each
prime element of F [X; H] can be expressed as a finite product of prime elements of
F[X; G].

Proof. Let p be a prime element of F[X; H], and write p as

h h h
r X by r, X 2t r,X ", where each r; is nonzero and h; <h, <-..- <h,_, the
symbol < denoting a total order on G compatible with its group structure. Since

Xhl is a unit of F[X; H], we assume without loss of generality that h; = 0. Let k
be the largest integral divisor of h, in G. We.prove that p is a finite product of
prime elements of F[X; G] by showing that if f;, ---, f, are nonunits of F[X; G]
such that f;f, -« f; = p, then t < k. Once this is proved, it will follow that p is a
finite product of irreducible elements of F[X; G], and since F[X; G] is a GCD-
domain, irreducible elements of F[X; G] are prime.

Thus, assume that there exist nonunits f;, -+, f; of F[X; G], with t > k, such
that p=1£,f, -~ f;. Let K be the subgroup of G generated by H and the set of ex-
ponents that occur in the canonical form of some f{;; then K is a finitely generated,
torsion-free group, and hence F[X; K] isa UFD. Consider the diagram

F[X; K] F(X; K)

| |

F[X; H] F(X; H)

In the diagram, F(X; H) and F(X; K) denote the quotient fields of F[X; H] and
F [X; K], respectively. We observe that F(X; K) is finite and normal over F(X; H)
and that F[X; K] is the integral closure of F[X; H] in F(X; K). Thus, if {gi}j’“ is

a finite set of generators of K, then F(X; K) = F(X; H) ({Xgl};:l). Moreover, for
each i between 1 and m, there is a positive integer n; such that n;g; € H. It fol-
lows that X®! is a root of the pure equation Y- X8 gyer F(X; H). Since F is

algebraically closed, F contains the njth roots of unity, and Yn'1 - xi8i splits into
linear factors in F(X; K)[Y]. Therefore, F(X; K)/F(X; H) is finite and normal. We
have shown that F[X; K] is integral over F[X; H], and since F[X; K] is integrally
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closed, F[X; K] is the integral closure of F[X; H| in F(X; K). Moreover, we have
also shown that if g € K, then the conjugates of X8 over F(X; H) are of the form

I .
X8, where a is a root of unity in F; in particular, if f =27 a; x5 ¢ F [X; K] and
o is an element of the Galois group S of F(X; K) over F(X; H), then

Ir .
o(f) = El aio(Xg‘-), and hence the same exponents occur in the canonical forms of
f and o (f).

Since p can be factored in F[X; K] as a product of t nonunits, where t >k, it

Cr

follows that the prime factorization of p in F[X; K] is of the form p = ptl31 P,
where e; + --- +e,. > t. We write p; as Xg0q1 , Where

g g
q1=b0+lel+---+vaV and 0< g < - <g,.

It is clear that the ideal (q;) of F[X; K] generated by q; is a minimal prime of

(p). Moreover, (q;) N F[X; H] = pF[X; H] by the lying-over theorem, and because
F(X; K)/F(X; H) is normal and F[X; H] is an integrally closed domain,

{o({qy)) = (0(q)))| o € S} is the set of prime ideals of F[X; K] lying over

pF[X; H] in F[X; H] [17, p. 120]. But it is also clear that {(pi)}le is the set of
primes of F[X; K] lying over pF [X; H], so that each (p;) is of the form (o;(q;)) for
some o; € S. Therefore

e

(P = (' po) = ([oap] o 20a ]2 -+ [0 (a1,

e e
so that there is a unit uX® of F[X; K] such that p = uX&[o;(q1)] ! =~ [o+(q)] *.
But our previous observations show that each ¢;(q;) has order 0 and degree g, .
Since p has order 0 and degree h,, it follows that g =0 and h, = (e; + - +e,) g, .
Because e + *-- + e, >t > k, this contradicts our choice of k as the largest posi-
tive integer dividing h, in G. Hence t <Kk, as asserted, and p is a finite product of
prime elements of F[X; Gl.

7.12. THEOREM. Let F be a field, and suppose that each element of the
torsion-free gvoup G is of type (0, 0, 0, ---). Then F[X; G] is a UFD.

