A MINIMAL EXTENSION THAT IS NOT CONSERVATIVE
Robert G. Phillips

1. INTRODUCTION

Let L denote a countable first-order language that has relation symbols for
addition, multiplication, and order, and that has 0 and 1 as constant symbols. P
denotes Peano’s axioms, either for the natural numbers or for the integers, formu-
lated in L. When the context does not distinguish which set of axioms is being de-
noted by P, then the results or definitions involved are to be interpreted as being
valid for either set.

When M is a model for P, then Ly, will denote the extension of L obtained by
adding the elements of M - {0, 1} to L as constant symbols. It is to be understood
that when formulas of Ljps are interpreted in M, constant symbols will always denote
themselves. A formula of Ly, is called an M-formula, and 2 relation on M is
called M-definable if it can be represented in M by an M-formula. If M* is an ex-
tension of M, and R is an n-ary relation on M*, then

{(Xl’ e, X)X EMA - Ax, € MA(x, e, X)) € R}

will be called the 7restriction of R to M.

Assume then that M models P and that M* is a proper elementary extension
of M with respect to L. If no proper elementary substructure of M* properly
extends M, then M* is called a minimal extension of M. M* is called a conserva-
tive extension of M if the restriction of each M*-definable relation to M is also
M-definable.

In [3], H. Gaifman formulated the concept of a minimal extension and proved that
each model of P has a minimal extension. In [5], conservative extensions were in-
troduced, and it was proved that each model of P has a conservative extension. It is
the primary purpose of this paper to prove the following theorem.

THEOREM 1. There exists a minimal extension of the standavd model of P that
is not a consevvative extension.

The theorem, and a related result, will be proved in the last section; this sec-
tion is concluded with a brief account of the reasons that motivated the theorem.

First of all, it is clear that the concepts of minimal and conservative extension
do not coincide. A conservative extension of a conservative extension of M is still a
conservative extension of M, but it is obviously not a minimal extension of M.
Nevertheless, there are certain similarities between the two concepts; a few of these
are now listed:

(a) Gaifman’s construction of minimal extension and that of conservative exten-
sion both depend upon the same basic principle. This principle is that for each un-
bounded M-definable subset X of M and for each M-definable relation Q on M,
there exists an M-definable function f in 2M such that
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M |=Vx Vy 3z>y Vu<x [Qf(u)(u, z) Nz € X],

where Qf is the formula “ =0 — QANf=1- —Q” Inother words, the following
inductive process can be formalized within Lys: Xp is {x € X: M I= Q(0, x)} or Xq
is {x € X: M |=— Q(0, x)}, subject only to the condition that X, is unbounded.
Xur1 is {x € Xp: MEQu +1, x)} or Xy is {x € Xy M|E < Qlu+1, )},
again subject only to the condition that X, ;+; is unbounded.

(b) It is a direct consequence of (a) that the concepts of minimal and conserva-
tive extension are compatible. In [5], this was used to show that each model of P
has an extension that is both minimal and conservative.

(c) In [5], it was proved that each conservative extension is an end-extension.
In [1], A. Blass proves that if a minimal extension M* of M is not an end-extension
of M, then M is cofinal in M*. Restated in terms of types (see [1] and [3]), mini-
mal types and conservative types are both end-extension types.

(d) If P denotes Peano’s axioms for the integers, and consequently the models
of P are rings, the additive group structure of conservative extensions is canonical
in form and minimal in extent. In order to explain this statement, we let A denote
all functions f that map {x € M: x> 1} into M, satisfy 0 < f(x) < x for each x,
and have the property that for each i and j in M the greatest common divisor of i
and j divides f(i) - £(j). R. MacDowell and E. Specker [4] show that the additive
group of each proper elementary extension M* of M has the form K@GM* . Here,
K denotes the vector-space over the rational numbers whose dimension is the cardi-
nality of M*, and GM* is some subset of A. If B denotes the set of M-definable
functions in A, then B is always a subset of GM*, and furthermore, the additive
group of a conservative extension is always of the form K @B; K varies only to the
extent that its dimension is the cardinality of the conservative extension in question.
The reader is referred to [5] and [7] for the proofs of these assertions.

Because of these considerations, it was not immediately clear whether all mini-
mal extensions are also conservative extensions. It did not seem unreasonable to
expect minimal extensions to have at least the minimal additive structure just de-
scribed in (d); but it will be shown that this is not the case. After this paper was
first written, Blass [1] proved that each nonstandard countable model of P has a
minimal nonconservative extension. This was done by proving that for each such M
there exists a minimal extension M* in which M is cofinal. However, this method
is not applicable to the standard model, since all of its proper elementary extensions
are end-extensions.

