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1. INTRODUCTION

If a compact, connected Lie group G acts effectively on a simply connected,
compact manifold M with codimension 2, and if at least one orbit is singular, then
there exists no nontrivial finite isotropy subgroup of (G, M) [, p. 211]. In fact,
Theorem 4 in our paper states that if a torus group T" acts effectively on a simply
connected, closed (n + 2)-manifold M™*2 (n > 2), then both T!- and TZ2-subgroups
of T™ must appear as isotropy subgroups, and that these are the only possible non-
trivial isotropy subgroups of T™.

Numerous research papers discuss the importance of a thorough understanding
of isotropy subgroups of the action (G, M). The following are typical examples of
cases that are related to our work.

Let (G, M) be the action of a compact, connected Lie group G on a compact,
connected, orientable, aspherical cohomology manifold M. Here, aspherical means
that the universal covering space is contractible. P. E. Conner and D. Montgomery
[2, Theorem 5.2] wrongly concluded that there are no nontrivial isotropy subgroups
of (G, M). In this case, the action is principal, and this enabled them to prove their
major theorem by using theorems about principal fiber bundles. Later, P. E. Con-
ner and F. Raymond [3, Theorem 5.6] showed that the isotropy subgroups of (G, M)
do not necessarily all reduce to the identity element e, but that each isotropy sub-
group is finite. They succeeded in giving a correct proof of the theorem mentioned
above [2, Theorem 5.2].

One more example we wish to mention is that given by D. Montgomery and G. D.
Mostow [5], who showed that if the toroid T* acts effectively on an n-Euclideanlike
cohomology manifold M (n < 2r + 1), then all the isotropy subgroups are connected
and TT has exactly 2T isotropy subgroups: e, the circle subgroups

T}, Té, e Ti, and their direct products. In other words, there are no nontrivial
finite isotropy subgroups of (T¥, M"), and the set of fixed points F(TT, M™) is not
empty. It is known that F(TT, M") is actually some Euclideanlike cohomology

manifold.

The examples above suggest that the size of isotropy subgroups of G depend
strongly upon the fundamental group II;(M), on the higher homotopy groups of M,
and on the codimension of the action (G, M).

Define a mapping f: (G, e) — (M, x) by the formula f(g) = gx. This mapping in-
duces a homomorphism f: II,{(G, e) — II,(M, x).
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The purpose of this paper is to show that if a torus group T" acts effectively on
a connected, orientable (n + 2)-manifold M™*2 guch that the image of f, is
{O} CII (Mn+2), where I1;(M"*2) is a finite group containing a cyclic subgroup
(p > 2) then there ex1sts a point x € MP*2 guch that the isotropy subgroup g
is f1n1te This extends a result of [8], and an immediate corollary says that if a
circle group T! acts effectively on a 3-dimensional lens space L(p, q) with
F(T!, L(p, q)) # &, then there exists a umque orbit whose isotropy group is Z,
[9, Theorem 3].

Let (G, X) and (G, Y) be connected group actions on connected spaces X and
Y. Let h: (X, x) — (Y, h(x)) be an equivariant mapping, and let H c II;(X, x) and
K c I1; (Y, h(x)) be normal subgroups of their respective fundamental groups such
that Im f, C H and h (H) C K. Let B(X) and B(Y) be the covering spaces corre-
sponding to Hcl (X x) and K c I1;(Y, h(x)), respectively. Then we can lift G-
actions on X and Y to B(X) and B(Y). We show here that the equivariant mapping
h also can be lifted to h: (G, B(X)) — (G, B(Y)) equivariantly. Now let
B*(X) = B(X)/G and B*(Y) = B(Y)/G be orbit spaces on which I1;(X)/H and I1,(Y)/K
act properly discontinuously. Theorem 2 says that if ht: B¥(X) — B*(Y) is a map-
ping induced by h, then there exists a monomorphism

W60/, = W/

where b, is the orbit containing b € B(X). This result gives a criterion involving
the fundamental groups of two actions, which in a number of cases can be used to
exclude the possible existence of an equivariant mapping between them. We give an
application of this (Corollary 1).