Proof. Corollary 7.3 allows us to assume that F is algebraically closed. Let f

h
be an element of F[X; GJ, and write f as r; X Lios r,X 7, where each r; is
nonzero. Let H be the subgroup of G generated by the set {hl, LN hn}. Since H
is a finitely generated, torsion-free group, H is a direct sum of infinite cyclic
groups. Thus F[X; H] is a UFD and f has a prime factorization in F[X; H]. By
Lemma 7.10, we need only show that f has a prime factorization in F [X; H*], where
H* is the pure subgroup of G generated by H (see [34, p. 195] for the definition).
By Proposition 7.11, each prime factor of f has a prime factorization in F[X; H*].
Thus f is a finite product of primes in F[X; G], and F[X; G] is a UFD.

The first author has used Theorem 7.12 and some results concerning the (Krull)
dimension of a group ring to give examples of non-Noetherian unique factorization
domains of arbitrary characteristic and arbitrary dimension k > 2; for the details,
see [18].

7.13. THEOREM. Lei D be an integral domain with identity, and let G be a
torsion-free gvoup, Then D[X; G] is @ UFD if and only if D is a UFD and each
element of G is of type (0, 0, 0, --+).
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Proof. Apply Theorems 7.5 and 7.12.

7.14, COROLLARY. Let D be an integral domain with identity, and let G be a
torsion-free group. The gvoup ving D[X; G| satisfies a.c.c.p. if and only if D
satisfies a.c.c.p. and each element of G is of type (0, 0, 0, +--).

Proof. Suppose that D[X; G| satisfies a.c.c.p. Then (7.1) implies that
a.c.c.p. is satisfied in D, and Lemma 7.8 implies that each element of G is of type
(0, 0, 0, ---). For the converse, we note that Theorem 7.13 implies a.c.c.p. is
satisfied in K[X; G], where K is the quotient field of D, and Lemma 7.4 implies that
a.c.c.p. is satisfied in D[X; G].

7.15. LEMMA. Let S be a UFS with maximal subgroup H. If each element of
H is of type (0, 0, 0, +-+), then each element of G, the quotient gvoup of S, is of type
(0’ O, '")-

Proof. We write the semigroup operation on S as addition. The group H is
merely the set of invertible elements of S. Moreover, the definition of a unique
factorization semigroup implies that if {pa} is a complete set of nonassociate
prime elements of S, then S is the weak direct sum of H and the family {(pa Y1

of subsemigroups with zero generated by the prime elements p, - Hence S is iso-
w
morphic to H® Ea (Zg)y » where Zg is the additive semigroup of nonnegative inte-

W
gers, and G~ H® Ea (Z)oz . Since each element of H and of Z is of type
(0, 0, 0, ---), we conclude that each element of G is also of type (0, 0, 0, ---).

7.16. LEMMA. Let p be an element of the unique factorization semigroup S
(again written additively). Then XP is a prime element of D[X; S|, wheve D is an
integval domain with identity, if and only if p is a prime element of S.

Proof. Suppose that XP divides fg in D[X; S]. Write f = X?f; and g = XPf,,
where f; is e-primitive for i = 1, 2. By the proof of Theorem 6.4, (X°) N (h) = (X h)
for each ¢ in S and each e-primitive element h of D[X; S]. Thus XP divides
Xa+bf1f2, and f; f; is e-primitive by Proposition 6.3. Since

(Xp) N (fl fz) = (prl fz) ,
it follows that XP divides X*'® in D[X; S]. Therefore p+c=a+b for some c in
S—that is, p divides a +b in S. Since p is prime in S, the element p divides a or
divides b in S, and XP divides either f or g in D[X; s].

Conversely, suppose that XP is prime in D[X; S]. If a, b € S and p divides
a+b in S, then XP divides X*™® in D[X; S]. Thus XP divides X® or XP in
D[X; S]. By Lemma 4.1, p divides a or b in S.

7.17. THEOREM. The semigroup ving D[X; S] is @ UFD if and only if D is a
UFD, the semigroup S is a UFS, and each element of the maximal subgroup H of S
is of type (0, 0, 0, *--).