2. BASIC RESULTS

Let N denote the standard model of P, and let F denote all M-definable func-
tions in NN, If D is an ultra-filter on N, then D-Prod N denotes the usual ultra-
power on N with respect to D, and D-Prod N | F denotes the substructure obtained
by restricting D-Prod N to the functions in F. This is essentially T. Skolem’s con-
struction [6], and it is well known that D-Prod N | F is a proper elementary exten-
sion of N with respect to Ly if D is nonprincipal.

When N* is an elementary extension of N, N% will denote the elementary sub-
structure of all elements of N* of the form f(a) as f varies throughout F. Clearly,
N* is minimal if and only if N* = N% for each a in N* - N.
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We present Gaifman’s construction of a minimal extension of N, since we must
refer to it later. Let X be an infinite N-definable subset of N, and let f be in F. If
there are infinite subsets of X on which f is constant, one of these subsets will be
denoted by D¢(X); otherwise, there is an infinite N-definable subset of X on which f
is one-to-one, and this subset will be denoted by D¢(X). Let {f,} be an enumeration
of the functions in F, and define the sets D,, inductively as follows:

Dl = Dfl(N)’ Tty Dn+1 = Dfn+1(Dn)1

Then D; D --- D D, D --+ is a decreasing sequence of infinite N-definable subsets of
N, and therefore, these sets are all included in some nonprincipal ultra-filter D on
N. Furthermore, for each n, f, is either constant on D, and thus constant modulo
D, or else there is a function f} in F such that f}(f,(x)) = x on D,. Hence, if N*
is D-Prod N | F and 7 is the identity function on N, then for each f in F that be-
longs to N* - N (in other words, for each f that is not constant modulo D) there is
an f* in F such that N* = f*(f) = 7. This implies that N} is a substructure of N},

and since Nj = N*, N* = N¥. Consequently, N* is a minimal extension of N.

A typical property of conservative extensions is the following: the set of stand-
ard prime divisors (that is, the prime divisors in N) of an element in a conservative
extension N* of N is an N-definable subset of N. This is so because such a set is
the restriction to N of all prime divisors (standard and nonstandard) of the element,
which is of course an N*-definable subset of N*.

It has been pointed out by the referee that the property just described is in fact
equivalent to N* being conservative. We add that the minimal additive group struc-
ture, discussed under section (d) in the introduction, is also a property equivalent fo
conservativity. G. Zahn [7] first proved that there are elementary extensions of N
with the minimal additive group structure, and A. Cantor [2] first proved the exist-
ence of conservative extensions of N. However, it was not immediately recognized
that Zahn’s extensions are also conservative.

To prove Theorem 1, we shall construct a minimal extension of N of the form
D-Prod N | F so that the set of standard prime divisors of the identity function 7 is
not N-definable. For this purpose, we introduce the notion of an N-like set.

3. N-LIKE SETS

N, will denote the set of multiples of n in N. A subset X of N is called N-
like with respect to an infinite increasing sequence of prime numbers {p;} if for
each n

XNAT, N NT

n
is infinite for each choice of T; = Np_ or T;=N - Np, . The next lemma follows
1 1

directly from this definition.
LEMMA 1. If X is N-like with vespect to {p;} and

A=XNT;N-NT,,

where each T; is either N,
1

or N - Ny, then A is N-like with vespect to {Pisnt-
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LEMMA 2. If X is N-like with vespect to {p;} and X = A U B, then theve is
an m such that either A or B is N-like with vespect to {Pit+m/-

Proof. X NT{N---NT,=ANT;N-- NTY) UBNT; N..- NT,). If for

all n and all choices of T; =N, or T; =N - N, it is the case that
1 1

ANT;N-..NT, isinfinite, then A is N-like with respect to {p;}. Otherwise,
there exist an m and a choice of Ty, ---, T, suchthat AN T; N ... N T, is
finite. This implies that B is N-like with respect to {pi+m}.

LEMMA 3. For each N-like set X with vespect to {p;}, and for each f in F,
theve exist a subset Di(X) of X and an m such that

(a) D{X) is N-like with respect to {p;im },
(b) f is either constant ov one-to-one on DX),
(c) if both X and {p;} are N-definable, then D{X) is N-definable.

Proof. Let {S;} be an enumeration of all sets of the form X N T, N --- N Ty,
where as usual each T, is either Npi or N - Npi and n ranges over N. Let f be
in F.

Choose x; arbitrarily in S;. If f(x) = f(x;) for all x > x; such that x € S5,
let D¢(X) ={x € Sy: x> x;}. Then D(X) satisfies part (a) of the lemma, because
of Lemmas 1 and 2. It is trivial to see that D¢X) also satisfies parts (b) and (c) of
the lemma.