For completeness, we include a statement of Theorem 4 (whose proof appears
in [4]). An immediate consequence of this theorem is that if T2 acts effectively on
a simply connected 4-manifold M4, then F(T2, M%) # ¢, a result which appeared
in [7].

In summary, a number of well-known results are more or less immediate
corollaries of the rather elementary theorems of this paper.

2. DEFINITIONS

We consider an action (G, X) of a pathwise connected topological group G on a
pathwise connected space X for which covering-space theory makes sense. The
group G_= {g € G| gx=x} is called an isotropy subgroup of (G, X) at x e X. By
G(x) = {g(x)| g € G} we shall denote the orbit corresponding to G, or the orbit of
x € X. The orbit space, the set of all orbits, will be denoted by X* = X/G. The
maximum orbit type for orbits in X is called the principal orbit type P, and orbits
of this type are called principal orbits. If Q is another orbit type such that
dim P > dim Q, then Q is called a singular orbit type. The codimension of (G, X)
is defined to be dim X - dim P.

For technical reasons, we assume that (G, X) is at least a locally smooth ac-
tion (see [1] for the definition).

From the well-known slice theorem, it follows that if (T™, M™*2) is an effective
torus action on a closed, compact, orientable manifold M, then there exists a prin-
cipal T™-orbit, and the orbit space M* is a compact 2-manifold. The set of
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principal orbits forms a dense open subset of M*, and the boundary oM* | possibly
empty, consists of singular orbits.

3. ISOTROPY SUBGROUPS OF T®-ACTIONS ON M"*?

Let P(e, G) be the space of paths in G issuing from the identity element e, and
let P(x, X) be the space of paths in X issuing from x € X. Define a mapping
f: (G, e) — (X, x) by f(g) = gx. This mapping induces a homomorphism
fooI,(G, e) = II; (X, x). Let HCII;(X, x), and let B(X) be a covering space corre-
sponding to H. The following two lemmas from [3] play a crucial role in the latter
part of this paper. We assume that all spaces are path-connected.

LEMMA 1. Let (G, X) be an action. If Im f_C H, then theve exists an equi-

varviant covering action P: (G, B(X)) — (G, X). Furthermove, if H is normal, then
g(ba) = (gb)a for all « € 11 /H.

Let B(X) be a covering space corresponding to H C II; (X, P(b)), where H is
invariant under Gp(y,) for some b € B. Let B¥(X) = B(X)/G. Since II; /H acts
freely on B, and g(ba) = (gb)a for all @ € I} /H, there is an action of II; /H on
B*(X) defined by G(b)a = G(ba), and the diagram

P

B(X)

X > X* = X/G,

(where the P’s are the obvious projection maps) commutes.

For each b € B(X), we have the relation Gy, C Gp(p); for if gb =b, then
P(gb) = P(b) = g P(b).

At each b € B(X) we can define a homomorphism 7y: Gp(p) — I /H. If
g € Gp(p), define np(g) to be the unique element in II; /H with gb =bny(g). Itis
not difficult to see that 7 is a homomorphism for each b € B(X).

LEMMA 2. The sequence

i n
e —> G, ——> Gpp) —b—)'(HI/H)P'l(b) —>0

is exact for every b € B(X).

Let X and Y be G-spaces. A mapping h: X — Y is called a G-equivariant

mapping if h(g(x)) = g(h(x)) for all x € X and g € G. The immediate result is that
the diagram

h
X Y
el - > v*

Y

(where h: X* — Y* is a mapping induced by h) commutes. Also, since
gh(x) = h(g(x)) = h(x) if g € G,, it is easily seen that G, C Gh(x) -
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Let H C I11(X, x) and K C I1;(Y, h(x)) be normal subgroups such that im f, CH
and h*(H) c K. If f': (G, e) — (Y, h(x)) is defined by the equation f'(g) = gh(x), then
f.(I1, (G, e)) C K, since f' = hf. Therefore, there exists a covering action (G, B(Y))
corresponding to K.