Proof. To prove that D[X; S] is a UFD, we apply Theorem 3.2. Let N be the
multiplicative system of D[X; S] generated by the set

P
{X @| p,, is a prime element of S}

of prime elements of D[X; S]. It follows that D[X; S]y = D[X; G], where G is the
quotient group of S, By Lemma 7.15, each element of G is of type (0, 0, 0, +:-), and
by Theorem 7.13, D[X; G] is a UFD. To complete the hypothesis of Theorem 3.2,
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we must show that no element f € D[X; S] is divisible by infinitely many primes

P
X % or by infinitely many powers of a fixed prime X ¢ . Let the canonical form of
S S S

! +r, X 24 +r, X ", where a = gcd{sl y 82, ", sn}. Then

p

f=X1,, where f, is e-primitive. Thusif X ® divides f = X*f, , then X @
divides X*. This is so because (X%) N (f;) = (x4 f;) for each element q of S (see
the proof of Theorem 6.4). Since a is not divisible by infinitely many primes of S
or by infinitely many powers of a fixed prime of S, the hypothesis of Theorem 3.2 is

satisfied. Thus D[X; S] is a UFD.

Conversely, suppose that D[X; S] is a UFD. By Theorem 7.5, D is a UFD.
Since D[X; G] is a UFD, where G is the quotient group of S, each element of G is
of type (0, 0, 0, *=*). If a € S, then X* isa product of prime elements of D[X; S],

P
say X*=1ff, ** f;;. By Lemma 4.1, each f; is of the form u;X ', where u; isa
unit of D and p; is an element of S; moreover, by Lemma 7.16, each p; is prime
in S. Thus each element of S is a finite sum of prime elements and S is a UFS.

f be r X

i

We have investigated the analogue of Corollary 7.14 for semigroups, but our re-
sults in this direction are incomplete. If D is an integral domain with identity and
S is a torsion-free semigroup, then sufficient conditions for a.c.c.p. to be satisfied
in D[X; S] are that a.c.c.p. is satisfied in D, the ascending chain condition for
principal ideals of the semigroup S is satisfied, and each element of the quotient
group G of S is of type (0, 0, 0, *--). The conditions that a.c.c.p. is satisfied in
D and in S are also necessary in order that a.c.c.p. is satisfied in D[X; S], but
the condition that G is of type (0, 0, 0, -*) is not necessary; for example, if S is
the additive semigroup consisting of 0 and the set of real numbers greater than 1,
and if D is an integral domain with identity in which the a.c.c.p. is satisfied, then
a.c.c.p. is satisfied in D[X; S], but the quotient group of S is not of type
(0, 0, 0, ***). More generally, if {0} is the maximal subgroup of S, then a.c.c.p.
is satisfied in D[X; S] if it is satisfied in D and in S.

8. THE CASE OF A PRINCIPAL IDEAL DOMAIN

In this section, we consider the following question. Under what conditions is a
semigroup ring R[X; S] a principal ideal domain? To answer this question, we need
to consider the structure of a subsemigroup S of the infinite cyclic group Z of inte-
gers; we consider only the case where S properly contains the trivial semigroup
{0}. Let d be the (positive) greatest common divisor of the set of elements of S; if
d =1, then S is called a prime subsemigroup of Z [33, p. 201]. It is clear that
S =dS; for some prime subsemigroup S; of Z. It is known [33, Theorem 82, p.
201], that if S is contained in Zg, the set of nonnegative integers, then there exists
a positive integer Ky such that kd € S for each k > Ky . Similarly, if S is a subset
of the set -Zg of nonpositive integers, then there exists a negative integer Ky such
that kd € S for each k < Kp. If S contains both positive and negative integers, then
we let S| =S N Zg and Sz =S N (-Zg), and we let d; be the (positive) greatest com-
mon divisor of the elements of S;. The integers d; and d, are equal. To prove
this, let K, be a positive integer such that kd; € S; for each k > K, and let K,
be a negative integer such that kd, € S, for each k <K,. We prove that d; divides
d,; the proof that d, divides d; is similar. Thus, choose k < K, such that
(k, d1) = 1. For sufficiently large r, kd, + rd; is in S;, and hence d; divides
kd, +rd; by choice of kK, it follows that d; divides d;.

In summary, the following statement gives a description of all subsemigroups
of Z.
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(8.1) Let S be a subsemigvoup of the additive grvoup Z such that {0} is prop-
evly contained in S, and let d be the positive greatest common divisov of the ele-
ments of S.

(1) If SC Zg, then theve is a positive integer K such that kd € S for each
k>Kj.

(2) If Sc (-Z,), then theve is a negative integev K., such that kd € S for each
k<K 0 ¢ g
<K;.