Otherwise, choose x2 in S» so that xp > x; and f(x;) # f(x,). If
x] < xz < -+ < X have been chosen so that x; € S; and f(x;) # f(x;) for
0 <i <j<n, suppose that for each x such that x > x, and x € S;,41, thereisan i
such that f(x) = f(x;). Then an application of Lemmas 1 and 2 shows that there exists
an i (1 <i<n) such that if DgX) is set equal to {x € Spy1: x> x5 A £(x) = £(x;) },
then D¢(X) satisfies part (a) of the lemma. In this case, part (b) of the lemma is
trivially satisfied, and part (c) is satisfied because only a finite number of the sets
Sk are involved in the definition of D¢(X). Otherwise, choose x,,; > X, so that
X417 € Spep and (x4 q) # f(xy) for i=1, -+, n.

The process just described will yield one of two possible outcomes: either a
subset Df(X) of X will be defined that satisfies the lemma, and on which f is con-
stant, because the process terminates at some stage; or the process does not termi-
nate, and therefore an infinite sequence x; < x3 < --- <x, < --- will be defined such
that x, € S, and f(x) # f(x;) for 1 <i <j. If the latter outcome occurs, DfX) will
be defined to be the infinite ‘sequence {xn}. It is now shown that this choice for
D¢(X) also satisfies the lemma. '

Clearly, part (b) is satisfied because f is one-to-one on D{X). The sequence
D¢(X) is N-like with respect to {p;} because D¢(X) N S, is infinite for each n.
This is so because for each n there exists an infinite sequence {ni} such that
S, D Snl DD Sni D ---. For instance, n; can be taken to be the first j > n such

that §; is S, NNp | 0 - NNy when 8, =X N T, 0 - N Ty Then

{Xn! Xnyp» } c Df(X) NSy.

In order for Ds(X) to be N-definable, it is sufficient to show that the sequence
{Sk} can be chosen in an N-definable manner. Therefore, assuming both X and
{pi} are N-definable, for each n we order the finite number of sets of the form
X NT;N--N T, in some definite fashion, taking care to use the same procedure
for each n. Order the groups of sets of the form XN Ty N --- N T,, according to n;
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then the lexicographic order will recursively order {S, }, and hence {S, | will be
N-definable.

4. A MINIMAL EXTENSION THAT IS NOT CONSERVATIVE

The proof of Theorem 1 can now be presented. Let {Qn} be an enumeration of
all N-definable subsets of N that consist of only prime numbers, and let {pi} be
an enumeration of all prime numbers in increasing order. N is N-like with re-
spect to {p;}. If p; belongsto Q,, set T; =N - Ny, ; otherwise, set T; =Ny, .

Set n; =1 and U, = Tnl’ and let {fn} denote an enumeration of ¥. Thus,

D, = Dfl(Ul) is N-like with respect to {pi+m} for some m. Set n, =1+m. If

1

pnZ belongs to Q,, set T, =N - anz; otherwise, set T, = anz' Let

U,=D; NT, and D, = DfZ(UZ)- In this manner, we construct three sequences of
N-definable infinite sets {D_}, {T,}, and {U,} having the following properties:
(i) NDU;DD; D+ DU, DD, D -

(ii) For all i, T; =N - ani if Pn, belongs to Q;; otherwise, T; =N

i
(iii) For all n, U, C T,,.
(iv) For all n, i, is either constant on D, or else one-to-one on D, .

Therefore the sequence {D,} is a decreasing sequence of infinite N-definable
subsets of N. Referring to Gaifman’s construction of a minimal extension and state-
ment (iv), we see that there exists a nonprincipal ulfra-filter D, containing all of the
sets D,), such that N* = D Prod N | F is a minimal extension of N.

Let 7 denote the identity function on N, and let S be the set of standard prime
divisors of # in N*. We assert that S # Qy for each k. For suppose P, belongs

to Q; then T =N - ank. But since Dy C Uy C Ty, Ty is in D, and hence Pn,
does not divide 7 in N*. Therefore, Py is not in S. On the other hand, if Py is
not in Qy, then Ty = ank is in Dj thus, pnk divides 7 in N*, and therefore pnk

belongs to S. This completes the proof of Theorem 1, because S is not N-definable
and therefore N* is not conservative.

If P denotes Peano’s axioms for the integers, then, referring to part (d) of the
introduction, we see that the extension N* just constructed also has the following
property.

THEOREM 2. The additive group of N* is not isomorphic to the additive group
of any conservative extension of N. Thevefore, theve exists a minimal extension of
N that does not have the minimal additive group structure.

Proof. If one accepts the results mentioned in the next-to-the-last paragraph of
Section 2, then Theorem 2 is evident because N* is not conservative. However, it is
easy to give a direct proof. Suppose that o is an additive isomorphism of N* onto a
conservative extension M of N. If a isin N* and n is in N, then n divides a in
N* if and only if n divides a(a) in M. Therefore the set of standard prime divisors
of a(r) in M is the set S of standard prime divisors of 7 in N¥*, which is impos-
sible, since M is conservative.
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