THEOREM 1. Let h: (X, x) — (Y, h(x)) be a G-equivaviant mapping such that
h (H) C K C II; (Y, h(x)), and let Im f, C H. Then there exists an equivaviant map-
pmg h: B(X) — B(Y) covering h buch that the diagvam
B(X) h > B(Y)

(@-——»Bﬁm

h o
! / h \ !

X > Y

~

commules. Heve the P’s and Q’s ave natural projection mappings, and the h’s are
the obvious equivariant mappings.

Proof. A G-action on B(X) is defined as follows. Given g € G and b € B(X),
we select first a path g(t) ¢ P(e, G) with g(1) = g; then we choose a path P(t) that
represents b € B(X). We define gb to be the point represented by a path

{g(Zt)x (0<t<1/2),
g(HPRt-1) (1/2<t<1).

This is a well-defined action (for more details, we refer the reader to [3]). Simi-
larly, there exists an action (G, B(Y)).

Now define h: B(X) — B(Y) by defining h(b) to be the point represented by
h(P(t)). Thus h(g(b)) is represented by

h(g(2t)x) (0<t<1/2),
{h(g(l) PRt- 1) (1/2<t<1).
Since h is equivariant, this is the same as
g(2t) h(x) (0 <t<1/2),
{ g(h(P@t - 1)) (1/2<t< 1),

and this represents g(h(b)). Since h,(Im £,) C h,(H) C K, the mapping h is well-
defined and equivariant. Now the mapping h~'- B*(X) — B*(Y) induced by h is given
by the equation ht(b,) = Q' hQ- l(b ), where b, = Q(G(b)) for every b € B(X). The
fundamental groups of Xand Y act on B*(X) and B*(Y), respectively.
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We would like to show that h* is an equivariant mapping. Let o € II;(X)/H.
Then h' (b, @) = Q' hQ }(b, @), where b, a = Q(G(ba)). Thus

h* (b, @) = Q' h(G(ba)) = Q' G(h(ba)) = Q' G(h(b)h, (@) = Q'(G(h(b)) h(e))
= Q'(hG(b)) h(e) = @QhQ b)) h (@) = (h* (b)) h ().

Some standard diagram-chasing completes the proof.

Let h™: B¥(X) —» B*(Y) be the mapping induced by h: B(X) — B(Y). For each
point b, € B*(X), define y: (I (X, x)/H)b* — (I, (Y, h(x))/K)hl(b ) by the rule
*

y([a]) = [h,(a)]. This is a well-defined homomorphism, since

[h()](h" (k) = bt ([alb,) = h™(b,),

and

[al+[8]) (' (b)) = [h(a]l+[8D](h" (b)) = [h,(a@) +h(B](h"(b,)
= [h(a)](h* (b)) + [h, (B (h" (b)) = v[a]l(h (b)) +¥[B](h* (b))
= (v[a] + 8] (h* (b)) .

THEOREM 2. For a point b € B such that Gﬁ(b) =0, the mapping
y: (I (X, x)/H)b* — (I (Y, h(x))/K)hi(b ) is a monomovphism.
*
Proof. Let g € Gp(p)- Then there exists a unique element ny{g) € I,(X, x)/H
such that gb = by (g).

The relations
h(b) 1) (i8) = i(e)h(b) = gh(b) = h(gb) = h(b7y(g)) = h(b)h, 0, (g) = h(b) y7,(g)
show that the diagram

0 —> G, ——> Gp(,) —> (M(X, x)/H)b* —> 0

I

is commutative. The mappings i and j are inclusion homomorphisms. Lemma 2
shows that the rows are exact. By taking a point b € B such that Gg(p) = 0, we see
that y is a monomorphism.