(3) If S contains both positive and negative iniegers, then theve is a positive
integev K such that kd € S for each k such that lk > K.

8.2. PROPOSITION. Assume that S is a subsemigvoup of the additive group Z
such that {0} is properly contained in S, and let d be the positive gveatest common

divisoy of the elements of S. If D is an integval domain with identity, then the fol-
lowing conditions arve equivalent.

(1) The semigroup ving D[X; S| is integrvally closed.
(2) D is integrally closed, and either S = dZg, S = d(-Zg), or S = dZ.

Proof. If (2) is satisfied, then D is integrally closed and D[X; S] is isomor-
phic to D[Y] or to D[Y, Y !]= D[Y]{Yn}eo . Therefore, (2) implies (1) [26], [17,
n=1

Section 10].

We prove that (1) implies (2). B)y (8.1), there is an integer t such that td and
(t +1)d are in S. Hence X9 = x{t¥1)d/xtd phelongs to the quotient field of D[X; S].
If SC Zg, then a positive power of X9 belongs to D[X; S], and hence X9 € D[X; S};
consequently, S = dZy . Similarly, if S C -Zg, then a positive power of X4 is in
D[X; S] and S = d(-Zy). If S contains both positive and negative integers, then x4
and X~9 are in D[X; S] and S = dZ. It follows that to within isomorphism, D[X; S]
is D[X] or D[X, X~ !]. In either case, D[X; S] meets the quotient field of D in D,
and hence D is integrally closed.

If D is integrally closed, then our proof of Proposition 8.2 shows that condition
(1) of that result is equivalent to the condition that D[X; S] is 7oot-closed—that is,
D[X; S] contains each element t of its quotient field such that some positive power
of t belongs to D[X; S]. An integrally closed domain is, of course, root-closed, but
the converse fails in the general case [3, Exercise 15, p. 72}, [17, Exercise 6, p.
184].

A principal ideal domain has (Krull) dimension at most 1. We shall see pres-
ently that the condition that a semigroup ring has dimension at most 1 imposes
rather siringent conditions on the coefficient ring and the semigroup.

8.3. PROPOSITION. Let R be a commulative ving with idenlity, and let S be a
nonzevo, lorvsion-free, cancellative semigvoup with zevo. Then

dim R[X; 8] > dim R+ 1.

Proof. If Py C -+ C P, is a chain of proper prime ideals of R, then
P,[X; s] ¢ --- € P[X; S] is a chain of proper primes of R[X; S]; this follows since
R [X; S1/P;[X; S] ~ (R/P;) [X; S] is an integral domain for each i between 1 and n.
Moreover, P_[X; S] is not maximal in R [X; S], for Corollary 4.2 implies that
1 - X3, for each s # 0, is not a unit modulo P_[X; S]. It follows that
dim R[X; S] > dim R + 1.

We are now in position to prove the main result of this section.
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8.4. THEOREM. Assume that D is an integral domain with identity and that S
is a nonzevo, torsion-free, cancellative semigvoup with zevo. The following condi-
tions are equivalent.

(1) D is a field and S is isomorphic to Zg ov to Z.

(2) The semigvoup ving D[X; S| is a Euclidean domain.

(3) D[X; S] is a PID.

(4) D[X; S] is a Dedekind domain.

Proof. The implications (1) = (2), (2) = (3), and (3) => (4) are clear [16, p.
10], [36, p. 287]. We prove that (4) implies (1). By Proposition 8.3,
dim D[X; S] > dim D + 1. Hence (4) implies that dim D[X; S] =1, and D is a field.
If G is the quotient group of S, then D[X; G] is a quotient ring of D[X; S}, and
hence D[X; G] is a Dedekind domain. In particular, D[X; G] is Noetherian, so that

G is finitely generated [25, p. 154], [10, p. 658]. Since G is torsion-free, G is a
direct sum of k copies of Z, and

-1 -1
D[X; G] il D[le T, Xk’ Xl y " Xk ]'

But D[X;, -+, Xx, X'll , e, Xf<1] has dimension k (for example,

(Xy +1, -+, X + 1) is 2 maximal ideal of D[X;, :--, Xi] that contains no X;), and
therefore k = 1. It follows that S is a subsemigroup of Z, and D[X; S] is integrally
closed. By Proposition 8.2, S is isomorphic to Zy or to Z, and our proof of Theo-
rem 8.4 is complete.
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