COROLLARY 1. Let (T, Ls(p, q)) and (T, Ls(p', q')) be two circle actions
(with fixed points) on 3-dimensional lens spaces. If p does not divide p', then there
is no equivaviant mapping h from (T!, Ls(p, q)) to (T, Ls(p', q')).

Proof. We deduce this from Theorem 2 by examining the fundamental groups of
the lens spaces.

THEOREM 3. Lelt T" act effectively on a compact, connected, orvientable
(n + 2)-manifold Mn+2 whose fundamental group I1}(M"12) is a nontrivial finite
group containing a cyclic group Z (p>2). If Im£=0 for some X € Mn+2 then
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there exists a point x € M*2 such that T, is a nontrivial finite gvoup (for n=1,
we assume the existence of a singular orbit).

Proof. Let B be the universal covering manifold corresponding to H = 0, as in
Lemma 1. Thus II; (M) is a free deck-transformation group. Since II;(M) is finite,
B is a compact, simply connected (n + 2)-manifold, and T™ can be lifted to B. Let
P: B — M denote the projection mapping. Since B is a simply connected (n + 2)-
manifold, B* = B/T™ is a simply connected 2-manifold [6]; in fact, we can assume
that B* is the two-dimensional disk D2. Let P': B — D2 be the projection map-
ping. The free action of I1;(M) on B induces an action of II;(M) on D2, as in
Lemma 2. By Lemma 2, we have for each b € B the exact sequence

b
e HI(M)p'(b) —> 0.

n_1 n

e > Tb —_—> TP(b}

By assumption, there exists Z, C I1}(M) (p > 2). Now, by the well-known fixed-
point theorem, we can assume that there exists a point d in the interior of D2 such
that d € F(Zp, D2). Since every interior point of D2 corresponds to a principal
orbit of the T™-action on B, we see that T = e for P'(b) =d. The exact sequence
shows that 7, : Tg(b) — Hl(M)P'(b):d is an isomorphism. Since Hl(M) contains a
nontrivial cyclic group Zp, the proof is complete.

Remarks. (a) M2 is not an aspherical manifold [3].

(b) By Theorem 4, there exist isotropy subgroups T! and T2 in the action of
T on B. Therefore, in the T"-action on M, there exists an isotropy subgroup con-
taining T! and T2. However, we know that for n > 2 the action (T, Mn+2) cannot
have a fixed point. Therefore there exist singular orbits.

(c) There exist at least three different orbit types—principal, exceptional, and
singular.

(d) Isotropy subgroups depend not only on II, (M), but also on higher homotopy
groups of M.

COROLLARY 2. Let (T!, Ls(p, q)) be an effective cirvcle group action on a 3-
dimensional lens space Ls(p, q) with F(T!; Ls(p, @) # @. Then theve exists
exactly one ovbit whose isotropy subgvoup is Z .

This corollary and Corollary 3 (following Theorem 4) were given as theorems
in [9] and [7], respectively.

For completeness, we give the following theorem, which appears in [4]:

THEOREM 4. Lel (T", M"™+2) be an effective TT-action on a simply connected,
compact, closed (n + 2)-manifold M™2 . Then every isotvopy subgroup is a T!1- or
T2-subgroup of TT, and each isotropy subgvoup T! isa subgroup of some isotyopy
subgroup T2 in T™ (for n =1, we assume the existence of a singular orbit).
Furthermore, two oy more T2-subgroups of T® (but a finite number of them) must

appear as isotvopy subgvoups of T™.
We omit the proof of this theorem. The theorem generalizes [7, Lemma 5.2].

COROLLARY 3. Let (T2, M%) be an effective action of the torus group T2 on
a simply connected closed 4-manifold M*. Then the fixed-point set F(T?, M%) is
not empty.

Remark. This result can fail to be true if the codimension is larger than 2.
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